Оценка качества раствора кератина, полученного из различного кератинсодержащего сырья

Характеристика кератинсодержащих отходов и способы его переработки. Современные представления о структуре и свойствах кератина. Определение содержания жировых веществ растворов кератина. Количественный учет микроорганизмов микробиологическим методом.

Рубрика Маркетинг, реклама и торговля
Вид дипломная работа
Язык русский
Дата добавления 06.10.2017
Размер файла 421,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Начальную стадию сжигания - обугливание - проводили в муфеле при температуре, не вызывающей покраснения (от раскаливания) внутреннего помещения печи. По прекращении выделения газообразных продуктов повышали температуру муфеля до температуры, соответствующей слабо-красному калению, но не выше 600оС. При этих условиях осторожно вели прокаливание до полного сжигания частиц и черного налета на стенках (вторая стадия сжигания).

Конец прокаливания (сжигания) определяли по отсутствию в тигле следов несгоревшего угля. По окончании прокаливания цвет золы был светло-серым.

Конец сжигания устанавливали путем взвешивания тигля на аналитических весах с предшествующим охлаждением в эксикаторе.

После того, как исчезли черные крупинки, тигель взвешивали и затем ставили на полчаса для повторного прокаливания. После получасового прокаливания тигель с золой охлаждали в эксикаторе и взвешивали снова и так до получения постоянного веса.

Содержание золы вычисляли по формуле в процентах:

З= А/Н х100 (%); (3)

где З - процент золы;

А - масса золы; Н - масса навески вещества в г.

2.2.4. Определение рН потенциометрическим методом

При потенциометрическом определении рН измеряли электродвижущую силу, возникающую на элетородах при погружении их в исследуемый раствор и зависящую от концентарции в нем ионов водорода.

В работе использовали рН-метр фирмы “Piccolo” со стеклянным электродом. Он обеспечивает быстрое измерение с точность, соответствующей 0,01-0,03 единицы рН. Область оптимального использования рН-метра-в пределах рН от 1 до 9; при рН от 9 до 11 получается приближенные результаты, при рН выше 11- ошибочные, что зависит от концентрации ионов натрия. В растворах 50-70%-ного спирта в интервале рН 4-8 точность измерений такая же, как и в водных растворах, но других значениях рН и более высоких концентрациях спирта стеклянный электрод не применяют [9].

Анализ проводили в трех параллельных пробах.

Перед началом работы на рН-метре проводили корректировку показаний прибора по буферным растворам с известной величиной рН. Буферные растворы готовили из специальных стандарт-титров, для получения которых используют реактивы, имеющие квалификацию “для рН-метрии”. Температура анилизируемого раствора устанавливали с помощью автомотического термокомпенсатора. Промытый дистиллированной водой электрод сушили фильтровальной бумагой, а затем помещали в сосуд с испытуемым раствором и измеряли его рН. По окончанию работы электроды, тщательно промыли и оставили до последующего использования в дистиллированной воде.

2.2.5 Количественный учёт микроорганизмов микробиологическим методом

Для количественного определения микроорганизмов использовали чашечный метод. Образцы растворов кератина. Из усредненной пробы на технических весах взвешивали 1 мл,. материала, который вносили в стерильную пробирку и заливали 9 мл. стерильного физиологического раствора, тщательно взбалтывали и термостатировали 2 ч. при температуре 37° С. Таким образом получали первое разведение 1:10. Далее стерильными пипетками готовили серийные разведения: из 1-ой пробирки брали 1 мл. экстрагированного раствора и вносили во 2-ю пробирку с 9 мл. физ. раствора (1:100), из 2-ой - 1мл. в 3-ю (1:1000) и.д. до разведения со степенью предполагаемого обсеменения микробами.

Для определения общего количества бактерий использовали среду МПА. 1 мл. необходимого разведения вносили в пустую стерильную чашку Петри и заливали (10-15 мл.) стерильным расплавленным и охлаждённым до температуры 43-45° С агаром. Осторожно перемешивая чашки круговыми движениями, засеянный материал равномерно распределяли в среде. После застывания агара чашки дном вверх помещали в термостат при температуре 37 °С. После термостатирования в течение 24-72 ч. подсчитывали (пользуясь лупой) выросшие на чашке колонии. Для учёта обсеменения плесневыми грибами и дрожжевыми формами микроорганизмов использовали среду Сабуро. 1 мл. исследуемого экстракта или его разведения вносили в стерильную чашку Петри с уже астывшей средой. Тщательно распределяли засеянный материал по поверхности агара. Термостатировали дном вверх при температуре 26-28° С в течение 3-7 суток.

При наличии на чашке небольшого числа колоний (не более 100) их подсчитывали со стороны дна, отмечая учтённые колонии чернилами. При более высоком количестве колоний (200-300) для удобства подсчёта дно чашки делили восковым карандашом на секторы и подсчитывали число колоний в каждом секторе. Результаты, полученные при подсчёте колоний в отдельных секторах, суммировали, находили среднее арифметическое и, умножая полученное число на разведение, определяли количество микробов в 1 мл. или в 1 г. Для учёта обсеменения плесневыми грибами и дрожжевыми формами микроорганизмов использовали среду Сабуро. 1 мл. исследуемого экстракта или его разведения вносили в стерильную чашку Петри с уже остывшей средой. Тщательно распределяли засеянный материал по поверхности агара. Термостатировали дном вверх при температуре 26-28° С в течение 3-7 суток.

При наличии на чашке небольшого числа колоний (не более 100) их подсчитывали со стороны дна, отмечая учтённые колонии чернилами. При более высоком количестве колоний (200-300) для удобства подсчёта дно чашки делили восковым карандашом на секторы и подсчитывали число колоний в каждом секторе. Результаты, полученные при подсчёте колоний в отдельных секторах, суммировали, находили среднее арифметическое и, умножая полученное число на разведение, определяли количество микробов в 1 мл. или в 1 г.

2.5 Результаты собственных исследований и их обсуждение

На первом этапе работы необходимо было получить растворы кератина из кератинсодержащих материалов.

В основу схем получения раствора кератина положен метод постадийного воздействия на волос кислотных и щелочных композиций, содержащих окислители с учетом индивидуальных особенностей строения кератинсодержащих отходов. Для этого была использована методика получения кератина, разработанная сотрудниками кафедры товароведения и технологии сырья животного происхождения имени С.А. Каспарьянца [Патент].

Согласно нашему эксперименту, для каждого вида исходного сырья перед растворением был подобран свой жидкостной коэффициент (ЖК), рассчитано время, концентрация используемых реагентов.

Следует отметить, что вид сырья, гистоструктурные особенности, обработка оказывают определенное влияние не только на время и условия его растворения, но и на процент выхода конечного продукта по сухому остатку.

Наиболее подробно процесс получения кератина из волоса кролика представлен в таблице 1.

Таблица 1

Схема получения кератина из волоса кролика

Наименование процессов

Реактивы

Масса сырья

Параметры

Растворение 1

H2O2(1,5%) - 152мл

NaOH(1,5%)- 75 г

50г

(исходный волос)

ЖК-1:55

Время обработки-24ч

Vраствора- 2750мл

Осаждение

HCl -100 мл

-

-

Фильтрование и промывка

H2O

49,4 г- после фильтрования и промывки

-

Растворение 2

H2O2 (1,5%) - 152мл

NaOH(1,5%)- 75 г

ЖК-1:19

Время обработки-24ч

Vрас-ра- 950мл

Осаждение и фильтрование

HCl -100 мл

37,4 г- после фильтрования и промывки

-

Перерастворение

0,1 Н NaOH

-

Гомогенизация

-

-

-

По данным таблицы 1 видно, что общее время обработки волоса кролика составляет 48 часов, а значение pH стало иметь нейтральную реакцию.

Таблица 2

Схема получения кератина из волоса северного оленя

Процесс

Реактивы

Масса образца

Параметры

Растворение 1

H2O2 (1,5%) - 152мл

NaOH(1,5%) - 75 г

50г-исходное сырьё

ЖК-1:50

Время обработки-24ч

Vраствора- 2500мл

Осаждение

HCl -100 мл

-

-

Фильтрование (сито) и промывка

-

48,6 г- после фильтрования и промывки

-

Растворение 2

H2O2 (1 %) - 152мл

NaOH (1%) - 75 г

-

ЖК-1:17

Время обработки-18ч

Vрас-ра- 700мл

Осаждение и фильтрование

HCl -100 мл

34,2 г- после фильтрования и промывки

-

Перерастворение

0,1Н NaOH

-

-

Гомогенизация

-

-

-

Измельченное сырье подвергали действию 1,5% пероксидно-щелочного раствора, затем проводили нейтрализацию концентрированной соляной кислотой, с последующей промывкой холодной водой. Далее проводили повторное перерастворение в пероксидно-щелочном растворе, нейтрализацию и промывку. В заключении, весь полученный раствор нейтрализовали 0,1Н гидроксидом натрия, доводя значение рН раствора в пределах 5 - 6, после чего гомогенизировали и получали готовый продукт.

Расщепление волоса происходит в несколько стадий. При воздействии на волос пероксидно-щелочного раствора в первую очередь происходит разрушение чешуйчатого слоя, а затем кортекса. Именно эта особенность лежит в основе получения растворов кератина, в которых белок находится в виде макромолекул.

Растворение волоса кролика длилось 48 часов, а растворение волоса северного оленя - 30 часов.

Для каждого вида был определен свой жидкостной коэффициент (Ж.К.), который показывает отношение объема обрабатывающей жидкости к массе обрабатываемого сырья. Для волоса северного оленя Ж.К. составил 1:17, для волоса кролика - 1:19.

Далее нами проведено определение химического состава полученных растворов кератина.

Таблица 3

Химический анализ раствора кератина

Кератин из волоса

Влага, %

Содержание, % от абс.сух.вещ-ва

Жировые в-ва

Минеральные в-ва

кролика

95,2

0,41

0,34

северного оленя

94,6

0,36

0,82

Анализируя данные таблицы 3, следует отметить, что растворы кератина, полученные из различных видов кератинсодержащих отходов, довольно близки по химическому составу.

Содержание влаги в растворе кератина из волоса кролика составило 95,2%, из волоса северного оленя - 94,6%. Количество минеральных веществ во всех исследуемых образцах обнаружено менее 1 %, их влияние на качество полученного кератина весьма не значительно.

Путем математического расчета определено, что белковые вещества составили около 98%. Тем самым можно отметить, что полученные нами растворы кератина являются хорошо очищены от сопутствующих веществ белковыми продуктами.

Также для исследуемых образцов кератина был определен рН-среды. Средние результаты представлены в таблице 4.

Таблица 4

Показатели рН раствора кератина

Растворы кератина, полученные из:

рН

Волос северного оленя

5,23

Волоса кролика

6,72

Из результатов, представленных в таблице 4 видно, что значения рН растворов кератина, полученных из различных кератинсодержащих отходов, находится в пределах от 5,23 до 6,72, что удовлетворяет условиям, указанным в патенте «Способ получения кератина» №2092072.

Таким образом, можно отметить, что основной компонент растворов- белок, который является питательной средой для многих микроорганизмов, поэтому следующим этапом нашей работы было изучение микробиологической чистоты исследуемых образцов.

Результаты представлены на рисунках 2- 3 и в таблице 5.

Рисунок 2 Результаты посева образцов раствора кератин, полученного из волоса кролика (разведение 1:1000) на МПА

Рисунок 3 Результаты посева образцов раствора кератин, полученного из волоса северного оленя (разведение 1:1000) на МПА

Таблица 5

Степень микробной обсемененности растворов кератина

Растворы кератина, полученные из:

Общее микробное число, КОЕ/г

Волос северного оленя

1,1*103

Волоса кролика

0,9*103

Результаты посевов показали, что в 1г продукта содержится 1103 КОЕ/г, что отвечает общепринятым требованиям к белковым растворам для косметической промышленности. СанПиН 1.2.631 - 97. «Гигиенические требования к производству и безопасности парфюмерно-косметической продукции». - М.:1997 [14]. Полученные результаты свидетельствуют о том, что готовый продукт является благоприятной питательной средой для микроогранизмов, поэтому на последнем этапе получения кератина целесообразно добавлять антисептический препарат.

Из результатов проведенных опытов следует, что полученный раствор кератина не только обладает химической чистотой, но и отвечает требованиям микробиологической безопасности, что дает основание использовать его в различных отраслях народного хозяйства.

2.4 Экономическая эффективность переработки

Цель данного раздела заключается в обосновании целесообразности внедрения в производство технологии по выработке растворов кератина.

Для этого необходимо решить следующие задачи: рассчитать материальные затраты на производство, оплату труда и амортизацию.

В соответствии с поставленной нами задачей 1 были определены материальные затраты на производство растворов кератина.

На первом этапе были определены затраты на сырье.

Из таблицы ….видно, что стоимость сырья, пошедшего на производство 1кг раствора кератина, составляет 6,0 руб.

При производстве использовался гидроксид натрия (NaOH), перекись водорода (Н2О2)и соляная кислота (HCl), поэтому следующим этапом является определение стоимости химических реактивов, необходимых для производства 1кг кератина.

Таблица 7

Расход и стоимость химических реактивов, использованных для получения кератина

Используемые реактивы

Цена за 1кг (без НДС), руб

Расход реактива на 1кг

волоса, кг

Стоимость реактивов, пошедших на получение 1кг кератина, руб

NaOH

15,0

0,075

1,13

Н2О2

25,0

0,227

5,68

HCl

10,0

0,015

0,15

Итого

-

-

6,35

Из данных таблицы 7 следует, что затраты на химические реактивы, используемые для получения 1кг кератина, составили 6,35 руб.

Далее рассчитываем затраты на электроэнергию. Стоимость 1 кВт/ч - 1,75 рублей.

Выводы

По результатам, полученным в ходе выполнения дипломной работы, можно сделать следующие выводы:

1. Продемонстрирована возможность получения растворов кератина из кератинсодержащих материалов: волоса кролика и северного оленя;

2. Определено, что на получение кератина из волоса кролика растрачено 48ч времени, а из волоса северного оленя - 42.

3. Установлено, что по химическому составу растворы кератина имеют малое содержание минеральных и жировых веществ (в среднем 0,77 и 0,58, соответственно)- это говорит о хорошо очищенном готовом продукте;

4. Определено, что значение рН раствора кератина, полученного из разлиных видов кератисодержащих материалов находится в пределах от 5,23 до 6,72, что удовлетворяет условиям, указанным в патенте «Способ получения кератина» №2092072;

5. По результатам оценки микробного анализа было установлено, что общее микробное число у растворов кератина соответствует требованиям СанПиН 1.2.631 - 97 и составляет разведение 1:1000 на МПА.

Список используемой литературы

1. Александр П. А. Ходсон Р.Ф. Физика и химия шерсти, 1958.заявка N 251533, Япония, 3(3)-114(1214) 1990.

2. Антипова, Л.В. Получение и характеристика пищевого кератинового гидролизата / Л.В. Антипова, Л.П. Пащенко, Ч.Ю. Шамханов, Е.С. Курилова // Хранение и переработка сельхозсырья. 2003. № 7. С. 63-66.

3. Бабич, О.О, Разумникова, И.С., Полетаев Н.Ю. Переработка вторичного кератинсодержащего сырья и получение белковых гидролизатов на пищевые и кормовые цели //Техника и технология пищевых производств. 2011. № 2 (21). с.11-17.

4. Баранцева И.С, О.В. Биотехнологические аспекты получения белоксодержащих препаратов из отходов сырья животного происхождения // Биотехнология: экология крупных городов: Сб. тезисов Московской международной научно-практической конференции. М.: ЗАО «Экспо-биохим-технологии» РХТУ им. Д.И. Менделеева. 2010. С. 208 - 209.

5. Борисенко Л.Н. Утилизация кожевенных отходов и эффективность их использования в народном хозяйстве / Кожевенная промышленность. 1991, № 2, с. 37.

6. Воронин Е.С., Сидорчук А.А., Гордиенко И.М., Сапожникова А.И., Волкова А.А. Актуальные вопросы товароведения сырья животного происхождения,продуктов животноводства, промышленных и продовольственных товаров: Межведомственный сборник научных трудов- М.: ФГОУ ВПО МГАВМиБ им. Скрябина. 2005, 290 с.

7. Головтеева А.А., Мартынов И.К.: Основные направления использования отходов кожевенного производства; Кожевенная промышленность, 1987 г, с. 49.

8. ГОСТ 938.1-67 Кожа. Метод определения содержания влаги. М.: ИПК Издательство стандартов, 1997. 3 с.

9. ГОСТ 22829-77. Шкурки меховые и овчина шубная выделанные. Метод определения pH водной вытяжки.-М.:ИПК Издательство стандартов,1987.-2 с.

10. Сапожникова, А.И., Бобылева, О.В. Новые возможности рационального использования кератиносодержащих отходов мехового производства, ОАО «НИИ меховой промышленности» Сборник тезисов, развитие меховой промышленности России, тезис докладов 4-й Межрегиональный научно-практической конференции, М., 2002.

11. Способ получения кератина: Пат. 2092072 РФ/А. И. Сапожникова, С. А. Каспаръянц, Н. В. Месропова и др. 1997. БИ № 28.

12. Сапожникова А. И. Разработка и оценка качества продукции на основе фибриллярных белков из отходов сырья животного происхождения: Дис.. д-ра техн. наук. М., 1999.

13. Шорланд Ф. Б., Серый Я. М. 1970. Британский журнал питания, 24, 717-725.

14. . СанПиН 1.2.631 - 97. «Гигиенические требования к производству и безопасности парфюмерно-косметической продукции». М.: 1997.

15. http://www.collagen.su/archives/2989.

Размещено на Allbest.ru


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.