Золотые фигуры

Особенности построения золотого треугольника. Анализ прямоугольника, у которого отношение смежных сторон дает пропорцию Фидия. Спираль Фибоначчи как интерпретация арифметически невозможной спирали золотого сечения, у которой нет ни конца, ни начала.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 26.11.2012
Размер файла 1,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Ознакомление с историей появления метода золотого сечения. Рассмотрение основных понятий и алгоритма выполнения расчетов. Изучение метода чисел Фибоначчи и его особенностей. Описание примеров реализации метода золотого сечения в программировании.

    курсовая работа [416,0 K], добавлен 09.08.2015

  • Методы последовательного поиска: деление отрезка пополам, золотого сечения, Фибоначчи. Механизмы аппроксимации, условия и особенности их применения. Методы с использованием информации о производной функции: средней точки, Ньютона, секущих, кубической.

    курсовая работа [361,5 K], добавлен 10.06.2014

  • Понятие и история исследования золотого сечения. Особенности его отражения в математике, природе, архитектуре и живописи. Порядок и принципы построения, структура и сферы практического применения золотого сечения, математическое обоснование и значение.

    реферат [584,7 K], добавлен 22.03.2015

  • Определение золотого сечения и его роль в науке. Присутствие золотого сечения в окружающей жизни. Золотое сечение в расположении листьев на стебле и в пропорциях тела. Деление тела точкой пупа. Числа Фибоначчи, золотая пропорция и тело человека.

    реферат [2,2 M], добавлен 09.04.2012

  • Математическое описание последовательности чисел Фибоначчи. Представление фрагмента корзины "Гармония Мироздания" как образца формирования числовых рядов. Особенности построения живой спирали "Китовраса", ее практическое применение в древнем мире.

    доклад [6,4 M], добавлен 16.01.2011

  • Задача нахождения экстремума: сущность и содержание, оптимизация. Решение методами квадратичной интерполяции и золотого сечения, их сравнительная характеристика, определение основных преимуществ и недостатков. Количество итераций и оценка точности.

    курсовая работа [779,5 K], добавлен 25.08.2014

  • Спиральная последовательность квадратов чисел. Последовательность чисел Фибоначчи и "золотое сечение" Леонардо да Винчи. Живые и неживые числа. Общая корзина "Гармонии Мироздания". Показательная спираль живой органики или спираль "Китовраса".

    статья [4,1 M], добавлен 18.04.2012

  • Понятие золотого сечения. История открытия "золотой" пропорции, ее использование в архитектуре, живописи и природе. Проведение исследования, доказывающего утверждение Ле Корбюзье. Примеры золотого сечения. Геометрическая загадка портрета Джоконды.

    презентация [7,0 M], добавлен 10.11.2014

  • Изучение последовательности чисел Фибоначчи. Вклад в математику Леонардо Пизанского. Золотое сечение в жизни и в природе, ее геометрическое изображение. Построение точки, делящей отрезок единичной длины. Золотой прямоугольник и спираль Фибоначчи.

    презентация [421,5 K], добавлен 15.06.2017

  • Использование принципов "золотого сечения" в математике, физике, биологии, астрономии, в архитектуре и других науках и искусствах. Обзор истории и математической сущности золотого сечения, осмысление его роли в современной науке; "математика гармонии".

    реферат [20,3 K], добавлен 24.11.2009

  • Определение спирали Архимеда как лучшего способа определения площади круга. Основные свойства и способы логарифмической спирали - кривой, которая пересекает все лучи, выходящие из одной точки, под одним и тем же углом. Гиперболическая спираль в технике.

    реферат [494,9 K], добавлен 13.03.2015

  • Эстетический потенциал математического объекта. Использование золотого прямоугольника в живописи. Пропорциональный циркуль Дюрера. Золотое сечение и гармония в искусстве. Золотой ряд Фибоначчи. Использование орнаментальной и зеркальной симметрий.

    курсовая работа [615,2 K], добавлен 11.09.2012

  • Определенное отношение длин отрезков. Сооружения, построенные в золотой пропорции. Основы симметрии и ассиметрии. Пропорции мужского тела и золотого сечения. Золотые пропорции в частях тела человека. "Золотое сечение" в математике, архитектуре, живописи.

    презентация [290,4 K], добавлен 12.05.2011

  • Алгебраические спирали в полярной системе координат. Построение первого витка спирали Архимеда. Интересные свойства логарифмической спирали. Семейство роз Гранди. Геометрические и механические свойства лемнискаты Бернулли. Способ построения кардиоиды.

    статья [4,3 M], добавлен 08.05.2011

  • Фибоначчи Леонардо Пизанский — первый крупный математик средневековой Европы. Ряд чисел Фибоначчи - элементы числовой последовательности, в которой каждое последующее число равно сумме двух предыдущих чисел. Примеры ряда Фибоначчи в повседневной жизни.

    доклад [25,5 K], добавлен 24.03.2012

  • Прямоугольник - параллелограмм, у которого все углы прямые. Описание основных свойств и признаков прямоугольника. Решение задачи, в условии которой дано прямоугольный участок земли, разделенный на две части биссектрисой. Нахождение площади прямоугольника.

    презентация [260,5 K], добавлен 10.02.2011

  • Свойства и численное значение площади геометрической фигуры. Вычисление площади квадрата, прямоугольника, трапеции, и треугольника. Измерение отрезков. Значение и область применения теоремы Пифагора. Алгебраическое и геометрическое доказательства Евклида.

    презентация [267,8 K], добавлен 04.09.2014

  • Понятие "золотое сечение" как пропорции, деления в крайнем и среднем отношении. Математические свойства сечения, его использование в музыке, архитектуре, искусстве. Пропорции тела человека. Исследование распространения "золотого сечения" в природе.

    презентация [1,9 M], добавлен 27.02.2012

  • Полярная система координат. Построение линий в полярной системе координат с помощью математического пакета MathCAD. Уравнение в полярных координатах логарифмической спирали. Полярное уравнение архимедовой спирали. Координаты, применяемые в математике.

    научная работа [3,2 M], добавлен 18.01.2011

  • Расчет площади равнобедренного и равностороннего треугольника. Если угол одного треугольника равен углу другого треугольника, то площади этих треугольников относятся как произведения сторон, заключающих равные углы. Расчет размеров медианы, биссектрисы.

    презентация [68,7 K], добавлен 16.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.