Алгебра октав
Определение понятия системы аксиом алгебры октав; ее непротиворечивость и категоричность. Изучение понятия и свойств сопряженных октав. Рассмотрение основных тождеств, применяемых к октавам. Формулирование и доказательство теорем Гурвица и Фробениуса.
Рубрика | Математика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 05.05.2012 |
Размер файла | 457,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Из формулы (13) тогда следует, что
е2 = (0 +1* е)(0 +1* е) = (0* 0 - * 1) + (1* 0 + 1*)е = -1 + 0* е = -1.
Отсюда можно сделать вывод, что квадрат любого вектора a1 1 равен 1, где ? 0.
Докажем и обратное: если квадрат какого-либо элемента равен 1, где ? 0, то этот элемент ортогонален 1. В самом деле, квадрат любого элемента, не ортогонального 1, т.е. элемента вида а = k1+a/ где k ? 0 и a/ 1, равен
(k1+ a/)(k1 + a/) = k21 + а'2 + 2ka/ = k21 + 1 + 2k a/.
Если это выражение пропорционально 1, то а/ = 0, следовательно, а = kl, но квадрат k1 не может равняться 1, где ? 0.
Отсюда следует, что элементы, ортогональные 1, и только они характеризуются тем свойством, что их квадраты равны 1, где ? 0. Тогда для произвольного элемента а А берется его единственное представление в виде
а = k1+a/, где а/2 = 1 и ? 0,
а сопряженный ему элемент в виде в = k1 - a'
Теорема Гурвица. Любая нормированная линейная алгебра, с единицей над полем действительных чисел изоморфна одной из четырех алгебр: полю действительных чисел, полю комплексных чисел, телу кватернионов или алгебре октав.
Пусть - нормированная линейная алгебра с единицей над полем действительных чисел, а - ее подалгебра, содержащая 1, е B, где е - единичный вектор. Как мы показали ранее, является подалгеброй алгебры (A, +, .R, .). Из теорем 1 и 2 следует, что.изоморфна удвоенной подалгебре .
Рассмотрим подалгебру , изоморфную полю действительных чисел (R, +, .). Если она не совпадает со всей алгеброй ,то найдется единичный вектор е D. Составим подалгебру , изоморфную удвоению , а следовательно, изоморфную полю комплексных чисел. Назовем ее комплексной подалгеброй алгебры . Из того, что сказано выше о сопряжении в алгебре , вытекает , что для элементов из D + De сопряжение совпадает с обычным сопряжением комплексных чисел.
Если, в свою очередь, подалгебра ,где С = D + De, не совпадает со всей алгеброй ,то опять-таки найдется единичный вектор е/ С. Составим подалгебру изоморфную удвоению , а следовательно, и изоморфную телу кватернионов. Назовем ее кватернионной подалгеброй алгебры. Из вышесказанного о сопряжении в алгебре следует, что для элементов из С+Се/ сопряжение с впадает с обычным сопряжением в теле кватернионов.
Если, в свою очередь, подалгебра , где К = C+Ce', не совпадает со всей алгеброй , то снова найдется единичный вектор е" K. Составим подалгебру изоморфную удвоению , а следовательно, и изоморфную алгебре октав.
Но эта подалгебра , где U = К + Ке// совпадает уже c самой алгеброй ,так как по теореме 3 любая подалгебра алгебры , содержащая 1 и не совпадающая со всей алгеброй , ассоциативна. А так как умножение октав не ассоциативно, а в ее подалгебре (теле кватернионов) оно ассоциативно, то подалгебра совпадает со всей алгеброй .
Резюмируя вышеизложенное, мы получаем, что если алгебра не изоморфна ни одной из алгебр , или , то она изоморфна алгебре октав ,что и доказывает утверждение теоремы Гурвица.
§7. Обобщенная теорема Фробениуса
Теорема. Любая альтернативная линейная алгебра над полем действительных чисел с делением является нормированной линейной алгеброй.
Пусть - альтернативная линейная алгнбра с делением над полем действительных чисел R. Введем в A операцию сопряжения следующим образом: если элемент а A пропорционален 1, то в = а; если же а не пропорционален 1. то он содержится в комплексной подалгебре . В этой подалгебре для элемента а имеется сопряженный элемент в, который и примем за элемент, сопряженный к а в алгебре .
Из определения в непосредственно следует, что = а, а также =kв, где k R.
Пусть а A не пропорционален 1. Рассмотрим кватернионную подалгебру (K, +, .R, .), содержащую а. В этой подалгебре для а A тоже имеется сопряженный элемент в. Покажем, что а совпадает с в.
Элементы а и в, как сопряженные в комплексной алгебре, удовлетворяют условиям:
а+в = 2а* 1, где а R, (14)
а* в = d*1, где d R. (15)
Элементы а и в, как сопряженные в кватернионной алгебре, удовлетворяют условиям:
а+ г = 2а1* 1, где а1 R, (14')
а * г = d1 *1, где d1 R. (15/)
Вычтем из (14) и (15) соответственно (14/) и (15'). Тогда:
в - г = 2(a - a1)*1.
а (в - г) = (d- d1)* 1 2(a - a1)a*1.= (d- d1)* 1.
Если
a(в - г), то a = *1,
т.е. а пропорционален 1, что противоречит предположению.
Отсюда следует, что элемент, сопряженный к а, один и тот же, независимо от того, рассматриваем ли мы а как элемент комплексной подалгебры или же как элемент кватернионной подалгебры алгебры .
Точно так же |а|2 = ав как в случае комплексной подалгебры,так и в случае кватернионной подалгебры алгебры , так , что модуль элемента а A не зависит от того, рассматриваем мы его как элемент комплексной или кватернионной подалгебры алгебры .
Тогда для любых a, b А справедливы равенства:
=в+ и = в *. (16)
Если а и b принадлежат одной комплексной подалгебре алгебры , то равенства (16) есть свойства, сопряжения в этой подалгебре. Если же они принадлежат разным комплексным подалгебрам, то они будут верны как свойства сопряжения в кватернионной подалгебре алгебры .
Из = b и из второго равенства (16) вытекает, что = bв, откуда
a + bв = с* 1, где с R.
Определим в (A, +, .R, .) скалярное произведение (а, b) как
a + bв = 2(а, b) * 1.
Покажем, что (а, b) удовлетворяет всем свойствам скалярного произведения:
1) (а, а) > 0 при а ? 0 и (0, 0) = 0.
В самом деле,
(а, а) * 1 = (ав + ав) = ав = |а|* 1,
а модуль комплексного числа, так же как модуль кватерниона, сторого положителен при а ? 0 и равен 0 при а = 0.
2) (a, b) = (b. а), так как
a + bв = 2(a, b)* 1, bв + a = 2(b, a)* 1,
но
a + bв = bв + a, тогда (a, b) = (b, a).
3) (a, kb) = k(a, b) при k R.
Действительно,
(a, kb) = (a() + kbв) = (a(k) + kbв) = k(a + bв) = k(a, b).
4) (a, b1 + b2) = (a, b1) + (a, b2)
следует из определения скалярного произведения и первого равенства (16).
Из (а, а) = |а|2 1 следует, что = |а|, т.е. норма элемента a А совпадает с модулем а как комплексного числа, так и кватерниона.
Так как любые два элемента а и b из алгебры принадлежат одной комплексной или одной кватернионной подалгебре, то
|ab|2 = |a|2 |b|2 (ab, ab) = (a, a)(b, b).
Следовательно, все свойства скалярного произведения для (а, b) выполняются. Отсюда следует, что алгебра есть нормированная линейная алгебра.
Обобщенная теорема Фробениуса. Любая альтернативная линейная алгебра над полем действительных чисел с делением и единицей изоморфна одной из четырех алгебр: полю действительных чисел, полю комплесных чисел, телу кватернионов или алгебре октав.
Так как по доказанному в предыдущей теореме альтернативная линейная алгебра над полем действительных чисел с делением и единицей является нормированной линейной алгеброй, а последняя по теореме Гурвица изоморфна либо полю действительных чисел, либо полю комплексных чисел, либо телу кватернионов, либо алгебре октав, то отсюда следует утверждение теоремы.
Список литературы
1. Виноградова И.А., Олехник С.Н., Садовничий В.А. Математический анализ в задачах и упражнениях (числовые и функциональные ряды). М.: Факториал, 1996, 477с.
2. Власова Е.А. Ряды. М.: Изд-во МГТУ им. Н.Э.Баумана, 2002, 608с.
3. Воробьев Н.Н. Теория рядов: Учебное пособие для втузов. М.: Наука, 1986, 408с.
4. Демидович Б.П., Марон И.А. Основы высшей математики. М.: Наука, 1986, 364с.
5. Зайцев В.В., Рыжов В.В., Сканави М.И. Элементарная математика. М.: Наука, 1984, 400с.
6. Никольский С.М. курс математического анализа: Учеб. для вузов: В 2 т. Т.1. М.: Наука, 1990, 528с.; Т.2. М.: Наука, 1991, 544с.
7. Шмелев П.А. Теория рядов в задачах и упражнениях. М.: Высш.шк., 1983, 176с.
Размещено на Allbest.ru
Подобные документы
Доказательство утверждений непротиворечивости и категоричности системы аксиом алгебры октав. Практическое изучение действий над октавами (сложение, умножение) и применимых к ним тождеств (Муфанга, Клейнефлда). Формулировка теорем Гурвица и Фробениуса.
дипломная работа [500,8 K], добавлен 13.02.2010Алгебра логики, булева алгебра. Алгебра Жегалкина, педикаты и логические операции над ними. Термины и понятия формальных теорий, теорема о дедукции, автоматическое доказательство теорем. Элементы теории алгоритмов, алгоритмически неразрешимые задачи.
курс лекций [652,4 K], добавлен 29.11.2009Понятие и свойства n-арных операций, универсальной алгебры и сигнатуры. Характеристика централизаторов конгруэнции универсальных алгебр и доказательство их основных свойств. Нильпотентные и абелевы алгебры, формулировка и метод доказательства их лемм.
курсовая работа [399,1 K], добавлен 22.09.2009Логика - наука о законах и формах мышления, а основное понятие алгебры логики - высказывание. Основные понятия и тождества булевой алгебры. Изучение методов минимизации булевых функций. Метод Квайна, основанный на применении двух основных соотношений.
контрольная работа [178,2 K], добавлен 20.01.2011Анализ теорем сопряженных функторов. Естественное преобразование как семейство морфизмов. Характеристика свойств рефлективных подкатегорий. Знакомство с универсальными стрелками. Рассмотрение особенностей метода построения сопряженных функторов.
курсовая работа [3,1 M], добавлен 27.01.2013Понятия векторной алгебры: нулевой, единичный, противоположный и коллинеарный векторы. Проекция вектора на ось. Векторный базис на плоскости и в пространстве. Декартова прямоугольная система координат. Действия над векторами, заданными координатами.
презентация [217,3 K], добавлен 16.11.2014Системы цифровой обработки информации. Понятие алгебры Буля. Обозначения логических операций: дизъюнкция, конъюнкция, инверсия, импликация, эквивалентность. Законы и тождества алгебры Буля. Логические основы ЭВМ. Преобразование структурных формул.
презентация [554,8 K], добавлен 11.10.2014Понятие алгебры логики, ее сущность и особенности, основные понятия и определения, предмет и методика изучения. Законы алгебры логики и следствия из них, методы построения формул по заданной таблице истинности. Формы представления булевых функций.
учебное пособие [702,6 K], добавлен 29.04.2009Основные понятия и определения. * - алгебры. Представления. Тензорные произведения. Задача о двух ортопроекторах. Два ортопроектора в унитарном пространстве, в сепарабельном гильбертовом пространстве. Спектр суммы двух ортопроекторов.
дипломная работа [303,0 K], добавлен 04.06.2002Предпосылки развития алгебры множеств. Основы силлогистики и соотношение между множествами. Применение и типы жергонновых отношений. Понятие пустого множества и универсума. Построение диаграмм Эйлера и обоснование законов транзитивности и контрапозиции.
контрольная работа [369,0 K], добавлен 03.09.2010