Принятие оптимальных решений в условиях неопределенности
Принятие решений в условиях риска. Критерий ожидаемого значения. Комбинация ожидаемого значения и дисперсии. Критерии известного предельного уровня и наиболее вероятного события в будущем. Учет неопределенных факторов, заданных законом распределения.
Рубрика | Математика |
Предмет | Теория Игр |
Вид | реферат |
Язык | русский |
Прислал(а) | Валентина |
Дата добавления | 04.08.2010 |
Размер файла | 112,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Критерий согласия – критерий проверки гипотезы о предполагаемом законе распределения генеральной совокупности. Критерий Колмогорова-Смирнова и его практическое применение. Критические значения статистик Стефенса. Критерии Пирсона и Смирнова-Крамера.
курсовая работа [629,9 K], добавлен 26.08.2012Принятие решения по многим критериям (многокритериальная оптимизация). Эффект несравнимости исходов. Отношение доминирования по Парето при сравнении векторных оценок. Нижние границы критериев. Учет неопределенных пассивных условий, выбор стратегии.
курсовая работа [71,6 K], добавлен 17.12.2009Изучение сути и выдвижение предположения о законе распределения вероятности экспериментальных данных. Понятие и оценка асимметрии. Принятие решения о виде закона распределения вероятности результата. Переход от случайного значения к неслучайной величине.
курсовая работа [126,0 K], добавлен 27.04.2013Постановка задач принятия решений в условиях неопределенности, генерация и оценки альтернативных вариантов их решения для хорошо и слабо структурированных проблем. Аналитическая иерархическая процедура Саати, метод порогов несравнимости "Электра".
курсовая работа [38,3 K], добавлен 10.04.2011Нахождение вероятности события, используя формулу Бернулли. Составление закона распределения случайной величины и уравнения регрессии. Расчет математического ожидания и дисперсии, сравнение эмпирических и теоретических частот, используя критерий Пирсона.
контрольная работа [167,7 K], добавлен 29.04.2012Критерий Пирсона, формулировка альтернативной гипотезы о распределении случайной величины. Нахождение теоретических частот и критического значения. Отбрасывание аномальных результатов измерений при помощи распределения. Односторонний критерий Фишера.
лекция [290,6 K], добавлен 30.07.2013Рассмотрение способов нахождения вероятностей происхождения событий при заданных условиях, плотности распределения, математического ожидания, дисперсии, среднеквадратического отклонения и построение доверительного интервала для истинной вероятности.
контрольная работа [227,6 K], добавлен 28.04.2010Определение математического ожидания и дисперсии параметров распределения Гаусса. Расчет функции распределения случайной величины Х, замена переменной. Значения функций Лапласа и Пуассона, их графики. Правило трех сигм, пример решения данной задачи.
презентация [131,8 K], добавлен 01.11.2013Определение экстремума функционала при определенных заданных условиях. Особенности вычисления гамма-функции. Вычисление значения и решение неоднородного линейного разностного уравнения с постоянными коэффициентами, специфика выполнения проверки решения.
контрольная работа [53,9 K], добавлен 27.09.2011Понятие и содержание теории графов. Правила построения сетевых графиков и требования к ним. Сетевое планирование в условиях неопределенности. Теория принятия решений, используемые алгоритмы и основные принципы. Пример применения алгоритма Дейкстры.
курсовая работа [1,0 M], добавлен 26.09.2013