Загрязнение окружающей среды

Понятие о загрязняющих веществах, их процесс классификации. Описание разложимых биологических веществ как тех, которые подвергаются атаке микроорганизмов, ведущей к их деградации и полному удалению. Природные и антропогенные загрязнения, их типы.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид реферат
Язык русский
Дата добавления 22.08.2015
Размер файла 113,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Стадии эвтрофирования

При эвтрофировании водная экосистема последовательно проходит несколько стадий. Сначала происходит накопление минеральных солей азота и/или фосфора в воде. Эта стадия, как правило, непродолжительна, т.к. поступающий лимитирующий элемент немедленно вовлекается в кругооборот и наступает стадия интенсивного развития водорослей в эпилимнионе. Нарастает биомасса фитопланктона, увеличивается мутность воды, повышается концентрация кислорода в верхних слоях воды.

Затем наступает стадия отмирания водорослей, происходят аэробная деградация детрита, образование хемоклина. Интенсивно отлагаются донные илы с повышенным содержанием органики. Отмечаются изменения зооценоза (замещение лососевых рыб карповыми).

Наконец, наступает полное исчезновение кислорода в глубинных слоях и начинается анаэробное брожение. Характерно образование сероводорода, сероорганических соединений и аммиака.

Рассмотренные стадии практически полностью соответствуют рассматривавшимся выше статусам сапробности гидробиоценозов. Это не может удивлять, поскольку действующий фактор в обоих случаях один и тот же - обогащение воды органическими соединениями. Особенности эвтрофирования водотоков, небольших и крупных водоемов те же, что и рассмотренные для поступления органического вещества, т.е. образование гиперэвтрофной, эвтрофной, мезотрофной и олиготрофной зон, расположенных концентрически вокруг источника биогенных элементов для крупных водоемов, или соответствующих зон ниже по течению водотока от места сброса.

Опасности эвтрофирования подвергаются даже моря. Так, в настоящее время Северное море получает азота в 4 раза больше фонового уровня, фосфатов в 7 раз больше фонового. От этого прироста 37% азота и 68% фосфата - из бытовых сточных вод, 60% азота и 25% фосфатов - из сельскохозяйственных смывов (Frid, 2002)

Хозяйственные последствия эвтрофирования

Обильная растительность может препятствовать движению воды и водного транспорта, вода может стать непригодной для питья даже после обработки, рекреационная ценность водоема может снизиться, могут исчезнуть коммерчески важные виды (такие как форель). Наконец, эвтрофирование приводит к вспышкам «цветения» (массового развития) водорослей.

Цветение водорослей наносит двоякий ущерб водной системе. Во-первых, они снижает освещенность, вызывая гибель водных растений. Тем самым нарушаются естественные местообитания многих гидробионтов. Во-вторых, при отмирании водорослей потребляется много кислорода, что может привести к тем же последствиям, что и прямое внесение органики в воду. В 1988, 1989 в восточном Северном море наблюдалась вспышка развития Chrysochromulina sp. в богатых биогенами водах, выносимых Рейном. При этом отмечены массовые заморы рыбы в шведских и норвежских водах (Diaz, 1995).

Для обозначения цветения вод в английском языке используется термин discoloured waters. Кроме того, есть специальные термины для массового развития конкретных видов водорослей. Так, brown tide (бурый прилив) - массовое развитие Phaeocystis sp., red tide (красный прилив) - обычно вызывается массовым развитием Gymnodinium sp., Mesodinium sp. (Frid, 2002).

Кроме обогащения воды легкоокисляемой органикой, приводящей к заморам, водоросли способны продуцировать и токсические вещества (альготоксины). Так, Alexandrium tamarense вырабатывает сакситоксин нервно-паралитического действия, аккумулируемый съедобными моллюсками. Prymnesium parvum выделяет вещества, высокотоксичные для рыб. Токсины, образуемые Microcystis, Aphanizomenon, Anabaena действуют на печень и могут быть нейротоксичны. Например, в 1989 г. при массовом развитии сине-зеленых водорослей в английских озерах погибло несколько собак (Allaby, 2000).

Борьба с эвтрофированием

Как и любые меры по охране окружающей среды складывается из двух групп методов: восстановительных и профилактических.

Восстановительные методы включают в себя:

отвод стока для снятия нагрузки по биогенам;

разбавление вод для снижения концентрации биогенных элементов;

углубление дна для увеличения объема гиполимниона;

драгирование для изъятия биогенных элементов, депонированных в донных осадках;

изъятие вод из гиполимниона;

спуск водохранилищ;

химическую обработку для связывания и осаждения биогенных элементов или уничтожения водорослей;

нарушение стратификации и реаэрацию;

сбор фитомассы и биоманипуляцию.

Профилактические методы, используемые для предотвращения эвтрофирования:

контроль сброса биогенных веществ;

удаление биогенных веществ из сточных вод;

использование предварительных отстойников;

стратегическая перестройка управления водопользованием в бассейне.

Таким образом, мы рассмотрели как поступление в окружающую среду неядовитых веществ, содержащихся в повседневных бытовых сточных водах, может приводить к пагубным последствиям, а минеральные соединения азота и фосфора, - нетоксичные сами по себе обязательные компоненты естественных экосистем, - способны вызывать существенные нарушения функционирования водных экосистем.

11. Загрязнение углеводородами

Нефтепродукты

В настоящее время поверхность Мирового океана на огромных площадях оказалась покрытой углеводородной пленкой. Причинами этого считают:

сброс отходов нефтеперегонных заводов (например, только один завод средней мощности дает 400 т отходов сут.-1);

сброс балласта и промывка танков нефтевозов после транспортировки (количество нефти, попадающей при этом в воду, в среднем, составляет 1% от перевозимого груза, т. е. 1-2 Мт год-1);

большое число аварий с нефтеналивными судами (только за период с 1967 по 1974 г. произошла 161 авария (Эрхард, 1984), с 1960 по 1970 - около 500 (Рамад, 1981)).

Мировая общественность обратила внимание на проблему в конце шестидесятых годов в связи с катастрофой танкера «Тори Каньон», который 18 марта 1967 г. по пути в Милфорд сел на мель к северо-востоку от островов Силли. В Северное море вылилось около 123 тыс. т нефти, было загрязнено 180 км побережий Англии и Франции. В течение последующих полутора десятилетий произошел целый ряд привлекших внимание общественности аварий танкеров, повлекших катастрофическое загрязнение морской поверхности и побережий. Вот далеко неполный их перечень:

21.08.1972 г.: столкновение двух либерийских танкеров; к берегам Южной Африки принесено 100 тыс. т нефти;

7.06.1975 г.: гибель в Индийском океане японского танкера; выброшено в океан 237 тыс. т нефти;

12.05.1976 г.: взрыв танкера «Уркиоло» у берегов Испании; выброшено в море 100 тыс. т нефти;

март, 1978 г.: авария супертанкера «Амоко Кадис» водоизмещением 233 тыс. т у берегов Франции; выброшено в море 220 тыс. т нефти;

6.08.1983 г.: гибель испанского супертанкера у берегов Южной Африки; в океан выброшено 217 тыс. т нефти;

19.12.1987 г.: затопление танкера в Оманском заливе; выброшено в море 115 тыс. т горючего.

Примерно половина всей добытой нефти транспортируется морем. Только в 1989 г. из Персидского залива было вывезено 504 Мт нефти, из которых 117 Мт обогнуло мыс Горн. 340 Мт нефти было привезено морем в Европу и 315 Мт - на восточное побережье США (Clark et al., 1997).

В настоящее время по морю ежегодно транспортируется более 1 млрд. т нефти. Часть этой нефти (от 0,1 до 0,5 %) выбрасывается в океан более или менее легально: речь идет не о непредвиденном, а в некотором смысле сознательном загрязнении в результате практики сброса промывочных и балластных вод в открытое море. После разгрузки нефтяные танки промываются морской водой, а потом заполняются ею как балластом, что придает судну большую устойчивость. Эта вода, загрязненная нефтью, впоследствии сбрасывается в зонах открытого моря, специально оговоренных международными соглашениями. Например, только за год в Средиземном море легально сбрасывается около 300 000 т груза нефтеналивных судов.

По словам Ф. Рамада (1981) не менее 300 судов, которые проходят Па-де-Кале и огибают побережье Франции, ежедневно сбрасывают балластные воды, в результате чего образуется настоящее «черное море». Обычно это проделывается ночью или же сброс производится в кильватерную струю судна, что позволяет ввести в заблуждение патрульные самолеты.

Кроме того, внимание общественности привлекли и аварии морских буровых установок. Так, в январе 1969 г. в открытом море у побережья Калифорнии, неподалеку от Коал-Ойл-Пойнт, в результате неправильной эксплуатации буровой установки в Тихий океан ежедневно попадало от 8 до 16 т нефти. В апреле 1977 г. произошла большая авария на буровой платформе «Браво» в центральной части Северного моря. За 8 сут. из скважины было потеряно 13 тыс. т нефти и 19 тыс. т газа.

Источники загрязнения

На рисунке 17 приведены доли разных антропогенных источников в загрязнении океана нефтепродуктами. Но, необходимо учитывать и то, что нефть - природное вещество и попадает в морскую воду не только в результате техногенной активности, но и с естественными выходами (по разным оценкам от 20 кт до 2 Мт год-1). Расчеты антропогенного поступления нефти и нефтепродуктов, по разным источникам, существенно различаются (см. таблицы 22-24), варьируя в пределах от 3 до 6 Мт год-1. В любом случае это превосходит естественное поступление нефти в 1,5 - 30 раз. Необходимо обратить внимание на то, что техногенное поступление нефтепродуктов далеко не всегда связано с прямыми выбросами в воду. Чрезвычайно мощным источником загрязнения открытых районов океана являются дальние атмосферные переносы. Возникновение этого потока связано с неполным сгоранием бензина, керосина и других легких фракций нефти. Время их пребывания в атмосфере составляет 0,5-2,3 года, причем около 90 % этих веществ выпадает из атмосферы в северном полушарии. Следует отметить и более высокую, как правило, токсичность этих легких нефтепродуктов по сравнению с тяжелыми фракциями, которые ближе к естественным нефтям.

Таблица 22 Основные источники поступления нефти в океан (Сытник, 1987)

Источник поступления

Объем поступления (Мт год-1)

Морской транспорт

1-1,5

Речной транспорт и приморские города

1,9

Береговой сток

0,8

Атмосфера

0,6

Естественные выходы

0,6

Добыча на шельфе

0,1

Всего

5-5,5

Рис. 17 Антропогенное поступление нефтепродуктов в океаны (Frid, 2002)

Таблица 23 Поступление нефтяных углеводородов в морскую среду (Мт год-1) (Segar, 1998)

Источник

Поступление

Всего из природных источников

0,25

Добыча нефти и газа на шельфе

0,05

Танкерные перевозки

0,7

Сброс из доков

0,03

Загрязнение портовых акваторий

0,02

Топливо и трюмные стоки

0,3

Аварии танкеров

0,4

Аварии других судов

0,02

Атмосфера

0,3

Городские стоки

0,7

Переработка

0,1

Прочие промышленные стоки

0,2

Городской смыв

0,12

Речной сток

0,04

Захоронение в океане

0,02

Итого

3,25

Таблица 24 Поступление нефтяных углеводородов в морскую среду (Мт год-1) (Израэль, 1989)

Источник загрязнения

Возможные пределы оценок

Наиболее вероятная оценка

Природные

Выходы нефти на дне

0,02-2,0

0,2

Эрозия осадков

0,005-0,5

0,05

Всего

(0,025) - (2,5)

(0,25)

Антропогенные

Добыча нефти на шельфе

0,04-0,06

0,05

Транспортировка нефти

0,4-1,5

0,7

Судоходство (за исключением танкеров)

0,01-0,03

0,02

Аварии судов (за исключением танкеров)

0,02-0,04

0,02

Танкерные операции

Обслуживание танкеров в доках

0,02-0,05

0,03

Дизельное топливо

0,2-0,6

0,3

Аварии танкеров

0,3-0,4

0,4

Всего

(0,95)-(2,62)

(1,47)

Поступление из атмосферы

0,05-0,5

0,3

Бытовые стоки

0,4-1,5

0,7

Перегонка нефти

0,06-0,6

0,1

Неочищенные промышленные воды

0,1-0,3

0,2

Дождевая вода с городских территорий

0,01-0,2

0,12

Речной сток

0,01-0,5

0,04

Захоронение нефтепродуктов в океане

0,005-0,02

0,02

Всего

(0,585)-(3,12)

(1,18)

Общее поступление

1,7-8,8

3,2

12. Состав нефтяных загрязнений

Нефти из разных месторождений существенно отличаются по химическому составу (табл. 25). Так, нефти Северного моря относительно светлые, содержат много легких фракций, нефти из Венесуэлы - тяжелые и темные. Естественно, что основные химические элементы нефти - углерод (80-87 %) и водород (10-15 %). Кроме того, в гетероциклических соединениях нефти содержатся также обычные для органических соединений сера (0-10%), кислород (0-5%) и азот (0-1%). Помимо этих элементов, сырая нефть включает целый ряд металлов в следовых количествах - V, Ni, Fe, Al, Na, Ca, Cu, U.

Таблица 25 Среднее содержание основных классов углеводородов и их производных (%) в нефти и бензине из различных месторождений (Израэль, 1989)

Компоненты

Сырая нефть

Бензин

Алифатические или парафиновые (алканы)

15-55

25-68

Циклопарафиновые (циклоалканы, нафтены)

30-50

5-24

Ароматические (бензины и полинуклиарные соединения)

5-20

7-55

Асфальтовые соединения (асфальтены, гетероциклические вещества, содержащие кислород, серу и азот)

2-15

0,1-0,5

Олефины (алканы или этиленовые соединения)

0

0-41

Формы нефтяных загрязнений

В море нефть встречается в самых разных формах: мономолекулярные пленки, пленки толщиной до нескольких миллиметров, пленки на скалах, нефть в донных осадках, эмульсии «вода в нефти» или «нефть в воде», нефтяные агрегаты.

Сразу же при попадании нефти в морскую среду обычно образуется слик (поверхностная пленка). В первые часы существования нефтяного слика доминируют физико-химические процессы. Затем важнейшее значение приобретает микробная деструкция. В целом судьба нефтяного слика в море характеризуется общей цепью последовательных процессов: испарение, эмульгирование, растворимость, окисление, образование агрегатов, седиментация, биодеградация, включающая микробное разрушение и ассимиляцию.

1 т нефти, растекаясь по поверхности океана пленкой толщиной в 1/16 мкм, занимает площадь 10-12 км2, а 5 т, сброшенных при промывке танков, образуют на поверхности воды покрывало длиной 75 км и шириной 800 м, т.е. нефтяная пленка покрывает площадь около 60 км2.

Континентальные воды

От нефтяного загрязнения страдают, естественно, не только морские, но и пресные воды. Сточные воды нефтеперегонных заводов, смена масла в автомобилях, утечки масла из картеров, расплескивание бензина и дизельного топлива в момент заправки автомобилей - все это приводит к загрязнению источников воды и водоносных слоев. При этом загрязняются не только и даже не столько поверхностные, сколько подземные воды. Поскольку бензин проникает в почву в семь раз быстрее, чем вода, и придает неприятный вкус питьевой воде даже при таких низких концентрациях, как 1 млн-1, подобное загрязнение способно сделать неприемлемой для питья довольно значительное количество подземных вод.

Воздействие нефтепродуктов на водные экосистемы

Мазут, дизельное топливо, керосин (сырая нефть значительно легче подвергается биологической и другой деструкции), покрывая пленкой воду, ухудшают газо- и теплообмен океана и атмосферы, поглощают значительную часть биологически активной компоненты солнечного спектра.

Интенсивность света в воде под слоем разлитой нефти составляет, как правило, только 1 % интенсивности света на поверхности, в лучшем случае 5-10 %. В дневное время слой темноокрашенной нефти лучше поглощает солнечную энергию, что приводит к повышению температуры воды. В свою очередь, в нагретой воде снижается количество растворенного кислорода и увеличивается скорость дыхания растений и животных.

При сильном нефтяном загрязнении наиболее очевидным оказывается ее механическое действие на среду. Так, нефтяная пленка, образовавшаяся в Индийском океане в результате закрытия Суэцкого канала (маршруты всех танкеров с аравийской нефтью шли в этот период через Индийский океан), снизила испарение воды в 3 раза. Это привело к уменьшению облачности над океаном и развитию засушливого климата в прилегающих районах.

Немаловажным фактором является биологическое действие нефтепродуктов: их прямая токсичность для гидробионтов и околоводных организмов.

Береговые сообщества можно расположить по возрастанию чувствительности к нефтяному загрязнению в следующем порядке:

Скалистые берега, каменные платформы, песчаный пляж, галечный пляж, укрытые скалистые берега, укрытые пляжи, марши и мангровые заросли, коралловые рифы.

Полициклические ароматические соединения

В настоящее время загрязнение полициклическими ароматическими углеводородами (ПАУ) носит глобальный характер. Их присутствие обнаружено во всех элементах природной среды (воздух, почва, вода, биота) от Арктики до Антарктиды.

ПАУ, обладающие выраженными токсическими, мутагенными и канцерогенными свойствами, многочисленны. Их количество достигает 200. Вместе с тем, ПАУ, распространенных повсеместно в биосфере не более нескольких десятков. Это антрацен, флуорантрен, пирен, хризен и некоторые другие.

Наиболее характерным и наиболее распространенным в ряду ПАУ является бенз(а)пирен (БП):

БП хорошо растворим в органических растворителях, тогда как в воде он растворим чрезвычайно мало. Минимальная действующая концентрация бенз(а)пирена мала. БП трансформируется под действием оксигеназ. Продукты трансформации БП являются конечными канцерогенами.

Доля БП в общем количестве наблюдаемых ПАУ невелика (1-20%). Его делают значимым:

Активная циркуляция в биосфере

Высокая молекулярная устойчивость

Значительная проканцерогенная активность.

С 1977 г. БП на международном уровне считается индикаторным соединением, по содержанию которого оценивается степень загрязненности среды канцерогенными ПАУ.

Источники бенз(а)пирена

В формировании природного фона бенз(а)пирена участвуют различные абиотические и биотические источники.

Геологические и астрономические источники. Поскольку ПАУ синтезируются при термических превращениях простых органических структур, БП обнаруживается в:

материале метеоритов;

магматических породах;

гидротермальных образованиях (1-4 мкг кг-1);

Вулканических пеплах (до 6 мкг кг-1). Глобальный поток вулканического БП достигает 1,2 т год-1(Израэль, 1989).

Абиотический синтез БП возможен при сгорании органических материалов во время природных пожаров. При горении леса, травяного покрова, торфа образуется до 5 т год-1. Биотический синтез БП обнаружен для целого ряда анаэробных бактерий, способных синтезировать БП из природных липидов в донных отложениях. Показана возможность синтеза БП и хлореллой.

В современных условиях рост концентрации бенз(а)пирена связан с антропогенным происхождением. Главными источниками БП являются: бытовые, промышленные сбросы, смывы, транспорт, аварии, дальний перенос. Антропогенный поток БП составляет примерно 30 т год-1.

Кроме того, важный источник поступления БП в водную среду - транспортировка нефти. При этом в воду попадает около 10 т год-1.

Бенз(а)пирен в воде

Наибольшее загрязнение БП характерно для бухт, заливов, замкнутых и полузамкнутых морских бассейнов, подверженных антропогенному воздействию (табл. 26). Самые высокие уровни загрязнения БП в настоящее время отмечены для Северного, Каспийского, Средиземного и Балтийского морей.

Бенз(а)пирен в донных отложениях

Поступление ПАУ в морскую среду в количестве, превышающем возможности их растворения, влечет за собой сорбцию этих соединений на частицах взвесей. Взвеси оседают на дно и, следовательно, БП накапливаются в донных осадках. При этом основной зоной накопления ПАУ является слой 1-5 см.

Зачастую ПАУ осадков имеют природное происхождение. В этих случаях они приурочены к тектоническим зонам, участкам глубинного термического воздействия, ареалам рассеяния газо-нефтяных скоплений.

Тем не менее, наиболее высокие концентрации БП обнаруживаются в зонах антропогенного влияния (табл. 26).

Таблица 26 Средние уровни загрязнения морской среды бенз(а)пиреном мкг л-1

Акватория

Вода

Придонный слой

Донные отложения

Чистая

0,025±0,003

0,125±0,003

-

С интенсивным судоходством

0,052±0,004

-

16,1±1,17

Прибрежные воды у районов с развитой промышленностью

0,15±0,01

2,24±0,1

76,8±3,25

Прибрежные воды в районе сброса стоков сланцепереработки

0,27±0,07

5,0±0,2

7500±125

Прибрежные воды в районе нефтедобычи и нефтепереработки

0,10±0,02

10,6±0,39

8030±146

Бенз(а)пирен в планктонных организмах

ПАУ не только сорбируются на поверхности организмов, но и концентрируются внутриклеточно. Для планктонных организмов характерен высокий уровень накопления ПАУ (табл. 27).

Содержание БП в планктоне может варьировать от нескольких мкг кг-1 до мг кг-1 сухой массы. Наиболее обычное содержание (2-5) 102 мкг кг-1 сухой массы. Для Берингова моря коэффициенты накопления (отношение концентрации в организмах к концентрации в воде) в планктоне (Сп/Св) колеблются от 1,6 10 до 1,5 104, коэффициенты накопления в нейстоне (Сн/Св) колеблются от 3,5 102 до 3,6 103 (Израэль, 1989).

Бенз(а)пирен в бентосных организмах

Поскольку большинству бентосных организмов основой питания служит взвешенное органическое вещество и детрит грунтов, зачастую содержащие ПАУ в концентрациях выше, чем в воде, бентонты часто накапливают БП в значительных концентрациях (табл. 27). Известно накопление ПАУ полихетами, моллюсками, ракообразными, макрофитами.

Таблица 27 Коэффициенты накопления БП в различных объектах экосистемы Балтийского моря (Израэль, 1989)

Объекты

Коэффициенты

Планктон/вода

10-103

Грунт/вода

103

Бентос/вода

102-103

Бентос/грунт

10-1-10

Разложение бенз(а)пирена морскими микроорганизмами

Поскольку ПАУ - вещества, встречающиеся в природе, естественно, что существуют микроорганизмы, способные их разрушать. Так, в экспериментах в Северной Атлантике БП-окисляющие бактерии разрушали от 10-67 % внесенного БП. В опытах в Тихом океане была показана способность микрофлоры разрушать 8-30 % внесенного БП. В Беринговом море микроорганизмы разрушали 17-66 % внесенного БП, в Балтийском море - 35-87 %.

На основании экспериментальных данных была построена модель, позволяющая оценить трансформацию БП в Балтийском море (Израэль, 1989). Было показано, что бактерии верхнего слоя воды (0-30 м) за лето способны разложить до 15 т нефти, за зиму - до 0,5 т. Общая масса БП в Балтийском море оценивается в 100 т. Если предположить, что микробное разрушение БП является единственным механизмом его элиминации, то время, которое будет затрачено на разрушение всего имеющегося запаса БП, составит от 5до 20 лет.

Последствия загрязнения бенз(а)пиреном

Для БП доказаны токсичность, канцерогенность, мутагенность, тератогенность, действие на репродуктивную способность рыб. Кроме того, как и другие трудноразложимые вещества, БП способен к биоаккумуляции в пищевых цепях и, соответственно, представляет опасность для человека.

Мы увидели, что вещества природного происхождения, образовавшиеся в результате естественных процессов в прошлом (компоненты нефти) и образующиеся в настоящее время (бенз(а)пирен) вызывают достаточно тяжелые негативные последствия для окружающей среды и, соответственно, человека, когда благодаря хозяйственной деятельности последнего оказываются не тогда, не там, и не в тех количествах как следовало бы.

Размещено на Allbest.ru


Подобные документы

  • Природно-климатические условия г. Читы; атмосферный воздух как жизненно важный компонент окружающей среды. Источники выброса загрязняющих веществ. Исследование уровня загрязнения атмосферного воздуха, его влияние на растительно-животный мир и на человека.

    курсовая работа [30,0 K], добавлен 16.08.2011

  • Процесс урбанизации его сущность и характеристика. Глобальная тенденция к урбанизации. Загрязнение воздуха взвешенными частицами. Содержание свинца в воздухе. Загрязнение воздуха в крупных городах. Последствия загрязнения воздуха и окружающей среды.

    реферат [229,7 K], добавлен 12.01.2009

  • Производство фосфорных удобрений как источник загрязнения окружающей среды. Характеристика технологических процессов и сырья. Разработка экологических нормативов предприятия; выбор методов и расчет оборудования для проведения природоохранных мероприятий.

    курсовая работа [258,8 K], добавлен 23.07.2013

  • Типы источников света и их основные характеристики. Особенности применения газоразрядных энергосберегающих источников света. Воздействие, профилактика, защита от акустического загрязнения окружающей среды. Меры защиты жилого массива от промышленного шума.

    контрольная работа [2,1 M], добавлен 09.08.2015

  • Управление охраной труда на предприятии как реализация решений по сохранению здоровья и жизни профессионала. Взрывоопасность, предупреждение взрывов. Санитарно-бытовое обслуживание. Порядок расчета штрафов и плата за загрязнение окружающей среды.

    контрольная работа [21,7 K], добавлен 26.03.2009

  • Характеристика предприятий железнодорожного транспорта. Выявление и достоверный учет всех стационарных источников загрязнения атмосферного воздуха. Учет поступления вредных веществ в атмосферу; разработка мероприятий по их улавливанию и обезвреживанию.

    курсовая работа [225,3 K], добавлен 02.11.2014

  • Причины и характер загрязнения воздуха рабочей зоны. Терморегуляция организма человека. Нормативные содержания вредных веществ и микроклимата. Методы и средства контроля защиты воздушной среды. Система очистки воздуха. Основные причины выделения пыли.

    реферат [61,8 K], добавлен 08.12.2009

  • Исследование разрушающего действия шума на организм человека и на природные сообщества, обитающие в городе. Регламентация законодательными нормами ограничений шумового воздействия в населенных пунктах. Проблемы шумового загрязнения в Красноярске.

    эссе [24,5 K], добавлен 21.11.2011

  • Использование электричества в быту. Радиоактивные нуклиды как источник радиационного загрязнения. Источники радиационного загрязнения. Электромагнитное загрязнение жилища. Безопасные расстояния до действующих электроприборов. Оценка интенсивности шума.

    презентация [2,7 M], добавлен 04.04.2013

  • Понятия и определения производственного травматизма и профессиональных заболеваний. Загрязнение окружающей среды дизельными двигателями. Уменьшение загрязнения воздуха выхлопными газами. Удельный вес рабочих мест с вредными и опасными условиями труда.

    курсовая работа [207,6 K], добавлен 09.07.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.