Интеграл Лебега

Понятие интеграла, основная идея его построения. Сущность и структура простых функций. Интеграл Лебега от простых функций. Определение интеграла Лебега. Основные свойства и предельный переход под знаком интеграла. Сравнение интегралов Римана и Лебега.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 20.10.2010
Размер файла 210,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Перефразируем теперь следствие 2. Для этого заметим, что

(L) = = = si,

где si есть нижняя сумма Дарбу, отвечающая i-му способу дробления. Таким образом, следствие 2 означает, что при i

si (L) .

Аналогично можно установить, что верхняя сумма Дарбу Si при возрастании i стремится к интегралу от верхней функции Бэра

Si (L) .

Но в таком случае

Si - si (L) .

С другой стороны, в курсе Анализа устанавливается, что для того, чтобы ограниченная функция f(x) была интегрируема (R), необходимо и достаточно, чтобы было Si - si 0.

Сопоставляя это со сказанным выше, мы видим, что для интегрируемости (R) функции f(x) необходимо и достаточно, чтобы было

(L) = 0. (1)

Условие (1) во всяком случае выполнено, если разность М(х) - т(х) эквивалентна нулю, но так как эта разность неотрицательна, то и обратно из (1) следует, что

т(х) ~ М(х). (2)

Итак, интегрируемость (R) ограниченной функции f(x) равносильна соотношению (2).

Сопоставив этот результат с теоремой 1, получаем следующую теорему.

Теорема 2 (А. Лебег). Для того чтобы ограниченная функция f(x) была интегрируема (R),необходимо и достаточно, чтобы она была непрерывна почти везде.

Эта замечательная теорема представляет собой наиболее простой и ясный признак интегрируемости (R). В частности, она оправдывает сделанное в пункте 2 замечание, что интегрируемыми (R) могут быть только «не очень разрывные» функции.

Допустим теперь, что функция f(x) интегрируема (R). Тогда она необходимо ограничена и почти везде будет

т(х) = М(х).

Но ведь

т(х) f(x) М(х).

Значит, почти везде

f(x) = m(x),

и f(x), будучи эквивалентна измеримой функции т(х), измерима сама. Так как всякая ограниченная измеримая функция интегрируема (L), то такова же и f(x), т. е. из интегрируемости какой-нибудь функции в смысле Римана вытекает ее интегрируемость в смысле Лебега.

Наконец, из эквивалентности функций f(x) и т(х) следует, что

(L) = (L) .

Но, как известно из курса Анализа, в условиях основной леммы для интегрируемой (R) функции f(x) будет

si (R),

где si есть нижняя сумма Дарбу, отвечающая i-му способу дробления. Сопоставляя это с тем, что, как показано нами,

si (L) ,

мы видим, что

(R) = (L) .

Таким образом, имеет место

Теорема 3. Всякая функция, интегрируемая (R), необходимо интегрируема и (L), и оба ее интеграла равны между собой.

В заключение отметим, что функция Дирихле (x) (равная нулю в иррациональных и единице в рациональных точках) интегрируема (L) (ибо она эквивалентна нулю), но, как мы видели в пункте 2, не интегрируема (R), так что теорема 3 не обратима.

6. Примеры

1) Вычислить интеграл Лебега от функции на интервале (1; 2).

Строим срезку

N, f(x) N,

fN(x) =

f(x), f(x) N.

= N,

x = 1 + .

= ,

= + = Nx + = N - N + -

- = + - = - + ,

= = ,

(L) = .

2) Суммируемы ли функции и на интервале (0; 1).

f(x) = .

Строим срезку

= N,

x = .

= + = + = 1 - = 1 + ,

= = (1 + ) = +,

значит функция f(x) = суммируемой не является.

f(x) = .

Строим срезку

= N,

x = .

= + = - = - (1 - ) = - 1 + =

= 2 - 1,

= = (2 - 1) = +,

значит функция f(x) = суммируемой не является.

3) Суммируема ли функция f(x) = на отрезке [-1; 1], где f(0) = 0.

, x 0 0 , x 0

= =

0 , x 0 , x 0

= - .

Строим срезку

N = ,

x = .

(L) = = = =

= = = +.

Строим срезку

N = ,

x = .

(L) = = = =

= = = +,

значит функция f(x) = не является суммируемой на [-1 ;1].

4) Суммируема ли функция f(x) = на [1; 3], где f(2) = 1.

, x 2 0, x 2

= 0, x 2 =

1, x = 2 , x 2

Строим срезку

= N,

x = 2 + .

(L) = = =

= = =

= = = .

Строим срезку

= N,

x = 2 - .

(L) = = = = =

функция f(x) суммируема на [1; 3].

Литература

1) Колмогоров, Фомин «Элементы функционального анализа».

2) Натансон И.П. «Теория функций вещественной переменной», С-П, 1999.

3) Очан «Сборник задач по математическому анализу».


Подобные документы

  • Понятие интеграла Стилтьеса. Общие условия существования интеграла Стилтьеса, классы случаев его существования и предельный переход под его знаком. Приведение интеграла Стилтьеса к интегралу Римана. Применение в теории вероятностей и квантовой механике.

    дипломная работа [848,9 K], добавлен 20.07.2009

  • Понятие интеграла Римана, анализ его определений. Интеграл как предела интегральных сумм Римана, единственное число, разделяющее верхние и нижние суммы Дарбу. Интеграл от непрерывной функции как приращение первообразной (формула Ньютона-Лейбница).

    курсовая работа [2,2 M], добавлен 30.10.2015

  • Понятие нормированного пространства. Пространства суммируемых функций. Интеграл Лебега-Стилтьеса. Интерполяция в пространствах суммируемых функций. Теорема Марцинкевича и ее применение. Пространства суммируемых последовательностей.

    дипломная работа [354,0 K], добавлен 08.08.2007

  • Необходимое и достаточное условие существования определенного интеграла. Равенство определенного интеграла от алгебраической суммы (разности) двух функций. Теорема о среднем – следствие и доказательство. Геометрический смысл определенного интеграла.

    презентация [174,5 K], добавлен 18.09.2013

  • Способы вычисления интегралов. Формулы и проверка неопределенного интеграла. Площадь криволинейной трапеции. Неопределенный, определенный и сложный интеграл. Основные применения интегралов. Геометрический смысл определенного и неопределенного интегралов.

    презентация [1,2 M], добавлен 15.01.2014

  • Определение криволинейного интеграла по координатам, его основные свойства и вычисление. Условие независимости криволинейного интеграла от пути интегрирования. Вычисление площадей фигур с помощью двойного интеграла. Использование формулы Грина.

    контрольная работа [257,4 K], добавлен 23.02.2011

  • Задача численного интегрирования функций. Вычисление приближенного значения определенного интеграла. Нахождение определенного интеграла методами прямоугольников, средних прямоугольников, трапеций. Погрешность формул и сравнение методов по точности.

    методичка [327,4 K], добавлен 01.07.2009

  • Понятие первообразной функции, теорема о первообразных. Неопределенный интеграл, его свойства и таблица. Понятие определенного интеграла, его геометрический смысл и основные свойства. Производная определенного интеграла и формула Ньютона-Лейбница.

    курсовая работа [232,5 K], добавлен 21.10.2011

  • История интегрального исчисления. Определение и свойства двойного интеграла. Его геометрическая интерпретация, вычисление в декартовых и полярных координатах, сведение его к повторному. Применение в экономике и геометрии для вычисления объемов и площадей.

    курсовая работа [2,7 M], добавлен 16.10.2013

  • Вычисление интеграла, выполнение интегрирования по частям. Применение метода неопределенных коэффициентов, приведение уравнения к системе. Введение вспомогательных функций в процессе поиска решения уравнения и вычисления интеграла, разделение переменных.

    контрольная работа [617,2 K], добавлен 08.07.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.