Лінійна алгебра. Матриці та вектори
Матриця називається квадратною, якщо кількість її рядків співпадає із кількістю стовпців. Нульова матриця. Основні властивості матриць. Додавання та множення матриць. Вектор є частковим випадком матриці. Трансформація матриць, їх практичне використання.
Рубрика | Математика |
Предмет | Лінійна алгебра |
Вид | реферат |
Язык | украинский |
Прислал(а) | Петро |
Дата добавления | 18.12.2008 |
Размер файла | 44,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Розгляд поняття матриці, видів (нульова, блочна, квадратна) та дій над нею. Аналіз способів знаходження власних векторів і власних значень матриць згідно методів Данілевського, Крилова, Леверрьє, невизначених коефіцієнтів та скалярних добутків.
курсовая работа [445,1 K], добавлен 03.04.2010Теорія обернених матриць та їх знаходження за формулою. Оберненні матриці на основі яких складається написання програми обчислення оберненої матриці до заданої. Побудова матриць та їх характеристика. Приклади проведення розрахунків при обчисленні матриць.
курсовая работа [96,8 K], добавлен 06.12.2008Вироджена (особлива) або не вироджена (не особлива) квадратна матриця та вироджене або не вироджене лінійне перетворення невідомих. Добуток матриці, асоціативності множення матриць. Опис програми Matrtest, містить початкову матрицю та її розмірність.
курсовая работа [95,0 K], добавлен 16.03.2009Класифікація та типи чисельних методів розв’язування систем лінійних рівнянь і обернення звернення матриць точні, ітераційні та комбіновані. Їх порівняльна характеристика та умови використання в окремих випадках. Вектори та операції над ними, норми.
презентация [85,6 K], добавлен 06.02.2014Поняття лінійного оператора, алгебраїчні операції над ним та базові властивості. Лінійні перетворення (оператори) із простору V в W. Матриця лінійного оператора. Перетворення матриці оператора при заміні базису. власні значення і власні вектори.
курсовая работа [452,3 K], добавлен 25.03.2011Вектори як направлені відрізки, що мають довжину, напрям і положення в таких просторах і розглядаються як вектори-стовпці. Характеристика головних операцій над векторами, їх базис та норми. Дії над матрицями та їх власні значення, принципи нормування.
презентация [50,1 K], добавлен 06.02.2014Розв'язання системи рівнянь методом Гауса і за формулами Крамера. Знаходження власних значень і векторів матриці, косинуса кута між векторами. Визначення з якої кількості товару більш вигідним становиться продаж у магазині. Диференціювання функцій.
контрольная работа [104,7 K], добавлен 06.03.2013Основні поняття чисельних методів розв’язання систем лінійних алгебраїчних рівнянь. Алгоритм Гаусса зведення системи до східчастого виду послідовним застосуванням елементарних перетворень. Зворотній хід методу Жордана-Гаусса. Метод оберненої матриці.
курсовая работа [165,1 K], добавлен 18.06.2015Визначення системи лінійних рівнянь та її розв’язання. Поняття рангу матриці, правило Крамера та види перетворень з матрицею. Способи знайдення оберненої матриці А–1 до невиродженої матриці А. Контрольні запитання та приклади розв’язування задач.
задача [73,5 K], добавлен 25.03.2011Важливість ролі власних векторів. Векторний простір і лінійний оператор в ортогональному проектуванні його на площину. Роль одновимірних інваріантних підпросторів. Вигляд матриці оператора в базисі, що складається з власних векторів цього оператора.
лекция [120,9 K], добавлен 19.06.2011