Математическая статистика
Выборочный метод и его основные понятия. Эмпирическая функция распределения и ее свойства. Проверка статистических гипотез, область их принятия, элементы теории корреляции и выборочные уравнения регрессии. Характеристика цепей Маркова и матрица перехода.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 25.02.2011 |
Размер файла | 166,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
.
Эту формулу называют равенством Маркова.
Зная все переходные вероятности , т.е. зная матрицу перехода из состояния в состояние за один шаг, можно найти вероятности перехода из состояния в состояние за два шага, а значит, и саму матрицу перехода , далее - по известной матрице - найти и т.д.
Действительно, полагая в равенстве Маркова n=2, m=1 получим:
или . В матричном виде это можно записать, как .
Полагая n=3, m=2, получим . В общем случае справедливо соотношение .
Пример. Пусть матрица перехода равна .
Требуется найти матрицу перехода:
.
Умножая матрицу саму на себя, получим .
Для практических применений чрезвычайно важным является вопрос о расчете вероятности нахождения системы в том или ином состоянии в конкретный момент времени. Решение этого вопроса требует знания начальных условий, т.е. вероятностей нахождения системы в определенных состояниях в начальный момент времени. Начальным распределением вероятностей марковской цепи называется распределение вероятностей состояний в начале процесса .
Здесь через обозначена вероятность нахождения системы в состоянии в начальный момент времени. В частном случае, если начальное состояние системы в точности известно (например ), то начальная вероятность , а все остальные равны нулю.
Если для однородной цепи Маркова заданы начальное распределение вероятностей и матрица перехода, то вероятности состояний системы на n-м шаге вычисляются по рекуррентной формуле:
.
Для иллюстрации приведем простой пример. Рассмотрим процесс функционирования некоторой системы (например, прибора). Пусть прибор в течение одних суток может находиться в одном из двух состояний - исправном () и неисправном (). В результате массовых наблюдений за работой прибора составлена следующая матрица перехода:
,
где - вероятность того, что прибор останется в исправном состоянии;
- вероятность перехода прибора из исправного в неисправное состояние;
- вероятность перехода прибора из неисправного в исправное состояние;
- вероятность того, что прибор останется в состоянии «неисправен».
Пусть вектор начальных вероятностей состояний прибора задан соотношением , т.е. (в начальный момент прибор был неисправен). Требуется определить вероятности состояния прибора через трое суток.
Решение: Используя матрицу перехода, определим вероятности состояний после первого шага (после первых суток):
.
Вероятности состояний после второго шага (вторых суток) равны:
Наконец, вероятности состояний после третьего шага (третьих суток) равны:
.
Таким образом, вероятность того, что прибор будет находиться в исправном состоянии равна 0,819, и того, что в неисправном - соответственно 0,181.
Цепи Маркова с непрерывным временем
Марковский случайный процесс называется цепью Маркова с непрерывным временем, если переходы системы из состояния в состояние происходят не в фиксированные, а в случайные моменты времени.
Время наступления событий часто предсказать заранее невозможно. Например, любая деталь устройства или агрегат могут выйти из строя в любой, непредсказуемый момент времени. Описание таких, и гораздо более сложных ситуаций возможно при использовании формализма непрерывных цепей Маркова.
Пусть система характеризуется состояниями , и переход из состояния в состояние может происходить в любой момент времени. Обозначим через вероятность того, что в момент времени система будет находиться в состоянии . Требуется определить для любого момента времени вероятности состояний . При этом, очевидно, должно выполняться условие нормировки:
.
Для процесса с непрерывным временем вместо переходных вероятностей рассматриваются плотности вероятностей перехода , представляющие собой предел отношения вероятности перехода системы за время из состояния в состояние к величине :
,(1)
где - вероятность того, что система, пребывавшая в момент в состоянии , за время перейдет из него в состояние ; при этом всегда .
Если , то процесс называется однородным, если же , то - неоднородным.
При рассмотрении непрерывных марковских процессов принято считать, что переходы системы происходят под влиянием некоторых потоков событий.
Потоком событий называется последовательность событий, следующих одно за другим через какие-то случайные интервалы времени. Плотность вероятности перехода интерпретируется, как интенсивность соответствующих потоков событий. Если все эти потоки пуассоновские, то процесс, протекающий в системе, является марковским.
Марковские процессы удобно иллюстрировать с помощью графа состояний (Рис. 1), где кружками обозначены состояния системы, а стрелками - возможные ее переходы. Задержки в прежнем состоянии изображают «петлей», т.е. стрелкой, направленной из данного состояния в него же. Число состояний системы может быть как конечным, так и бесконечным.
Размещено на http://www.allbest.ru/
Как правило, в графе состояний над стрелками проставляют соответствующие переходам интенсивности . Такой граф называют размеченным.
Уравнения Колмогорова
Пусть система имеет конечное число состояний и случайный процесс, протекающий в ней, характеризуется некоторыми вероятностями нахождения системы в каждом из состояний.
В случае марковской системы с непрерывным временем и конечным числом состояний их вероятности могут быть найдены с помощью решения системы дифференциальных уравнений Колмогорова:
,(2)
где .
Величина называется потоком вероятности перехода из состояния в состояние .
Уравнения Колмогорова составляют по размеченному графу состояний системы, пользуясь следующим правилом: производная вероятности каждого состояния равна сумме всех потоков вероятности, идущих из других состояний в данное состояние, минус сумма всех потоков вероятности, идущих из данного состояния в другие.
Решение системы уравнений Колмогорова необходимо задать начальное распределение вероятностей . Как правило, за исключением особенно простых систем, решение возможно получить лишь численными методами.
Финальные вероятности состояний системы
Если процесс, протекающий в системе, длится достаточно долго, то имеет смысл говорить о предельном поведении вероятностей при . В некоторых случаях существуют финальные (предельные) вероятности состояний:
, .,
не зависящие от того, в каком состоянии система находилась в начальный момент. Говорят, что в системе устанавливается предельный стационарный режим, при котором она переходит из состояния в состояние, но вероятности состояний уже не меняются во времени. Система, для которой существуют финальные состояния, называется эргодической, а соответствующий случайный процесс - эргодическим.
Финальные вероятности системы могут быть получены путем решения системы линейных алгебраических уравнений, которые получаются из дифференциальных уравнений Колмогорова, если приравнять производные к нулю, а вероятностные функции состояний в правых частях уравнений Колмогорова заменить на неизвестные финальные вероятности .
Таким образом, для системы с состояниями получается система линейных однородных алгебраических уравнений с неизвестными , которые можно найти с точностью до постоянного множителя. Для нахождения их точных значений к уравнениям добавляют нормировочное условие , пользуясь которым можно выразить любую из вероятностей через другие и отбросить одно из уравнений.
Рассмотрим следующий пример. Имеется размеченный граф состояний системы (рис.2). Необходимо составить систему дифференциальных уравнений Колмогорова и записать начальные условия для решения этой системы, если известно, что в начальный момент система находилась в состоянии .
Решение. Согласно приведенному выше мнемоническому правилу, система дифференциальных уравнений Колмогорова имеет вид:
Начальные условия при : .
При функции стремятся к предельным (финальным) вероятностям состояний системы. Поскольку финальные вероятности не зависят от времени, в системе дифференциальных уравнений Колмогорова все левые части принимаем равными нулю. При этом система дифференциальных уравнений превратится в систему линейных алгебраических уравнений вида:
Решая ее с учетом условия , получим все предельные вероятности. Эти вероятности представляют собой среднее относительное время пребывания системы в каждом из состояний.
Финальные состояния марковской системы с непрерывным временем существуют при следующих условиях:
· плотности вероятности всех переходов не должны зависеть от времени ;
· из любого состояния системы возможен переход в любое другое состояние за конечное число шагов.
Например, для системы, изображенной на рис. 3, финальные вероятности не существуют.
В заключение рассмотрим одну из наиболее простых и часто встречающихся на практике разновидностей дискретных марковских цепей с непрерывным временем - так называемую схему гибели и размножения.
Схема гибели и размножения
Марковский процесс с дискретными состояниями называется процессом гибели и размножения, если все состояния можно вытянуть в цепочку, в которой каждое из промежуточных состояний может переходить только в соседние состояния, а крайние состояния переходят лишь в состояния и соответственно. Граф состояний такой системы приведен на рис.4.
Название схемы взято из биологических задач, где состояние популяции означает наличие в ней особей.
На рис.4 переход вправо соответствует увеличению популяции, влево - ее уменьшению. Таким образом, можно определить как интенсивности размножения, а - как интенсивности гибели. Используется следующее соглашение: буквам и приписывается индекс того состояния, из которого выходит стрелка.
Марковским процессом гибели и размножения с непрерывным временем называется такой случайный процесс, исследуемый параметр которого может принимать только целые неотрицательные значения. Изменения рассматриваемого параметра могут происходить в любой момент времени, т.е. в любой момент времени он может либо увеличиться, либо уменьшиться на единицу.
Процессом чистого размножения называется такой процесс, у которого интенсивности всех потоков гибели равны нулю; аналогично процессом чистой «гибели» называется процесс, у которого равны нулю интенсивности всех потоков размножения.
Предельные (финальные) вероятности состояний для простейшего эргодического процесса гибели и размножения, находящегося в стационарном режиме, определяются по следующим формулам:
В качестве примера решения системы уравнений схемы гибели и размножения рассмотрим эксплуатацию автомобилей в крупной транспортной фирме.
Интенсивность поступления автомобилей на предприятие равна . Каждый поступивший на предприятие автомобиль списывается через случайное время . Срок службы автомобиля распределен по показательному закону с параметром . Процесс эксплуатации автомобилей является случайным процессом. - число автомобилей данной марки, находящихся в эксплуатации в момент времени .
Рассмотрим два случая: 1) нет ограничений на число эксплуатируемых автомобилей, 2) на предприятии может эксплуатироваться не более автомобилей.
Если в начальный момент на предприятии не было ни одного автомобиля, то решать систему уравнений нужно при начальных условиях:
.
Аналогично, если при эксплуатировалось автомобилей, то начальные условия имеют вид:
Решение системы дифференциальных уравнений Колмогорова при произвольном виде функции не может быть найдено в аналитическом виде. Однако при постоянных интенсивностях потоков гибели и размножения и конечном числе состояний будет существовать стационарный режим. Система в этом случае является простейшей эргодической системой.
Если интенсивности потока поступления и списания автомобилей постоянны, то оказываются справедливы формулы:
1. Максимальное число автомобилей не ограничено:
.
2. Математическое ожидание (среднее значение) числа эксплуатируемых автомобилей:
;
При ограниченном
В этом случае математическое ожидание равно:
Предельные вероятности
Следующей важной задачей является исследование вероятностей переходов системы при неограниченном увеличении числа .
Теорема Маркова. Пусть существует такое число шагов, при которых все вероятности строго положительны (отличны от нуля). Тогда для каждого состояния существует предельная вероятность его наступления, т.е. такое число , что независимо от исходного состояния имеет место равенство .
Смысл содержащегося в теореме утверждения интуитивно понятен: вероятность того, что система окажется в состоянии не зависит от предыстории системы и мало отличается от предельной величины . Найти эти вероятности можно следующим образом. Воспользуемся доказанным ранее равенством Маркова . Если перейти к пределу при , то получим . Если дополнить это уравнение условием нормировки , то получится система уравнений, решениями которой и будут искомые величины . Причем, несложно показать, что эта система определяет величины однозначно, т.е. полученные значения единственны.
Размещено на Allbest.ru
Подобные документы
Основные понятия теории марковских цепей. Теория о предельных вероятностях. Области применения цепей Маркова. Управляемые цепи Маркова. Выбор стратегии. Оптимальная стратегия является марковской - может зависеть еще и от момента времени принятия решения.
реферат [75,6 K], добавлен 08.03.2004Основные понятия математической статистики, интервальные оценки. Метод моментов и метод максимального правдоподобия. Проверка статистических гипотез о виде закона распределения при помощи критерия Пирсона. Свойства оценок, непрерывные распределения.
курсовая работа [549,1 K], добавлен 07.08.2013Понятие вариационного ряда, статистического распределения. Эмпирическая функция и основные характеристики математического ожидания выборочной дисперсии. Точечные и интервальные оценки распределений. Теория гипотез - аналог теории доверительных интервалов.
контрольная работа [172,9 K], добавлен 22.11.2013Первичный анализ и основные характеристики статистических данных. Точечные оценки параметров распределения. Доверительные интервалы для неизвестного математического ожидания и для среднего квадратического отклонения. Проверка статистических гипотез.
дипломная работа [850,9 K], добавлен 18.01.2016Длина интервала группирования. Графическое описание выборки. Гистограмма относительных частот. Кусочно-постоянная функция. Границы доверительного интервала математического ожидания. Вычисление коэффициента корреляции. Эмпирическая функция распределения.
практическая работа [737,5 K], добавлен 14.02.2009Исследование сходимости рядов. Степенной ряд интеграла дифференциального уравнения. Определение вероятности событий, закона распределения случайной величины, математического ожидания, эмпирической функции распределения, выборочного уравнения регрессии.
контрольная работа [420,3 K], добавлен 04.10.2010Вероятностная модель и аксиоматика А.Н. Колмогорова. Случайные величины и векторы, классическая предельная проблема теории вероятностей. Первичная обработка статистических данных. Точечные оценки числовых характеристик. Статистическая проверка гипотез.
методичка [433,3 K], добавлен 02.03.2010Задачи математической статистики. Распределение случайной величины на основе опытных данных. Эмпирическая функция распределения. Статистические оценки параметров распределения. Нормальный закон распределения случайной величины, проверка гипотезы.
курсовая работа [57,0 K], добавлен 13.10.2009Сходимость последовательностей случайных величин и вероятностных распределений. Метод характеристических функций. Проверка статистических гипотез и выполнение центральной предельной теоремы для заданных последовательностей независимых случайных величин.
курсовая работа [364,8 K], добавлен 13.11.2012Основные понятия теории марковских цепей, их использование в теории массового обслуживания для расчета распределения вероятностей числа занятых приборов в системе. Методика решения задачи о наилучшем выборе. Понятие возвратных и невозвратных состояний.
курсовая работа [107,2 K], добавлен 06.11.2011