Использование взрывчатых веществ

Анализ опасности взрывчатых веществ, область их применения. Описание типов и классификации взрывчатых веществ, их физико-химические основы. Термодинамика взрывчатых веществ, критерии их безопасности. Токсичность взрывчатых веществ и продуктов взрыва.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид учебное пособие
Язык русский
Дата добавления 22.01.2015
Размер файла 1,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

. (3.27)

Таким образом, зная параметры УВВ в ближней зоне и при распространении на значительные расстояния, можно не только произвести расчет разрушающего действия взрыва, но и определить безопасные расстояния до конструкций защитных сооружений.

Воздействие ударной воздушной волны на человека

При взрыве образуется очаг поражения с ударной волной и световым излучением. В очаге взрыва можно выделить три сферических зоны (рисунок 3.15) [14].

Рисунок 3.15 - Очаг поражения при взрыве ВВ

Зона I детонационной волны находится в пределах облака взрыва, радиус которого определяется как

,

где m - масса продуктов взрыва, кг.

В пределах зоны I избыточное давление можно считать постоянным и равным 1,7…2,0 МПа.

Зона II - зона действия продуктов взрыва, которая охватывает всю площадь разлета продуктов взрыва ВВ в результате их детонации. Радиус зоны II в 1,7 раза больше радиуса зоны I, т.е. R 2 =1,7R 1 , а избыточное давление по мере удаления уменьшается до 0,3…0,4 МПа.

Зона III - зона действия УВВ. Здесь формируется фронт УВВ.

Воздействие УВВ на человека может быть косвенным или непосредственным. При косвенном поражении УВВ, разрушая постройки, вовлекает в движение огромное количество твердых частиц, осколков стекла и других предметов массой до нескольких грамм при скорости до 35 м/с. Так, при величине избыточного давления порядка 60 кПа плотность таких опасных частиц достигает 4500…5000 шт./м2 . Наибольшее число пострадавших - жертвы косвенного воздействия УВВ.

Непосредственное поражение УВВ людей приводит к травмам:

· крайне тяжелые (обычно несовместимы с жизнью) наблюдаются при воздействии избыточного давления величиной свыше 100 кПа;

· тяжелые (сильная контузия организма, поражение внутренних органов, потеря конечностей, сильное кровотечение из носа и ушей) возникают при избыточном давлении от 60 до 100 кПа;

· средние (контузия, повреждение органов слуха, кровотечение, вывихи) имеют место при избыточном давлении от 40 до 60 кПа;

· легкие (ушибы, вывихи, временная потеря слуха, общая контузия) наблюдаются при избыточном давлении от 20 до 40 кПа.

Эти же параметры УВВ приводят к разрушениям, характер которых зависит от нагрузки, создаваемой УВВ, и реакций предмета на действия этой нагрузки. Поражения объектов, вызванные УВВ, можно характеризовать степенью их разрушений в зависимости от расстояния (зоны разрушений).

Зона полных разрушений является зоной, в которой восстановить разрушенные объекты невозможно. Массовая гибель всего живого. Занимает до 13 % всей площади очага поражения. Здесь полностью разрушены строения, до 50 % противорадиационных укрытий, до 5 % убежищ и подземных коммуникаций. Сплошных пожаров не возникает из-за сильных разрушений, срыва пламени ударной волной, разлета воспламенившихся обломков и засыпки их грунтом. Эта зона характеризуется величиной избыточного давления более 50 кПа.

Зона сильных разрушений занимает площадь до 10 % очага поражения. Строения сильно повреждены, убежища и коммунальные сети сохраняются, 75 % укрытий сохраняют свои защитные свойства. Есть местные завалы, зоны сплошных пожаров. Зона характеризуется избыточным давлением от 30 до 50 кПа.

Зона средних разрушений наблюдается при избыточном давлении от 20 до 30 кПа, занимает площадь до 15 % очага поражения. Строения получают средние разрушения, а защитные сооружения и коммунальные сети сохраняются. Могут быть местные завалы, участки сплошных пожаров, массовые санитарные потери незащищенного населения.

Зона слабых разрушений характеризуется избыточным давлением от 10 до 20 кПа и занимает до 62 % площади очага поражения. Строения получают слабые повреждения (разрушения перегородок, дверей, окон), могут быть отдельные завалы, очаги пожаров, а у людей - травмы.

Рельеф местности оказывает влияние на распространение УВВ: на склонах холмов, обращенных в сторону взрыва, давление выше, чем на равнинной местности (при крутизне склона 30 градусов давление на нем на 50 % выше), а на обратных склонах - ниже (при крутизне склона 30 градусов - в 1,2 раза). В лесных массивах избыточное давление может оказаться на 15 % выше, чем на открытой местности, но по мере углубления в лес скоростной напор уменьшается. Метеоусловия оказывают влияние только на слабую УВВ, т.е. с избыточным давлением менее 10 кПа. Летом наблюдается ослабление УВВ по всем направлениям, а зимой - ее усиление, особенно в направлении ветра. Дождь и туман оказывают влияние на УВВ при избыточном давлении до

30 кПа. Снегопад не снижает давления УВВ.

Кумулятивное действие взрыва

Действие взрыва можно усилить в определенном направлении, например, в сторону разрушаемого объекта. Такое направленное действие взрыва основано на явлении кумуляции (cumulatio - увеличивать, суммировать), заключающемся в том, что заряды, имеющие на поверхности выемку, обеспечивают в направлении последней повышенный разрушительный эффект (впервые явление кумуляции наблюдалось в 1864 г. русским военным инженером М.М. Божевским).

Если заряд 1 (рисунок 3.16) взрывчатого вещества имеет выемку 2 в виде конуса, то при взрыве заряда 1 газообразные продукты, движущиеся от поверхности конуса по нормали, образуют сходящийся поток, имеющий вид мощной тонкой струи. Сущность явления кумуляции состоит в концентрации, направлении энергии взрыва и создании уплотненного газового потока в области кумулятивной выемки 2. В результате столкновения и сжатия продуктов взрыва кумулятивный поток приобретает высокую плотность, скорость, температуру и давление.

Одним из интереснейших физических эффектов, реализующихся за счет создания условий, обеспечивающих кумуляцию энергии, является формирование высокоскоростных кумулятивных струй при взрыве осесимметричного заряда ВВ с выемкой, облицованной тонкой металлической оболочкой. Благодаря большой скорости (до 10 км/с) такие кумулятивные струи обладают высокой пробивной способностью, определяемой (в соответствии с гидродинамической теорией проникновения) их длиной и плотностью материала.

1 - заряд ВВ; 2 - выемка; 3 - детонатор

Рисунок 3.16 - Схема действия кумулятивного заряда

Изменяя форму и размеры заряда ВВ и кумулятивной облицовки, а также материал облицовки, можно реализовать различные режимы кумуляции и варьировать пробивное действие кумулятивных зарядов в широких пределах. Наибольшим пробивным действием обладают кумулятивные заряды, формирующие высокоградиентные кумулятивные струи из достаточно высокоплотных материалов, обладающих хорошей пластичностью. При рациональном выборе конструктивных параметров таких зарядов и прецизионной технологии их изготовления, глубина пробития стальной преграды может составлять свыше десяти диаметров заряда, что близко к ее предельному значению. Дальнейший рост пробивного действия заряда связан с поиском новых нетрадиционных путей управления процессами кумуляции и реализацией новых физических эффектов.

Одним из таких путей, позволяющих «вторгнуться» в физические механизмы процессов, определяющих эффективность функционирования кумулятивного заряда, с целью изменить характер их протекания в нужном направлении, является использование различных вариантов электромагнитных воздействий. В зависимости от решаемой задачи такие воздействия могут приводить как к увеличению, так и к снижению пробивного действия кумулятивного заряда. Данные работы по явлению электромагнитных воздействий на эффект кумуляции проводились в МГТУ им. Баумана (г. Москва) совместно с институтом гидродинамики им. М.А. Лаврентьева (г. Новосибирск) [20]. Электромагнитные воздействия, осуществляемые на различных стадиях функци-онирования кумулятивного заряда, представлены на рисунке 3.17.

Рисунок 3.17 - Варианты электромагнитных воздействий управления кумулятивным эффектом взрыва [20]

К числу воздействий, направленных на снижение пробивного действия, относятся создание аксиального магнитного поля в облицовке кумулятивного заряда непосредственно перед его подрывом (см. рисунок 3.17, воздействие 1,), пропускание мощного электрического тока по кумулятивной струе (воздействие 2) и создание поперечного к направлению движение струи магнитного поля в материале проводящей преграды (воздействие 3). На повышение пробивной способности кумулятивного заряда направлены «мягкое» токовое воздействие на струю (воздействие 4), а также варианты создания продольного низкочастотного (воздействие 5) и высокочастотного (воздействие 6) магнитных полей в области деформирования струи в полете до ее взаимодействия с преградой. Воздействия 2, 4, 5 и 6 на сформировавшуюся кумулятивную струю ориентированы на управление процессом ее деформирования и последующего разрушения. Воздействие 1 позволяет влиять на процесс схлопывания облицовки и формирование кумулятивной струи в начальной стадии.

Представление, например, о степени снижения пробития преграды кумулятивным зарядом при электродинамическом воздействии различной интенсивности дает рисунок 3.18, где приведены кривые изменения разрядного тока, протекающего через кумулятивную струю, полученные в экспериментах с зарядом диаметром 50 мм при его действии на стальную (рисунок 3.18 а) и алюминиевую (рисунок 3.18 б) преграды (при размещении одного из электродов непосредственно на преграде).

Для каждой кривой указана глубина пробития преграды, соответствующая данному режиму электродинамического воздействия. В отсутствие воздействия глубина пробития стальной преграды составляет 210 мм, а алюминиевой преграды - 365 мм.

Наиболее вероятные физические причины снижения глубины пробития преграды кумулятивной струей при электродинамическом воздействии - это развитие магнитогидродинамической (МГД) неустойчивости перетяжечного типа и объёмное разрушение материала струи. Оба этих механизма обусловлены действующими на струю при протекании по ней тока пондеромоторными нагрузками, эквивалентными приложенному к поверхности струи магнитному давлению

,

где 0 =4pЧ 10-7 Гн/м - магнитная постоянная;

I - сила тока, протекающего по кумулятивной струе, А ;

r - радиус шейки кумулятивной струи, мм.

Объёмное разрушение кумулятивной струи проявляется в виде радиального рассеивания материала струи при ее выходе из межэлектродного промежутка. Это влечет за собой последующее уменьшение средней плотности материала элементов струи и, как следствие, снижение ее пробивной способности.

Таким образом, учеными [20] экспериментально и теоретически показана возможность электромагнитного управления кумулятивным эффектом взрыва. Снижение пробития достигается пропусканием мощного импульсного электрического воздействия по кумулятивной струе, созданием аксиального магнитного поля в кумулятивной облицовке непосредственно перед подрывом заряда, а также созданием поперечного магнитного поля в материале проводящей преграды. На повышение пробивной способности струи за счет увеличения ее предельного удлинения ориентированы варианты воздействия на нее продольного низкочастотного и высокочастотного магнитных полей, а также «мягкое» токовое воздействие.

4. КРИТЕРИИ БЕЗОПАСНОСТИ ВЗРЫВЧАТЫХ ВЕЩЕСТВ

В технической литературе и научных публикациях к взрывчатым характеристикам ВВ относятчувствительность веществ к различным внешним воздействиям (механическим, тепловым), приводящим, как правило, к их воспламенению. С точки зрения механизма физико-химических процессов, протекающих в них, такая трактовка отражает действительную сущность протекающих реакций в веществах. Однако с точки зрения безопасности процессов при эксплуатации ВВ, в частности, при перевозке, хранении и снаряжении, правильнее будет характеризовать чувствительность к внешним воздействиям как критерий безопасности , что отражает действительную сущность перерабатываемых веществ на стадии эксплуатации. Поэтому такая трактовка более приемлема и понятна для обслуживающего персонала в условиях эксплуатации, где чаще возникают аварийные ситуации непрогнозируемых воздействий на ВВ.

Взрывчатые вещества при обычных условиях обладают определенной степенью устойчивости. Это позволяет сравнительно легко получать ВВ в промышленных масштабах, подвергая их при этом целому ряду как химических, так и физических воздействий. Однако подобная устойчивость ВВ к внешним воздействиям имеет определенную границу. Независимо от того, проявляется ли внешнее воздействие в виде нагревания, удара, трения или иного вида энергии, при переходе определенного предела воздействия во взрывчатом веществе возникает экзотермический процесс распада, который, начавшись хотя бы в одной точке ВВ, распространяется в дальнейшем по всей массе ВВ в виде вспышки, горения или детонации.

Чувствительность ВВ к внешним воздействиям определяется тем минимальным внешним воздействием, которое вызывает в системе ВВ процесс взрывного превращения. Такой минимальный порог инициирования (внешнего воздействия) ВВ и будет являться критерием безопасности вещества по отношению к тому или иному виду воздействия с учётом коэффициента безопасности.

Чувствительность ВВ к таким видам воздействий, как нагрев, удар, трение, достаточно изучены и определяются стандартными методами [5, 7], в то время как информация по чувствительности к электрической искре, вибрации и совместным воздействиям на ВВ крайне ограничена.

Критерии безопасности ВВ, являющиеся основными критериями при оценке эксплуатационной безопасности объектов:

· чувствительность к тепловому импульсу;

· чувствительность к удару;

· чувствительность к трению;

· чувствительность к электростатическому разряду;

· чувствительность к совместным воздействиям.

4.1 Чувствительность ВВ к тепловому импульсу

Обычно тепловые воздействия подразделяются на гомогенный - равномерный подогрев всей массы ВВ до некоторой критической температуры с развитием процесса разложения ВВ по законам теплового взрыва - и локальный нагрев в виде поджигания со значительным градиентом температуры. Соответственно определяют чувствительность ВВ к прогреву и к поджиганию (воспламеняемость).

Определение температуры вспышки

Мерой чувствительности ВВ к нагреву обычно служит температура их вспышки, устанавливаемая при определенных условиях опыта. Если поместить навеску ВВ в объём с достаточно высокой постоянной или медленно возрастающей температурой, то через некоторое время вещество прогревается до температуры окружающей среды и может произойти вспышка. Механизм вспышки в этих условиях соответствует механизму теплового взрыва и определяется соотношением теп-

лоприхода в результате экзотермических реакций в нагретом веществе и теплоотвода в окружающую среду.

Температура вспышки ВВ зависит от количества испытываемого ВВ, скорости нагрева и других условий опыта, определяющих условия теплоприхода и теплоотвода.

Наиболее распространены два варианта определения температуры вспышки.

1. Определенное количество ВВ (обычно 0,05 г) в пробирке помещают в металлическую баню, заполненную легкоплавким сплавом Вуда (сплав: Bi (50 %), Pb (25 %), Sn (12,5 %) и Cd (12,5 %), имеющий температуру плавления tпл ~ 68 0 С] и предварительно нагретую до 100 о С. Дальнейший нагрев производится со скоростью 20 о С в минуту. Отмечают температуру сплава в момент вспышки и характер вспышки ВВ.

2. Второй метод заключается в установлении зависимости изменения периода индукции t или задержки вспышки от температуры. По этому методу температуру сплава поддерживают постоянной и в предварительно вставленную нагревшуюся пробирку вводят навеску ВВ, замеряя время с момента помещения ВВ в пробирку до его вспышки. Этот метод позволяет полнее характеризовать отношение ВВ к тепловому воздействию, в частности, найти такие кинетические параметры, как энергия активации E и предэкспоненциальный множитель B , характеризующие тепловую стабильность ВВ исходя из выражения

, (4.1)

где R - универсальная газовая постоянная, равна 8,314 Дж/(Кмоль);

T - температура вспышки, єС.

В таблице 4.1 приведены известные значения температуры вспышки при нагревании для некоторых ВВ. Зависимость температуры вспышки ВВ от массы заряда объясняется тем, что теплоприход пропорционален объёму ВВ, а теплоотвод - его поверхности. С увеличением массы ВВ температура вспышки снижается. С увеличением скорости нагрева ВВ температура вспышки возрастает. При слишком медленном нагреве бульшая часть ВВ успевает разложиться при низких температурах без вспышки. При быстром достижении температуры, превышающей температуру кипения ВВ, оно превращается в пар, вспышка вследствие меньшей плотности и меньшего самоускорения распада возникает труднее.

Таблица 4.1 - Значения температуры вспышки при нагревании для некоторых ВВ

Вещество

Температура вспышки (о С) при нагревании

со скоростью

20 о С в минуту

при постоянной

температуре с задержкой

5 мин.

1 мин.

5 с

Нитроглицерин

200-205

200-205

-

222

Аммонит 6ЖВ

280-320

220-300

336

380-400

Тротил

295-300

300

309

475

Алюмотол

-

-

315

-

Аммонит ПКВ-20

-

-

365

-

Определение воспламеняемости ВВ

Одной из важнейших характеристик чувствительности ВВ к тепловым воздействиям является его способность воспламеняться от внешнего источника тепла. Необходимое количество подводимого тепла Q зависит от свойств ВВ и внешних условий и определяется выражением:

, (4.2)

где l - коэффициент теплопроводности ВВ, Вт/(мЧ К);

Ur - скорость горения ВВ, м/с;

Tn - температура поверхности ВВ, єС;

T 0 - начальная температура ВВ, єС.

При порционном подводе тепла существенное значение имеет скорость его подвода к поверхности ВВ с учётом теплоотвода в глубь вещества, определяющего температуру на поверхности ВВ и ее градиент по толщине заряда. Исходя из этого, мерой чувствительности ВВ к поджигающему импульсу может быть либо минимальное количество тепла при заданной скорости его подвода, необходимое для поджигания при постоянных условиях опыта, либо некоторые переменные величины, определяющие режим горения при постоянном значении теплового источника. В качестве таких переменных величин могут быть использованы начальная температура ВВ или давление окружающей газовой среды, поскольку скорость горения большинства ВВ с давлением связана линейной зависимостью. В соответствии с указанным принципом созданы и развиваются экспериментальные методы оценки воспламеняемости ВВ.

Наиболее простым в экспериментальном исполнении является метод определения чувствительности ВВ к лучу огня от огнепроводного шнура. По этому методу в пробирку, укрепленную на штативе, помещают навеску испытываемого ВВ (обычно 1 г), вводят отрезок огнепроводного шнура длиной от 5 до 10 мм так, чтобы он касался поверхности ВВ. После зажигания огнепроводного шнура фиксируют воспламенение или отказ. В другом варианте этого метода отрезок шнура помещают на некотором расстоянии от поверхности ВВ. Мерой воспламеняемости в этом случае служит максимальное расстояние, на котором еще воспламеняется ВВ.

При сравнительной оценке чувствительности к лучу огня, кроме величины температуры вспышки, немаловажную роль играет и то минимальное количество вещества, которое необходимо воспламенить для обеспечения условий распространения процесса по всему объёму.

К.К. Андреевым и П.П. Поповой предложено оценивать воспламеняемость ВВ по его критическому диаметру горения. По этому методу определяется минимальный диаметр заряда исследуемого ВВ в стеклянной оболочке, при котором в подожженном с торца заряде устойчиво распространяется горение. Критический диаметр горения определяют в среде сжатого азота при давлении от 9,8 до 10,8 МПа в стальной бомбе. Заряд ВВ с торцевой поверхностью поджигается нихромовой спиралью накаливания. А.И. Романовым и Л.В. Дубновым предложена методика оценки воспламеняемости ВВ по так называемому давлению поджигания. Согласно этой методике, фиксируется то минимальное (критическое) давление среды, при котором поджигается и горит ВВ. По этой методике (рисунок 4.1) заряд 3 ВВ массой от 100 до 120 г в бумажной или стеклянной оболочке диаметром от 32 до

36 мм помещают в толстостенную манометрическую бомбу 2, в которой с помощью сжатого азота создано некоторое давление. В качестве постоянного источника воспламенения используются прессованные шашки из малогазового состава массой 1 г и диаметром, равным диаметру испытываемого заряда. Воспламенитель поджигается нихромовым мостиком накаливания.

1 - датчик давления; 2 - корпус бомбы; 3 - заряд ВВ;

4 - электровывод; 5 - затвор бомбы

Рисунок 4.1 - Схема установки для определения критическогодавления поджигания

В практике нередко происходит поджигание заряда ВВ взрывными волнами от соседних зарядов, например, при аварийных ситуациях при хранении ВВ, боеприпасов или в шпурах, когда расстояние между зарядами не превышает расстояние передачи детонации. Поэтому представляет интерес оценить воспламеняемость ВВ под воздействием такого рода импульсов. Разработана методика оценки воспламеняемости ВВ под воздействием воздушной волны, получаемой в ударной трубе (рисунок 4.2).

Рисунок 4.2 - Принципиальная схема установки для оценки воспламеняемости в ударной трубе

По данной методике [7] навеску 3 исследуемого ВВ диаметром

10 мм и массой 10 г помещают в плексигласовую обойму, которую вставляют в секцию 2 низкого давления ударной трубы с внутренним диаметром 50 мм. Длина секций высокого 1 и низкого 2 давлений соответственно 1130 и 2730 мм. На конце секции низкого давления предусмотрен отсек с плексигласовыми смотровыми окнами, через которые вакуумным фотоэлементом СЦВ-4 фиксируется момент вспышки исследуемого ВВ. Сигнал от фотоэлемента 5 через усилитель поступает на двухлучевой катодный осциллограф 7 (ОК-17М). В секции низкого давления размещены также датчики давления 4 из титаната бория для измерения скорости движения ударной волны и запуска осциллографа. Сигналы с пьезодатчиков фиксируются электронным хронографом 6 «Нептун». Скорость ударной волны измеряют на мерной базе длиной 1380 мм, причем последний по ходу ударной волны пьезодатчик служит одновременно для запуска осциллографа ОК-17М, на который подается сигнал с фотоэлемента СЦВ-4. В эксперименте измеряют скорость ударной волны, по которой рассчитывают остальные параметры ударной волны и величину задержки вспышки ВВ.

4.2 Чувствительность ВВ к механическим воздействиям

При выполнении взрывных работ взрывные материалы подвергаются различного рода механическим воздействиям в процессе испытания, транспортировки, заряжания, нахождения во взорванной породе или массиве в виде отказавших изделий ВВ. При ведении взрывных работ на ВВ и средства взрывания могут оказывать влияние как статические (растирание ВВ между породой и элементами заряжающих устройств, кусками породы), так и динамические воздействия (удары по ВВ при случайном разбуривании патрона, при метании ВВ в шпур или скважину, удары кусков породы при погрузке).

Важнейшим вопросом эксплуатационной безопасности являются не только факт и уровень воздействия, ведущего к началу реакции во взрывчатом веществе, но и то, что эта реакция приводит к взрыву заряда. Известно, что у промышленных ВВ, особенно гранулированных и водонаполненных, критический диаметр заряда от 30 до 40 мм и более, а минимально детонирующая величина заряда на 1-2 порядка больше, чем величины навесок, применяемых в стандартных пробах для определения чувствительности ВВ к внешним механическим воздействиям (трению, удару). Следовательно, стандартные методы испытания ВВ на чувствительность к удару и трению, предназначенные для испытания малых навесок ВВ, неприемлемы для испытания смесевых промышленных ВВ, состоящих из нескольких компонентов, особенно крупнодисперсных. Поэтому рядом институтов и организаций были разработаны специальные пробы для промышленных ВВ и средств взрывания, принцип которых состоит в максимальном приближении условий воздействия на заряд ВВ к реальным условиям, которые могут встретиться при взрывных работах.

Анализируя многообразие факторов, определяющих возможность взрыва в результате механических воздействий на ВВ, К.К. Андреев и другие [21, 22] пришли к выводу, что чувствительность ВВ к механическим воздействиям не может быть охарактеризована одним интегральным показателем. Если при испытаниях в каких-то условиях одно из сравниваемых ВВ окажется чувствительней, чем другое, то при изменении условий испытаний эти ВВ по своей чувствительности могут поменяться местами. Например, известно, что азид свинца является несравненно более опасным по чувствительности к механическим воздействиям, чем тротил. Однако при испытании на удар по стандартной методике в хорошо подогнанном приборчике №1 азид свинца дает значительно меньше взрывов, чем тротил. Это показывает условность результатов, получаемых при испытаниях ВВ по стандартным методам, и объясняется тем, что тротил, имеющий более высокую текучесть, в тех же условиях продавливается в зазоры и взрывается.

Из сказанного следует, что на основании результатов испытания данного ВВ в конкретных условиях далеко не всегда можно предвидеть, как поведет себя это ВВ в каких-то других условиях, например, при тех механических воздействиях, которым оно может подвергнуться в условиях промышленного применения. Поэтому с точки зрения безопасности технологических процессов на всех этапах производства и применения ВВ необходимо иметь полный комплекс критериев безопасности.

4.2.1 Чувствительность к удару

Чувствительность ВВ к удару определяют в основном на копрах, состоящих из двух, иногда из трех строго параллельных вертикальных направляющих, по которым свободно перемещается груз, производящий удар по ВВ. Груз в верхней части снабжен механическими или электромагнитными захватами, фиксирующими его на определенной высоте. На прочном фундаменте (рисунок 4.3) помещается массивная наковальня 1, на которой располагается штемпельный прибор (№1 или №2) с навеской ВВ 5. Прибор №1 состоит из металлического поддона 2, направляющей обоймы (муфты) 3 и двух поршеньков 4, между торцами которых помещена навеска (обычно от 0,02 до

0,05 г) исследуемого ВВ. В качестве поршеньков применяют ролики от подшипников, отличающиеся высокой степенью постоянства механических свойств и точности размеров. Ролики в приборчике №1 точно пригнаны к каналу обоймы и не имеют фасок на торцах, так что ВВ при ударе будет сжиматься, не имея возможности свободно течь. Прибор №2, предложенный Н.В. Холево [27], отличается от прибора №1 наличием кольцевой канавки в обойме на уровне расположения навески ВВ, что позволяет оценить чувствительность ВВ в условиях его истечения.

а) прибор №1; б) прибор №2

Рисунок 4.3 - Штемпельные приборы для размещения навески ВВ

Некоторые малотекучие, непластичные ВВ, такие, например, как пироксилин, не дающие взрывов в приборе №1, т.е. в условиях затрудненного течения, обнаруживают высокую частость взрыва в приборе №2. Напротив, ВВ, обладающие высокой текучестью, могут проявлять большую чувствительность в приборе №1, чем в приборе №2. При испытании жидких ВВ навеску помещают в чашечку из мягкого металла, чтобы исключить выплескивание ВВ из прибора №2 приударе.

Критерием чувствительности при испытаниях на копрах считают минимальную высоту падения груза, при которой происходит взрыв, или частость взрыва при постоянной высоте груза. Эти методы определения чувствительности к удару позволяют выявить влияние условий деформации вещества на вероятность возбуждения взрыва и правильно оценить условия безопасности ВВ при ударе.

При определении чувствительности к удару по нижнему пределу навеску вещества (0,12 г) подпрессовывают в штемпельном приборе под давлением до 300 МПа. По этому методу определяют максимальную высоту падения груза массой 10 кг (нижний предел), при которой получаются все отказы или не более одного взрыва из 25 определений. Взрывом обычно считают звуковой эффект, вспышку, дымообразование или обугливание ВВ. В том случае, когда при падающем грузе

10 кг нижний предел меньше 30 мм, определяют нижний предел с грузом массой 2 кг. Если отсутствуют взрывы при падения груза с высоты 500 мм, испытания прекращают и указывают, что нижний предел для испытываемого образца составляет более 500 мм.

При определении чувствительности к удару по частости взрывов испытания выполняют при постоянной высоте падения груза, равной 250 мм. Навеска ВВ составляет от 0,050 до 0,005 г. По этому методу чувствительность ВВ характеризуется частостью взрывов Х (%).

, (4.3)

где N - число взрывов;

n - число определений.

Результаты определения чувствительности некоторых веществ по описанным методикам приведены в таблице 4.2 [7].

Зависимости частости взрывов от давления прижатия, полученные на копре Боудена_Козлова [23], приведены на рисунке 4.4. Как видно из зависимостей величины давлений прижатия для вторичных ВВ, соответствующие 100 % взрывов на кривой частости лежат в интервале от 5000 (ТЭН) до 11000 атмосфер (тротил).

Для характеристики относительной чувствительности ВВ при имитации условий эксплуатации (падение на жесткое основание, защемление между жесткими поверхностями и др.) испытания проводят на большом копре БК-6. В этом случае используют навеску исследуемого вещества массой 3 г, диаметром 41 мм и толщиной 10 мм. В качестве характеристики чувствительности принят нижний предел, выраженный максимальной высотой падения груза массой 24 кг, при которой не наблюдается разложения ВВ в 25 опытах. Характеристики относительной чувствительности некоторых веществ, определенные на большом копре БК-6, по частости взрывов (%) при высоте падения груза 2000 мм массой 24 кг приведены в таблице 4.3.

Таблица 4.2 - Чувствительность ВВ к удару

Вещество

Нижний предел в приборе №2 при грузе массой 10 кг, мм

Частость взрывов при высоте падения груза

250 мм, %

Масса прибора №2

Масса стандартного прибора

10 кг

5 кг

2 кг

10 кг

5 кг

2 кг

Детонит М

70

100

96

4

52

-

-

Динамит

62%_й

30

4

-

-

100

90

40

Тетрил эта

лонный

150

24

-

-

44

-

-

Аммонит

ПЖВ-20

250

12

-

-

12

-

-

Тротил по-

рошко-

образный

500

0

-

-

28

-

-

Алюмотол

500

0

-

-

44

-

-

Аммонит

6ЖВ

500

0

-

-

20

-

-

Граммонит

79/21

500

0

-

-

4

-

-

Таблица 4.3 - Относительная чувствительность некоторых ВВ на копре БК-6

ВВ

Частость, %

ВВ

Частость, %

ТЭН

100

Тротил чешуированный

20

Динамит 62%_й

100

Тротил порошкообразный

24

Алюмотол

84

Аммонит ПЖВ-20

28

Детонит

84

Аммонит 6ЖВ-24

24

Граммонит 79/21

48

Аммиачная селитра

0-4

1 - гремучая ртуть; 2 - тетразен; 3 - ТНРС; 4 - азид свинца; 5 - ТЭН;

6 - гексоген; 7 - тетрил; 8 - пикриновая кислота; 9 - тротил

Рисунок 4.4 - Зависимости частости взрывов Х/ от давления прижатия, полученные на копре Боудена_Козлова

Для большинства испытанных ВВ относительная чувствительность, определенная при испытаниях на большом копре БК-6, согласуется с рядом по чувствительности, полученным при испытаниях на копре с малыми навесками. В то же время у некоторых ВВ, например, алюмотола, чувствительность к удару при испытаниях на большом копре БК-6 выше, чем при испытании на копре с малыми навесками.

В последнее время рядом исследователей разработаны методы оценки характеристик чувствительности ВВ к удару, связанных с передачей взрыва из-под бойка несжатому веществу. По этому методу навеску ВВ помещают в приборчик таким образом, чтобы она полностью заполняла кольцевой канал и пространство между роликами. При ударе под бойком ВВ сжимается и вытесняется в кольцевой канал. Между роликами остается тонкий слой ВВ, в котором и возникает первичный очаг разложения. Показателями чувствительности ВВ по этому методу служат предельный диаметр и минимальный подпор. Предельным диаметром называют минимальный диаметр ролика, при котором хотя бы в одном из десяти испытаний происходит взрыв. Подпор Р характеризует сопротивление ВВ вытеканию из-под роликов, его изменяют варьированием массы навески m 1 исследуемого ВВ, при которой получены взрывы:

,

где mmin - минимальная навеска исследуемого ВВ, при которой происходит полный взрыв, г;

VК - объём кольцевого канала, мм3 ;

r - плотность кристаллов ВВ, г/см3 .

Для приборов с роликами диаметром 10, 20, 40 мм значение m 1 равно соответственно 0,1; 0,3; 0,9 г.

Наиболее объективную информацию о безопасных величинах ударных нагрузок при механическом воздействии на ВВ можно получить при испытаниях, приближенных к реальным условиям эксплуатации. В МакНИИ (Украина) разработаны стенды [24] для определения чувствительности ВВ к ударным нагрузкам. Ударным нагрузкам при эксплуатации могут подвергаться отказавшие заряды, а также патроны ВВ в процессе механизированного заряжания. Конструкция стенда для определения опасности взрыва ВВ при ударных нагрузках показана на рисунке 4.5.

Рисунок 4.5 - Стенд МакНИИ для оценки чувствительности ВВ ударным нагрузкам

Стенд состоит из бронекабины 1, внутри которой по направляющим с помощью ходового винта 2 перемещается захватывающий механизм 3 с грузом 4. При набегании роликов захватывающего механизма на сбрасывающие кулачки 5, установленные на заданной высоте, груз 4 освобождается и падает, ударяя по бойку 6, подвешенному на пружинах. Цикличность воздействий осуществляется реверсивным двигателем 7. Перемещая сбрасывающие кулачки вдоль направляющих, а также изменяя массу груза, можно регулировать энергию удара в пределах от 3 до 70 кгс·м. Под бронекабиной имеется бронениша 8 с массивной дверью. В броненише устанавливаются образцы ВВ 9.

1 - корпус; 2 - ролик

1 - основание; 2 - оболочка;

3 - навеска ВВ

Рисунок 4.6 - Конструкции бойка (а), навески ВВ (б)

В качестве бойков 10 используются стандартные ролики подшипников (рисунок 4.6 а). Навеска ВВ (рисунок 4.6 б) помещается в бумажный цилиндр, надетый на стальной диск-подложку. В качестве диска также используется ролик от роликоподшипника. Диаметр диска от 40 до 50 мм. Величина навески ВВ принимается такой, чтобы ее высота при насыпной плотности была равна 35 мм, что соответствует диаметру патронов, применяемых на практике. По навеске ВВ с помощью бойка наносится удар, который может вызвать полный взрыв или вспышку. В разделе 5 приведена оценка безопасности при механическом воздействии на данном стенде.

4.2.2 Чувствительность к трению

Чувствительность ВВ к трению определяют применительно к требованиям техники безопасности при изготовлении и использовании ВВ. Применяемые методы в той или иной мере имитируют трение ВВ при смешивании, патронировании, транспортировании по трубам и шнекам и выполнении других технологических операций.

В лабораторных условиях чувствительность к трению определяют в основном тремя методами: при помощи фрикционного маятника (рисунок 4.7); на приборе Боудена-Козлова [7]; истиранием ВВ между двумя стальными поверхностями, одна из которых вращается, например, на приборе И-6-2 [25].

Рисунок 4.7 - Схема фрикционного маятника

Фрикционный маятник состоит их стальной наковальни 1, на которой помещается навеска испытываемого вещества 2 (обычно 7 г), и маятника в виде стального стержня с укрепленным на конце его башмаком 3. На наковальне имеются три поперечные канавки, в которых удерживается ВВ при прохождении над ней башмака маятника. Силу трения между башмаком и наковальней можно регулировать изменением высоты подъема маятника, массой добавочного груза и применением башмаков с трущейся поверхностью из различных материалов. ВВ считается выдержавшим испытание, если оно в десяти опытах при башмаке из твердой фибры с дополнительным грузом массой 20 кг и высоте подвеса маятника 1,5 м не взрывается и не горит. Результаты сравнительных испытаний некоторых веществ по этому методу приведены в таблице 4.4.

Таблица 4.4 - Результаты испытаний чувствительности некоторых ВВ к трению

Вещество

Тротил

Тетрил

Гексоген

ТЭН

Нитрогликоль

Нитроглицерин

Число взрывов из 10 опытов

0

0

2

5

7

10

При испытании на приборе Боудена и Гартона навеску ВВ к верхней поверхности прямоугольного стержня прижимают стальным роликом, который, в свою очередь, прижимается болтом. Груз маятника поднимают на определенную высоту и затем дают ему свободно ударить по стержню, подвергая ВВ быстрому сдвигу. В видоизмененном приборе Козлова для поджатия ВВ применяется гидравлический пресс. Навеска ВВ сжимается между двумя стальными роликами диаметром 10 мм. Удар маятника передается верхнему подвижному ролику, который перемещается между неподвижными упорами и нижним роликом, закрепленным в муфте. Характеристикой чувствительности при этом испытании является давление прижатия ВВ при заданной частости взрывов или же частость воспламенения от работы трения. Работа трения A (кг·см) вычисляется по формуле В.С. Козлова [5]:

, (4.4)

где m - коэффициент внешнего трения между поверхностью ролика и ВВ;

Рпр - усилие нормального прижатия (давление), кг/см2 ;

S - площадь ролика, см2 ;

- величина смещения ролика, см.

Определение чувствительности ВВ к трению на приборе И-6-2 основано на истирании навески ВВ, помещенной в специальный прибор между двумя стальными плоскими или шарообразными поверхностями, одна из которых вращается с частотой 5,4 с-1 . При таком испытании навеску вещества в измельченном виде массой 0,30±0,05 г помещают в сборку, закрепляемую в держателе. При этом создается нужное давление прижатия, измеряемое динамометром, после чего включают вращение пуансона, которое автоматически выключается по истечении 3 с. За характеристику чувствительности ВВ к трению принимают максимальное давление прижатия, при котором еще не возникает взрывного разложения в 10 последовательных определениях. В случае отсутствия взрывов при давлении 300 МПа испытания повторяют в более жестких условиях - с добавкой к ВВ кварцевого песка (в количестве 0,01 г). Результаты испытаний некоторых веществ с кварцевым песком по этому методу приведены в таблице 4.5.

Таблица 4.5 - Результаты определения чувствительности к трениюнекоторых ВВ

Вещество

Нижний предел чувствительности, МПа

Вещество

Нижний предел чувствительности, МПа

ТЭН

31

Аммонит ПЖВ-20

215

Гексоген

49

Детонит М

231

Тетрил

65

Граммонит 79/21

250

Динамит

88,5

Аммонит 6ЖВ

250

Тротил

190

Аммиачная селитра

300

Алюмотол

210

Без кварцевого песка для ТЭНа, гексогена и тетрила нижний предел чувствительности составил соответственно 170, 150 и 250 МПа, для остальных веществ - 300 МПа.

4.2.3 Чувствительность к разбуриванию

Чувствительность ВВ к разбуриванию имеет особенно важное значение, так как при взрывании в шахтах зачастую остаются так называемые «стаканы» с остатками отказавшего ВВ, не обнаруживаемые при осмотре забоя. При попадании бура на остатки ВВ во время бурения возможен взрыв ВВ. В МакНИИ предложен метод оценки чувствительности промышленных ВВ к разбуриванию, по которому в шпур, пробуренный в блоке песчаника, помещают патрон испытываемого ВВ массой от 100 до 200 г. Сверху по направляющим в шпур опускается буровая штанга со стандартными угольными или породными коронками, приводимая во вращение электродвигателем. Установка позволяет вести разбуривание с частотой вращения 8,3; 16,6; 25 с-1 , т.е. позволяет испытывать ВВ при нормальных и форсированных режимах работы. Осевое усилие регулируется сменными грузами.

Первоначальное осевое усилие (масса подвижной системы 35 кг) подобрано таким образом, что обеспечивается максимальная возможная нагрузка на сверло, при которой частота вращения еще не снижается. Результаты испытаний определяются частостью взрывов, число опытов выбирается в зависимости от требуемой точности оценки.

4.3 Критерии оценки взрывоопасности при вибрации

Критерии оценки взрывоопасности при получении и переработке взрывчатых материалов с применением вибрации существенно отличаются от рассмотренных выше критериев механических воздействий. Оценка критических и безопасных параметров механического воздействия на ВВ часто проводятся по критериям, взятым из тепловой теории воспламенения [4], или по критериям, определяющим переход горения во взрыв [3, 26]. При этом не учитывается специфика процесса разложения ВВ под действием механической нагрузки, в частности, возможность ускорения разложения твердых ВВ за счет механоактивации их частиц, понижения химической и физической стабильности ВВ при достаточно длительной обработке.

Одной из главных причин возникновения нештатных ситуаций при работе с взрывоопасными материалами является способность ВВ разлагаться, загораться или взрываться под действием внешних механических и тепловых нагрузок. Длительная практика обращения с ВВ позволила установить их относительную взрывоопасность при механических воздействиях и расположить их в ряд по мере возрастания взрывоопасности при изготовлении и применении. В результате получен опорный ряд ВВ (гремучая ртуть, азид свинца, ТЭН, октоген, гексоген, тетрил, тротил [3, 20, 23]), который построен преимущественно по оценкам чувствительности к удару и трению.

Разные методы оценки с применением различных типов испытательных устройств и приборов часто дают неоднозначные ряды чувствительности, не совпадающие с опорным рядом. Причинами такого несоответствия являются разные условия нагружения ВВ, что приводит к различию деформационных и усталостных процессов и механизмов их разрушения. При этом во многих случаях не учитываются химическая стойкость, кинетические, физико-химические и электрические характеристики ВВ, а о чувствительности к удару и трению судят по частости появления взрывов, по высоте падения груза определенной массы в заданных конструкциях роликовых приборов (см. рисунок 4.3), на которой взрыв еще не возбуждается (нижний предел); по удельной работе удара или трения (4.4) либо напряжению, способному вызвать взрыв при ударе по открытому объёму ВВ [7]. Механизмы возбуждения взрыва при разных видах воздействия существенно отличаются и остаются еще не изученными, но ясно одно: из-за неоднородности твердых и жидких ВВ имеет место локализация деформационных и тепловых процессов на дефектах кристаллической структуры твердых ВВ, на пустотах и пузырьках газа в объёме жидких ВВ, при высокой неоднородности смесевых ВВ.

Взрывоопасность ВВ зависит не только от способности к возбуждению взрыва, но и от способности к его распространению, т.е. от передачи химической реакции на другие участки образца, находящиеся под нагрузкой, или на ненагруженную часть, расположенную рядом с образуемой. Существующие методы оценки чувствительности, рассмотренные выше (к удару, сдвигу, трению) неприменимы для оценки чувствительности ВВ к вибрации, поскольку не учитывают ее основных особенностей: периодичности изменения напряжений и деформаций, большой общей продолжительности процесса и малой длительности каждого цикла нагружения.

При работе с ВВ необходимо надежно определить параметры внешнего механического воздействия, при которых возникают прогрессивное разложение, горение и взрыв, т.е. установить зависимости степени разложения a и вероятности взрыва Wi от частоты w, амплитуды A , ускорения колебаний , динамической нагрузки РД и ее отношения к статической составляющей общей нагрузки (РД /РСТ ), энергии вибрации Е , поглощенной образцом, общего времени вибрации t [28]:

Wi =U 1 (w, A , , РД , РД /РСТ , Е , t ),(4.5)

a =U 2 (w, A , , РД , РД /РСТ , Е , t ).

Для нахождения этих зависимостей Н.П. Логиновым разработана и предложена следующая методика. Навеска ВВ массой 0,05 г подвергается воздействию вибрационной и статической нагрузок с заданными параметрами на вибростенде. Перед началом испытаний ВВ помещают между двумя стальными роликами в роликовом приборе (см. рисунок 4.3), подпрессовывают до определенного статического давления и включают вибратор, который в течение некоторого времени создает циклическую нагрузку с заданными параметрами. В процессе эксперимента с помощью термопары, введенной через нижний ролик или муфту в зону контакта ВВ с поверхностью ролика или муфты, непрерывно измеряют температуру образца. Вероятность взрыва Wi определяют по результатам десяти параллельных опытов, в которых регистрируются взрыв или отказ.

Степень разложения a определяют по результатам опытов с образцами ВВ путем размещения роликового прибора в герметичной камере, установленной на вибростенде. Камера обеспечивает накопле-ние газообразных продуктов, выделяющихся из образцов ВВ в ходе его разложения, вызванного вибрацией, при заданных параметрах вибрационного, статического и термического воздействий.

Для ускорения определения Wi при массовых испытаниях время вибронагружения ограничивалось до 30 с. В проведенных опытах установлена зависимость вероятности взрыва от определяющих параметров некоторых широко используемых ВВ. Исходя из этих данных установлены критические параметры вибрации для сравнительно чувствительных к вибрации ВВ, способных взрываться при частотах колебаний от 40 до 200 Гц, амплитудах колебаний от 0,05 до 6 мм. Но некоторые ВВ, например, тринитротолуол (ТНТ), тринитробензол (ТНБ), аммонит 6ЖВ, игданит, аммиачно-селитренные ВВ с добавлением нефтепродуктов в указанных условиях механического воздействия не взрываются. Поэтому для них вместо вероятности возникновения взрыва использованы в качестве критериев степень (a) или скорость (d a/ dt ) разложения с целью классификации их по чувствительности к вибрации. Степень разложения a находят из уравнения

a=(DPi /DPП ) Ч100%, (4.6)

где DPi - избыточное давление газов за определенное время (с точностью до 10 Па);

DPП - избыточное давление газов при полном разложении того же количества ВВ в такой же герметичной камере или при его полном сгорании.

Некоторые данные по оценке чувствительности ВВ к вибрации представлены в таблице 4.6.

Из таблицы 4.6 следует, что чувствительность гексогена, ТНТ и аммонита 6ЖВ зависит от частоты, амплитуды, ускорения колебаний и отношения динамической нагрузки к статической. При высоких значениях этих параметров достигаются пороговые значения параметров вибронагружения, при которых происходит переход медленного разложения во взрыв. Однако до достижения критических значений указанных параметров вибронагружения классификация ВВ по чувствительности к вибрации, не превышающей критических значений ее параметров, неосуществима, потому что эти ВВ не взрываются при реально достижимых значениях параметров вибрации.

Таблица 4.6 - Чувствительность некоторых ВВ к вибрации

ВМ

w, Гц

А , мм

а , м/с2

РД , МПа

РСТ , МПа

РД / РСТ

Wi , %

a, %

Гексоген

150

0,60

13,5

350

21

16,7

100

100

135

0,62

11,4

364

42

8,7

80

80

135

0,52

9,6

347

67

5,2

10

10

135

0,40

7,3

342

84

4,1

0

1,7

100

0,15

1,5

300

600

0,5

0

0,7

Тротил

150

0,60

13,5

350

21

16,7

0

1,1

135

0,65

11,9

58

12

4,8

0

0,7

135

0,50

9,1

58

24

2,5

0

0,5

90

0,65

5,3

26

12

2,2

0

0,3

50

0,40

3,2

26

36

0,7

0

0,2

Аммонит

6ЖВ

150

0,60

13,5

350

21

16,7

0

0,7

135

0,62

11,4

58

12

4,7

0

0,3

90

0,65

5,2

26

12

2,2

0

0,2

50

0,65

3,2

26

21

1,2

0

0,1

Из данных таблицы 4.6 следует также, что только гексоген при частоте w от 135 до 150 Гц имеет вероятность взрывов Wi от 0 до

100 %, а ТНТ и аммонит 6ЖВ не взрываются даже при повышении частоты колебаний до 150 Гц, но все они при вибронагружении даже с низкими параметрами вибрации химически разлагаются. Поскольку степень разложения для любого ВВ можно измерить предлагаемым в данной методике способом, этот показатель вполне пригоден для определения безопасных или критических параметров вибровоздействия при использовании вибрационной технологии в ходе получения и переработки ВВ. По аналогии со степенью разложения ВВ при тепловых воздействиях, используемой в качестве характеристики химической стабильности ВВ при нагревании, допустимое значение степени разложения за время пребывания ВВ в активной зоне виброустановки не должно превышать 1 % массы единовременной загрузки ВВ. Вибрационную нагрузку, способную вызвать разложение более 1 % ВВ в ходе технологической операции, следует считать недопустимой по соображениям безопасности и сохранения эксплуатационных свойств ВВ.

В качестве характеристики безопасности технологических операций с ВВ при вибрационном воздействии Н.П. Логиновым [28] предложен новый критерий, называемый коэффициентом взрывобезопасности Кб , который характеризует степень удаленности энергетических показателей, соответствующих конкретному виду механического воздействия, от критических значений энергетических параметров, найденных для данного ВВ при испытаниях на виброустановке.

Для определения энергонапряженности работы любой виброустановки необходимо установить средний уровень затрат энергии на совершение определенной работы, достаточной для достижения требуемого технического эффекта, а затем сравнить его с критическим уровнем энергонапряженности, который соответствует уровню энергонапряженности, вызывающему разложение более 1 % ВВ за время воздействия вибронагрузки на одну и ту же порцию ВВ либо вызывающему воспламенение или взрыв. Кроме того, коэффициент безопасности должен учитывать физические, физико-химические, механические свойства конкретных ВВ или их наиболее взрывоопасных компонентов.

В общем виде предполагаемый коэффициент безопасности выражается зависимостью

Кб =Кэ Ч Кв Ч Кт Ч Км , (4.7)

где Кэ - коэффициент энергонапряженности при вибрационной обработке;

Кв - коэффициент, учитывающий удаленность заданной температуры от начальной температуры ВВ и температуры его вспышки;

Кт - коэффициент, который учитывает удаленность фактической температуры переработки от температуры плавления ВВ;

Км - коэффициент, учитывающий изменение механических характеристик ВВ при вибрационной обработке.

Коэффициенты рассчитывают по следующим зависимостям:

, (4.8)

для виброустановки с электромеханическим вибратором

Wкр =2me А wкр 2 , (4.9)

Wф =2me А wф . (4.10)


Подобные документы

  • Понятие о взрывчатых материалах, стабильность их химического состава. Классификация складов взрывчатых веществ и боеприпасов. Поверхностные и подземные хранилища. Правила безопасности при перевозке взрывчатых материалов. Знаки опасности и их описание.

    курсовая работа [1,4 M], добавлен 03.12.2012

  • Происхождение и классификация взрывчатых веществ. Основные свойства взрывчатых веществ. Особенности факторов поражения и зоны действия взрыва. Последствия воздействие взрыва на человека. Техника предотвращения взрывов. Действия населения при взрывах.

    реферат [23,6 K], добавлен 22.02.2008

  • Наиболее распространенные причины пожаров. Выбор способов тушения очагов возгораний. Действия населения при пожарах. Чрезвычайные ситуации, связанные со взрывами. Характеристика взрывчатых веществ и взрывных устройств. Сведения о взрывчатых веществах.

    контрольная работа [32,6 K], добавлен 11.01.2014

  • Виды складов взрывчатых материалов. Изготовление боевиков с детонирующим шнуром. Хранилище взрывчатых материалов. План прирельсовой погрузочно-разгрузочной контейнерной площадки. Схема разгрузки контейнеров. Электроустановка складов взрывчатых материалов.

    презентация [201,5 K], добавлен 23.07.2013

  • Последствия использования взрывчатых веществ и различных видов оружия на воздушном судне. Методы и средства контроля перевозки оружия на воздушном судне гражданской авиации. Аварийная разгерметизация кабины самолета, ее причины. Защита от взрыва на борту.

    реферат [23,3 K], добавлен 17.06.2014

  • Права и обязанности субъектов транспортной инфраструктуры и перевозчиков в области обеспечения транспортной безопасности. Технические средства досмотра пассажиров и грузов: металлообнаружитель; рентгеновские установки; обнаружитель взрывчатых веществ.

    контрольная работа [31,5 K], добавлен 10.01.2014

  • Определение параметров взрыва конденсированных взрывчатых веществ. Мероприятия по повышению устойчивости работы в чрезвычайных условиях. Определение ущерба, нанесенного промышленному объекту после аварии. Метод расчета интенсивности теплового излучения.

    курсовая работа [2,0 M], добавлен 19.05.2015

  • Идентификация опасностей на опасном производственном объекте. Параметры взрыва конденсированных взрывчатых веществ, прогнозирование вторичных факторов поражения в чрезвычайных ситуациях. Выбор и обоснование мероприятий по обеспечению устойчивости работы.

    курсовая работа [561,5 K], добавлен 26.01.2011

  • Определение параметров взрыва конденсированных взрывчатых веществ, прогнозирование факторов поражения в ЧС. Эффективность мероприятий по повышению устойчивости работы объекта экономики. Эффективность мероприятий по повышение устойчивости функционирования.

    курсовая работа [254,7 K], добавлен 27.02.2015

  • Моделирование обстановки ЧС на ОЭ при взрыве конденсированных взрывчатых веществ, идентификация опасностей и вторичных поражающих факторов. Разработка комплекса организационных, инженерно-технических, специальных мероприятий по ПУФ данного объекта.

    курсовая работа [334,7 K], добавлен 24.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.