Неопределенные интегралы: методы вычисления

Основные приемы и методы вычисления неопределенных интегралов. Свойства интеграла, правила интегрирования. Простейшие приемы вычисления. Интегрирование методом замены переменной, по частям. Интегрирование рациональных выражений и трансцендентных функций.

Рубрика Математика
Предмет Математика
Вид учебное пособие
Язык русский
Прислал(а) В.С. Желтухин
Дата добавления 08.09.2011
Размер файла 339,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Особенности неопределенного интеграла. Методы интегрирования (Замена переменной. Интегрирование по частям). Интегрирование рациональных выражений. Интегрирование рациональных дробей. Метод Остроградского. Интегрирование тригонометрических функций.

    лабораторная работа [1,7 M], добавлен 05.07.2010

  • Непосредственное (элементарное) интегрирование, вычисление интегралов с помощью основных свойств неопределенного интеграла и таблицы интегралов. Метод замены переменной (метод подстановки). Интегрирование по частям, определение точности интегралов.

    презентация [117,8 K], добавлен 18.09.2013

  • Первообразный и неопределенный интеграл. Некоторые свойства неопределенного интеграла. Интегрирование методом замены переменой, способом подстановки, по частям. Интегрирование рациональных дробей. Простейшие рациональные дроби и их интегрирование.

    курсовая работа [187,8 K], добавлен 26.09.2014

  • Особенность метода Остроградского. Процесс вычисления производных и нахождения интегралов различных функций. Алгоритм Евклида. Интегрирование биноминальных дифференциалов. Тригонометрические и гиперболические подстановки. Основные виды рациональностей.

    курсовая работа [916,8 K], добавлен 06.11.2014

  • Первообразная и неопределённый интеграл. Описание вычисления неопределенного интеграла в системе Mathcad, его свойства. Примеры вычисления функций в системе Mathcad. Вычисление значения результирующей функции. Подведение функций под знак дифференциала.

    курсовая работа [454,6 K], добавлен 24.12.2012

  • Первообразная и неопределенный интеграл. Таблица интегралов. Некоторые свойства неопределенного интеграла. Интегрирование методом замены переменой или способом подстановки. Интегрирование по частям. Рациональные дроби. Простейшие рациональные дроби.

    реферат [128,7 K], добавлен 16.01.2006

  • Методы интегрирования в древности. Понятие первообразной функции. Основная теорема интегрального исчисления. Свойства неопределенных и определенных интегралов и методы их вычисления, произвольные постоянные. Таблица интегралов элементарных функций.

    презентация [525,7 K], добавлен 11.09.2011

  • Сущность и методы определения первообразной в математическом анализе. Особенности вычисления первообразной как нахождение неопределённого интеграла. Анализ техники интегрирования. Формула Ньютона–Лейбница. Основные положения дифференциальной теории Галуа.

    контрольная работа [71,8 K], добавлен 05.11.2011

  • Понятие первообразной функции. Виды иррациональных функций, приемы их интегрирования. Интегрирование рациональных дробей, алгебраических иррациональностей, биномиальных дифференциалов, тригонометрические подстановки. Примеры решения типовых задач.

    курсовая работа [278,4 K], добавлен 07.06.2012

  • Постановка задачи вычисления значения определённых интегралов от заданных функций. Классификация методов численного интегрирования и изучение некоторых из них: методы Ньютона-Котеса (формула трапеций, формула Симпсона), квадратурные формулы Гаусса.

    реферат [99,0 K], добавлен 05.09.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.