Плоские кривые

История изучения плоских кривых. Особенности формы кривой и способов ее образования. Классификация плоских кривых. Канонические уравнения эллипса, гиперболы и параболы, свойства кривых, изучаемые в 9–11 классах. Цели и задачи факультативных занятий.

Рубрика Математика
Вид дипломная работа
Язык русский
Дата добавления 22.04.2011
Размер файла 907,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Приведём уравнение к каноническому виду

, ,

следовательно, Строим осевой прямоугольник, а затем изображаем гиперболу.

Параллельный перенос гиперболы преобразует уравнение к виду:

(5)

(или (6)).

Рассмотрим способ построения гиперболы по уравнению данного вида.

б) .

Преобразуем его к виду (5)

и далее:

Это уравнение гиперболы, где

Осевой прямоугольник со сторонами смещён на две единицы вверх и вправо. Строим его и изображаем гиперболу.

II способ.

Приводим уравнение к каноническому виду:

,

следовательно,

Центр осевого прямоугольника - точка (2; 2).

Строим его и изображаем гиперболу.

2) Найти длины полуосей и координаты фокусов следующих гипербол:

а)

.

Привели к каноническому виду, а следовательно а = 2, b = 3.

F1 и F2 имеют координаты: F1(- с; 0), F2(с; 0).

Таким образом, F1(; 0), F1(; 0).

Ответ: а = 2, b = 3, F1(; 0), F1(; 0).

б)

Используя каноническое уравнение, получим:

.

Мы знаем, что F1(- с; 0), F2(с; 0),

, F1(; 0), F1(; 0).

в)

,

F1(- с; 0), F2(с; 0):

Ответ: F1(; 0), F1(; 0).

3) Составить каноническое уравнение гиперболы, если расстояние между вершинами равно 8, а расстояние между фокусами равно 10;

Итак, нам дано, что Находим, что .

Каноническое уравнение гиперболы имеет вид

Т. к. , то уравнение можно записать следующим образом:

4) Взяв на плоскости прямоугольную декартову систему координат, построить области, определяемые следующими системами неравенств:

а)

построим множество точек, определяемых 1-м и 2-м неравенствами. Найдём пересечение этих множеств.

I. Построим гиперболу . После преобразования получаем каноническое уравнение с полуосями а = 2 и b = 1. Точки гиперболы не принадлежат искомой области, т. к. неравенство строгое. Это неравенство определяет внутренние точки гиперболы. Строим осевой прямоугольник, гиперболу и изображаем искомую область.

II. Строим множество точек. Заданных вторым неравенством. Для этого изображаем прямую и штрихуем определяемую область.

Построение.

б)

Построим множество точек, определяемых 1-м, 2-м. 3-м неравенствами. Найдём пересечение этих множеств.

I. построим гиперболу . Её точки принадлежат искомой области, т. к. неравенство не строгое. Т. о. Неравенство определяет внешние точки гиперболы. Преобразуем уравнение. это уравнение гиперболы, где , точки которой не принадлежат искомой области (неравенство строгое), строим осевой прямоугольник со сторонами и изображаем гиперболу.

II. Строим множество точек, заданных вторым неравенством. Для этого изображаем прямую и штрихуем определяемую область.

III. Рассуждаем аналогично. строим прямую и штрихуем определяемую область.

Построение.

7. Эксперимент

Некоторые практические материалы. Предложенные в гл. II проверены экспериментально в 10-11 классах ГОУ СОШ с. Новкус-Артезиан.

Тема эксперимента: «Различные уравнения эллипса, гиперболы, параболы и их графики».

Эксперимент проводился в два этапа.

I этап эксперимента.

До изложения теории о линиях второго порядка (до Темы 1) предлагались задания на проверку уровня знаний учащихся о знакомых им линиях второго порядка.

Учащимся было предложено ответить на вопросы и выполнить задания:

1. Какие из перечисленных ниже графиков представлены на чертеже:

а) окружность;

б) эллипс;

в) гипербола;

г) парабола?

2. Каким из перечисленных выше уравнений задаётся каждый из них:

а) ,

б)

в)

г)

3. Какие методы построения графиков функции вы знаете?

4. Приведите примеры распространения линий второго порядка в жизни, природе, технике.

5. Какие вы знаете свойства эллипса, гиперболы, параболы, окружности?

II этап поискового эксперимента проводился после проведения факультативных занятий.

Подбирались задачи, аналогичные тем, которые рассматривались на кружковых занятиях. Задания достаточно стандартные, аналогичные тем, которые были проведены на первом этапе эксперимента и задания по нестандартному решению задач.

Учащимся были предложены следующие задания:

1. Нарисовать схематически графики данных уравнений:

а) ,

б)

в)

г) .

2. По заданным уравнениям определите название линии второго порядка:

а)

б)

в)

г) .

3. Построить график функции

4. Решить уравнения: а)

б)

После проведения эксперимента можно сделать следующий вывод: у учащихся экспериментальной группы значительно поднимается уровень логического мышления и развивается математическая интуиция, они чётко аргументируют ответы, приводят доказательства и хорошо ориентируются в изученном материале, применяя его на уроках.

Результаты эксперимента

Количество учащихся

I этап

II этап

15

28%

75%

Заключение

В квалификационной работе разработана теория плоских кривых и замечательных кривых, предложена разработка факультатива для учащихся 9-11 классов на тему «Плоские кривые».

После изучения научной и методической литературы материал отобран с учётом психологических и физиологических особенностей учащихся старших классов и систематизирован для целостного изложения.

Выдвинутая гипотеза, на наш взгляд подтверждается на основе наблюдений и частичного эксперимента в период педагогической практики.

Содержание всех занятий позволяет углубить представление учащихся об эллипсе, гиперболе. Параболе и ознакомить их с некоторыми, наиболее часто встречающимися замечательными кривыми, приблизить их к пониманию некоторых важных идей современной математики.

Литература

1. Савелов А.А. Плоские кривые. - М.: ГИФ-МЛ, 1960

2. Гильберт Д., Кон-Фостен С. Наглядная геометрия. - М.: Наука, 1981.

3. Моденов П.С. Аналитическая геометрия М.: Наука, 1969

4. Атанасян Л.С., Базылев В.Т. Геометрия. - учебное пособие для студентов физ. - мат. факультетов пед. институтов. - М.: Просвещение, 1987

5. Александров П.С. Лекции по аналитической геометрии, пополненные необходимыми сведениями из алгебры с приложениями собрания задач, снабжённых решениями, составленные А.С. Пархоменко. - М.: Наука, 1968

6. Александров П.С. Курс аналитической геометрии и линейной алгебры. - М.: Наука, 1979

7. Энциклопедический словарь юного математика. М.: Педагогика, 1989

8. Математический энциклопедический словарь. М.: Советская энциклопедия, 1988

9. Маркушевич А.И. Замечательные кривые. - М.: - наука, 1978

10. Водинчар М.И., Лайкова Г.А., Калинова Т.Ю. Линии второго порядка и графики иррациональных функций // Математика в школе, 1999, №3.

11. Дубровин В.А., Новиков С.П., Фоменко А.Г. Современная геометрия. Методы и приложения. - М. Наука, 1986

12. Методика преподавания математики в средней школе. - М.: Просвещение, 1980

13. Кузнецова Г.Б. Алгебра точек параболы // Математика в школе, 1974, №2

14. Ткаченко А.А. Об одном свойстве гиперболы // Математика в школе, 1976, №2

15. Лабораторные и практические работы по методике преподавания математики: учебное пособие для физ. - мат. Специальностей пед. институтов \ под редакцией Лященко Е.И. - М., 1988

16. Шарыгин И.Ф. Факультативный курс по математике: решение задач. Уч. пособие для 10 кл. средней школы. - М., 1989

17. Абрамов А.Щ., Ивлев Б.М. и др. Задачи повышенной трудности по алгебре и началам анализа: уч. пособие для 10-11 кл. средней школы. - М., 1993

18. Программа общеобразовательных учреждений. Математика. - М. «Просвещение», 2002

Размещено на Allbest.ru


Подобные документы

  • Понятие и свойства плоских кривых, история их исследований. Способы образования и разновидности плоских кривых. Кривые, изучаемые в школьном курсе математики. Разработка плана факультативных занятий по математике по теме "Кривые" в профильной школе.

    дипломная работа [906,7 K], добавлен 24.02.2010

  • Сведения о плоских кривых. Замечательные кривые третьего порядка. Классификация Ньютона кривых третьего порядка. Циссоида и ее свойства. Преобразования плоскости, переводящие кривые второго порядка в кривые третьего порядка. Преобразования Маклорена.

    дипломная работа [960,1 K], добавлен 22.04.2011

  • Понятие и свойства плоских кривых, история их исследований, способы их образования, разновидности и свойства нормали. Методы построения некоторых видов кривых, называемых "Декартов лист", лемнискаты Бернулли, улитки Паскаля, строфоиды, циссоиды Диокла.

    курсовая работа [3,1 M], добавлен 29.03.2011

  • Математическое понятие кривой. Общее уравнение кривой второго порядка. Уравнения окружности, эллипса, гиперболы и параболы. Оси симметрии гиперболы. Исследование формы параболы. Кривые третьего и четвертого порядка. Анъези локон, декартов лист.

    дипломная работа [877,9 K], добавлен 14.10.2011

  • Понятие и способы образования плоских и кривых линий. Примеры пересечения алгебраической кривой линии. Поверхность в геометрии. Аргументы вектор-функции. Уравнения семейства линий. Способ построения касательной и нормали в произвольной точке лемнискаты.

    контрольная работа [329,5 K], добавлен 19.12.2014

  • Общее уравнение кривой второго порядка. Составление уравнений эллипса, окружности, гиперболы и параболы. Эксцентриситет гиперболы. Фокус и директриса параболы. Преобразование общего уравнения к каноническому виду. Зависимость вида кривой от инвариантов.

    презентация [301,4 K], добавлен 10.11.2014

  • Линия - общая часть двух смежных областей поверхности. Характеристика спиралей – плоских кривых линий. Кардиоида как плоская линия, описываемая фиксированной точкой окружности. Описание циклоида и астроида. Синусоидальная спираль как семейство кривых.

    контрольная работа [268,4 K], добавлен 17.11.2010

  • Система кривых Пирсона. Применение ортогональных полиномов Чебышева при нахождении кривых распределения вероятностей. Примеры нахождения кривых распределения вероятностей и программное обеспечение.

    дипломная работа [230,5 K], добавлен 13.03.2003

  • Общее уравнение кривой второго порядка, преобразование систем координат. Классификация кривых по инвариантам, исследование уравнения кривой второго порядка. Изучение и примеры исследования инвариант поворота и параллельного переноса систем координат.

    курсовая работа [654,1 K], добавлен 28.09.2019

  • Задачи, приводящие к дифференциальным уравнениям. Теорема существования, единственности решения задачи Коши. Общее решение дифференциального уравнения, изображаемое семейством интегральных кривых на плоскости. Способ нахождения огибающей семейства кривых.

    реферат [165,4 K], добавлен 24.08.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.