Теория функций

Определение и свойства функций действительного переменного, условия непрерывности, дифференцируемости и интегрируемости. Понятие меры функций и множества. Особенности функций комплексного переменного, понятие аналитичности. Интегральная теорема Коши.

Рубрика Математика
Вид лекция
Язык русский
Дата добавления 21.04.2010
Размер файла 38,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Исследование природы аналитических функций продолжает привлекать внимание многих математиков. Хотя трудно перечислить их достижения, не вдаваясь при этом в излишне специальные детали, нельзя не упомянуть некоторые из направлений современных исследований. Среди общих целей - (1) установление взаимосвязей между распределением нулей аналитической функции и способом, которым она отображает некоторое семейство областей (например, дисков); (2) изучение поведения аналитической функции вблизи границы ее области определения; (3) установление зависимостей между поведением функции в одной точке и ее поведением в какой-то другой точке, находящейся на некотором расстоянии от первой и (4) установление характеристических свойств, которыми обладают все функции некоторого класса (например, свойство всех функций f отображать данную область D1 на область D2). В последнее десятилетие математики стали уделять больше внимания сложным проблемам, связанным с теорией функций двух и более комплексных переменных, аналитических по каждой из переменных в отдельности.

ПРИЛОЖЕНИЯ

В естественных науках. Аналитические функции широко используются в некоторых областях науки и техники просто потому, что дают в руки исследователя удобный математический аппарат. Ч.Штейнметц (1865-1923) был первым, кто привлек внимание инженеров-электриков к тем практическим преимуществам, которые дают комплексные функции при рассмотрении проблем, связанных с переменным током. Аналогично, для упрощения процедуры решения линейных дифференциальных уравнений, возникающих в электротехнике и механике, О.Хевисайд (1850-1925) ввел формальное операционное исчисление, которое ныне вытеснено преобразованиями Лапласа и Фурье, представляющих частные случаи интегрального представления Коши из теории аналитических функций. В связи с этим при вычислении несобственных действительных интегралов, часто возникающих в практических проблемах, широко используется теория вычетов Коши.

Более основательный вклад был внесен теорией аналитических функций в гидродинамику и теорию теплопроводности. Первая точка соприкосновения - связь с понятием гармонической функции. Если функция F аналитична в области D и F(z) = u + iv, то дифференцируя уравнения Коши - Римана (7), нетрудно убедиться в том, что u и v - решения дифференциального уравнения Лапласа в частных производных

Любое решение уравнения (13) в области D называется функцией, гармонической в D. Таким образом, действительная (или мнимая) часть любой аналитической функции - функция, гармоническая всюду. Наоборот, если H - любая функция, гармоническая в односвязной области D, то она является действительной частью некоторой комплексной функции F, аналитичной в D.

Дифференциальное уравнение типа (13) возникает во многих задачах в различных областях науки и техники. Оно является математической формулировкой закона о распределении температуры в неравномерно нагретом теле. Левая часть этого уравнения входит в так называемое волновое уравнение, играющее фундаментальную роль в теории колебаний. Неудивительно, что прикладные математики широко используют методы теории функций комплексного переменного для решения своих задач.

В гидродинамике теория функций комплексного переменного используется для решения задач, связанных со установившимся плоско-параллельным течением несжимаемой безвихревой жидкости. Вектор скорости такой жидкости в точке (x, y) можно записать в виде a(x,y) + ib(x,y); в силу природы течения существует гармоническая функция u, такая, что

Функция u называется потенциалом скоростей течения. Соответствующая аналитическая функция F называется комплексным потенциалом скоростей, ее действительная часть совпадает с u. Пользуясь конформными отображениями, такую функцию можно использовать для описания линий тока при обтекании сложного профиля, погруженного в движущуюся жидкость. В аэродинамике изучение обтекания привело к открытию закона образования подъемной силы крыла самолета.

В чистой математике. Математика - не коллекция изолированных друг от друга областей. Известные доказательства возможности разложения на n множителей любого многочлена P(x) = c0 + c1x +... + cnxn основано на использовании основных идей из теории функций, в частности теоремы Лиувилля или принципа аргумента (Гаусс, 1799). Доказательство теоремы о простых числах и ее уточнения, касающиеся частоты, с которой простые числа 2, 3, 5, 7, 11, ... встречаются среди целых чисел, основана на аналитической структуре некоторых комплексных функций, введенных Риманом, Дирихле и Ж.Адамаром (1865-1963). Необходимость уточнения некоторых интуитивно очевидных свойств плоских кривых на основе интегральной теоремы Коши, привело к появлению таких топологических понятий, как гомология и гомотопия (А.Пуанкаре, 1854-1912). Позднее изучение взаимосвязи между гармоническими функциями и аналитическими функциями, определенными на многосвязных множествах, привели к созданию понятия накрывающей поверхности и к более ясному пониманию понятия римановой поверхности, первоначально введенном (в 1851) для облегчения построения теории многозначных функций. В свою очередь это послужило стимулом к разработке таких идей в теории комплексных многообразий и общей теории пучков.

ЛИТЕРАТУРА

Лаврентьев М.А., Шабат Б.В. Методы теории функций комплексного переменного. М., 1973

Колмогоров А.Н., Фомин С.В. Элементы теории функционального анализа, 4 изд. М., 1976

Рудин У. Основы математического анализа. М., 1976

Привалов И.И. Введение в теорию функций комплексного переменного. М., 1977

Маркушевич А.И. Краткий курс теории аналитических функций. М., 1978


Подобные документы

  • Определение плоскости комплексного переменного, последовательностей комплексных чисел и пределов последовательностей. Дифференцирование функций, условия Коши, интеграл от функции. Числовые и степенные ряды, разложение функций, операционные исчисления.

    курсовая работа [188,4 K], добавлен 17.11.2010

  • Вычисление пределов гиперболических функций. Дифференцирование сложной функции. Разложение гиперболических функций по формуле Тейлора. Свойства неопределенного интеграла, интегрирование функций. Гиперболические функции комплексного переменного.

    дипломная работа [2,8 M], добавлен 11.01.2011

  • Предел для функции действительного аргумента и для функции комплексного переменного. Формулировка необходимого условия дифференцируемости функции комплексного переменного (условие Коши-Римана). Понятия и примеры правильных и особых точек функции.

    презентация [74,9 K], добавлен 17.09.2013

  • Учебно-методическое пособие дает возможность изучить необходимые теоретические сведения и получить практические навыки по решению задач, связанных с функциями комплексного переменного. Применение комплексных чисел при решении алгебраических уравнений.

    методичка [2,7 M], добавлен 23.12.2009

  • Понятие числовых функций с областью определения, аргумент и области их значений, свойства и графическое выражение. Определение четных и нечетных функций, периодичность тригонометрических функций. Свойства, используемые при построении их графиков.

    презентация [22,9 K], добавлен 13.12.2011

  • Обобщенная функция, заданная на прямой, - всякий непрерывный линейный функционал на пространстве основных функций. Комплекснозначная функция действительного переменного, называемая оригиналом. Характеристика функции Грина. Линейное неоднородное уравнение.

    реферат [134,4 K], добавлен 23.01.2011

  • Основные свойства функций, для которых существуют пределы. Понятие бесконечно малых величин и их суммы. Предел алгебраической суммы, разности и произведения конечного числа функций. Предел частного двух функций. Нахождение предела сложной функции.

    презентация [83,4 K], добавлен 21.09.2013

  • Нахождение пределов функций. Определение значения производных данных функций в заданной точке. Проведение исследования функций с указанием области определения и точек разрыва, экстремумов и асимптот. Построение графиков функций по полученным данным.

    контрольная работа [157,0 K], добавлен 11.03.2015

  • Логарифм как многозначная функция. Обозначение главного значения логарифма. Свойства логарифма на случай комплексного аргумента. Понятие обратных тригонометрических функций (арккосинуса, арктангенса, арккотангенса), практические примеры их вычисления.

    презентация [171,6 K], добавлен 17.09.2013

  • Определение второго замечательного предела. Понятие бесконечно малых функций. Математическое описание непрерывности зависимости одной переменной величины от другой в точке. Точки разрыва функции. Свойства и непрерывность ее в интервале и на отрезке.

    презентация [314,4 K], добавлен 14.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.