Типичные задачи математической статистики
Закон распределения случайной величины по статистическим данным. Особенности графического оформления и числовые характеристики статистических рядов, их сглаживание и выравнивание. Проверка правдоподобия гипотез. Понятие о системе случайных величин.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 01.03.2012 |
Размер файла | 530,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
5. Системы случайных величин
5.1 Понятие о системе случайных величин
В практических применениях теории вероятностей очень часто приходятся сталкиваться с задачами, в которых результат опыта описывается не одной случайной величиной, а двумя или более случайными величинами, образующими комплекс или систему. Например, точка попадания снаряда определяется не одной случайной величиной, а двумя: абсциссой и ординатой -- и может быть рассмотрена как комплекс двух случайных величин. Аналогично точка разрыва дистанционного снаряда определяется комплексом трех случайных величин. При стрельбе группой из п выстрелов совокупность точек попадания на плоскости может рассматриваться как комплекс или система 2 п случайных величин: п абсцисс и п ординат точек попадания. Осколок, образовавшийся при разрыве снаряда, характеризуется рядом случайных величин: весом, размерами, начальной скоростью, направлением полета и т. д. Условимся систему нескольких случайных величин Х, У,…,W обозначать (Х, У W).
Свойства системы нескольких случайных величин не исчерпываются свойствами отдельных величин, ее составляющих: помимо этого, они включают также взаимные связи (зависимости) между случайными величинами.
При рассмотрении вопросов, связанных с системами случайных величин, удобно пользоваться геометрической интерпретацией системы. Например, систему двух случайных величин (Х, У) можно изображать случайной точкой на плоскости с координатами Х и У (Рис. 8.1.1). Аналогично система трех случайных величин может быть изображена случайной точкой в трехмерном пространстве. Часто бывает удобно говорить о системе п случайных величин как о «случайней точке в пространстве п измерений». Несмотря на то, что последняя интерпретации не обладает непосредственной наглядностью, пользование ею дает некоторый выигрыш в смысле общности терминологии и упрощения записей.
Размещено на Allbest.ru
Подобные документы
Методы регистрации, описания и анализа статистических экспериментальных данных, получаемых в результате наблюдения массовых случайных явлений. Обзор задач математической статистики. Закон распределения случайной величины. Проверка правдоподобия гипотез.
презентация [113,3 K], добавлен 01.11.2013Классификация случайных событий. Функция распределения. Числовые характеристики дискретных случайных величин. Закон равномерного распределения вероятностей. Распределение Стьюдента. Задачи математической статистики. Оценки параметров совокупности.
лекция [387,7 K], добавлен 12.12.2011Понятия теории вероятностей и математической статистики, применение их на практике. Определение случайной величины. Виды и примеры случайных величин. Закон распределения дискретной случайной величины. Законы распределения непрерывной случайной величины.
реферат [174,7 K], добавлен 25.10.2015Описание случайных ошибок методами теории вероятностей. Непрерывные случайные величины. Числовые характеристики случайных величин. Нормальный закон распределения. Понятие функции случайной величины. Центральная предельная теорема. Закон больших чисел.
реферат [146,5 K], добавлен 19.08.2015Дискретные системы двух случайных величин. Композиция законов распределения, входящих в систему. Определение вероятности попадания случайной величины в интервал; числовые характеристики функции; математическое ожидание и дисперсия случайной величины.
контрольная работа [705,1 K], добавлен 22.11.2013События и случайные величины. Функция распределения и ее характерные свойства. Сущность и определение основных числовых характеристик случайных величин: математическое ожидание, дисперсия, моменты. Критерии и факторы, влияющие на их формирование.
контрольная работа [118,5 K], добавлен 30.01.2015Задачи математической статистики. Распределение случайной величины на основе опытных данных. Эмпирическая функция распределения. Статистические оценки параметров распределения. Нормальный закон распределения случайной величины, проверка гипотезы.
курсовая работа [57,0 K], добавлен 13.10.2009Математические методы систематизации и использования статистических данных для научных и практических выводов. Закон распределения дискретной случайной величины. Понятие генеральной совокупности. Задачи статистических наблюдений. Выборочное распределение.
реферат [332,8 K], добавлен 10.12.2010Сходимость последовательностей случайных величин. Центральная предельная теорема для независимых одинаково распределенных случайных величин. Основные задачи математической статистики, их характеристика. Проверка гипотез по критерию однородности Смирнова.
курсовая работа [1,6 M], добавлен 13.11.2012Закон и свойства нормального распределения случайной величины. На основе критерия согласия Пирсона построение гистограммы, статистической функции и теоретической кривой и определение согласованности теоретического и статистического распределения.
курсовая работа [894,5 K], добавлен 30.10.2013