Основы электробезопасности
Технические способы и средства обеспечения электробезопасности. Защита от прямых и косвенных прикосновений. Технические меры электробезопасности в зданиях. Защита от электромагнитных полей. Первая доврачебная помощь пострадавшему от электрического тока.
Рубрика | Безопасность жизнедеятельности и охрана труда |
Вид | методичка |
Язык | русский |
Дата добавления | 26.03.2012 |
Размер файла | 700,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Таблица 5 Допустимые уровни магнитного поля для персонала |
|||
Время пребывания (час) |
Допустимые уровни магнитного поля Н (А/м)/В (мкТл) при воздействии |
||
общем |
локальном |
||
?1 |
1600/2000 |
6400/8000 |
|
2 |
800/1000 |
3200/4000 |
|
4 |
400/500 |
1600/2000 |
|
8 |
80/100 |
800/1000 |
Допустимые уровни магнитного поля внутри временных интервалов определяются интерполяцией.
При необходимости пребывания персонала в зонах с различной напряженностью магнитного поля общее время выполнения работ в этих зонах не должно превышать предельно допустимое для зоны с максимальной напряженностью.
Допустимое время пребывания в магнитном поле может быть реализовано одноразово или дробно в течение рабочего дня. При изменении режима труда и отдыха (сменная работа) предельно допустимый уровень магнитного поля не должен превышать установленный для 8-часового рабочего дня.
Измерения напряженности (индукции) магнитного поля должны проводиться при максимальном рабочем токе электроустановки или измеренные значения должны пересчитываться на максимальный рабочий ток (Imax) путем умножения измеренных значений на отношение Imax/I, где I -- ток в источнике магнитного поля в момент измерения.
Напряженность (индукция) магнитного поля измеряется в производственных помещениях с постоянным пребыванием персонала, расположенных на расстоянии менее 20 м от токоведущих частей электроустановок, в том числе отделенных от них стеной.
Электромагнитная обстановка в жилых помещениях вызывает особую озабоченность как наименее контролируемая. К тому же в данном случае ЭМП воздействует длительное время почти на все население, включая детей, беременных, больных, стариков.
Обычно в квартире уровень ЭП составляет от 5 до 80 В/м, что намного меньше ПДУ, равного 500 В/м.
Магнитные поля для населения в России в настоящее время не нормируются.
Дополнительный критерий безопасности, введенный в качестве рекомендации учеными Швеции, США и ряда других стран - в местах продолжительного пребывания людей, особенно в местах ночного отдыха и пребывания детей, напряженность магнитного поля частотой 50 Гц не должна превышать 0,2 мкТл.
Магнитное поле может превышать уровень 0,2 мкТл на расстоянии до 1,5 м от трансформаторных подстанций, распределительных пунктов электропитания в доме, поэтому место для кровати, кресла, рабочего места школьника или игрового места ребенка надо выбирать, с учетом этого расстояния. Электропроводка самой квартиры, как правило, не несет угрозы здоровью.
В табл. 6 приведены данные о расстоянии, на котором фиксируется значение 0,2 мкТл при работе основных бытовых приборов (по данным Центра электромагнитной безопасности).
Таблица 6 Распространение ЭМП от бытовых электрических приборов (выше уровня 0,2 мкТл) |
||
Источник |
Расстояние на котором фиксируется значение более 0,2 мкТл |
|
Холодильник, оснащенный системной «No frost» (во время работы компрессора) |
1,2 мот дверцы 1,4 м от задней стенки (максимально 27 мкТЛ) |
|
Холодильник (во время работы компрессора) |
0,1 м (только в этом радиусе от мотора) |
|
Утюг (режим нагрева) |
0,25 м от ручки |
|
Телевизор «14» |
1,1 м от экрана; 1,2 м от боковой стенки |
|
Электрорадиатор |
0,3м |
|
Торшер с двумя лампами по 75 Вт |
0,03 м от провода |
|
Электродуховка |
0.4 м от передней стенки |
|
Аэрогриль (производство Тайвань) |
1 ,4 от боковой стенки |
Персональный компьютер также является источником ЭМП. Монитор компьютера излучает энергию во всех направлениях.
Общий уровень ЭМП промышленной частоты в производственных и жилых помещениях постоянно растёт в связи с расширением номенклатуры и ростом количества электротехнических и электронных изделий. В сочетании с ЭПМ других частотных диапазонов образуется новый для человека фактор долговременного воздействия, которого не существовало до недавнего времени для большей части населения.
6.4 Способы и средства защиты от ЭМП
В качестве средств защиты от воздействия электрического поля должны применяться:
в ОРУ - стационарные экранирующие устройства (экраны) по ГОСТ 12.4.154 и экранирующие комплекты по ГОСТ 12.4.172, сертифицированные органами Госэнергонадзора России;
на ВЛ - экранирующие комплекты (те же, что в ОРУ).
Экраны изготовляют из металла в виде плоских щитов - козырьков, навесов, перегородок. Экранирующие элементы представляют собой металлические сетки с ячейками размером не более 50x50 мм, либо параллельно расположенные стальные тросы диаметром 5-8 мм и с расстоянием между ними 10-20 см. Экраны должны быть надежно заземлены. Незаземленный экран не обеспечивает защиту.
В заземленных кабинах и кузовах машин, механизмов, передвижных мастерских и лабораторий, а также в зданиях из железобетона, в кирпичных зданиях с железобетонными перекрытиями, металлическим каркасом или заземленной металлической кровлей электрическое поле отсутствует, применение средств защиты не требуется.
Не допускается применение экранирующих комплектов при работах, не исключающих возможности прикосновения к находящимся под напряжением до 1000 В токоведущим частям, а также при испытаниях оборудования (для работников, непосредственно проводящих испытания повышенным напряжением) и электросварочных работах.
При работе на участках отключенных токоведущих частей электроустановок для снятия наведенного потенциала они должны быть заземлены. Прикасаться к отключенным, но не заземленным токоведущим частям без средств защиты не допускается. Ремонтные приспособления и оснастка, которые могут оказаться изолированными от земли, также должны быть заземлены.
Машины и механизмы на пневмоколесном ходу, находящиеся в зоне влияния электрического поля, должны быть заземлены. При их передвижении в этой зоне для снятия наведенного потенциала следует применять металлическую цепь, присоединенную к шасси или кузову и касающуюся земли.
Не разрешается заправка машин и механизмов горючими и смазочными материалами в зоне влияния электрического поля.
В качестве мер защиты от воздействия магнитного поля должны применяться стационарные или переносные магнитные экраны.
Рабочие места и маршруты передвижения персонала следует располагать на расстояниях от источников магнитного поля, при которых обеспечивается выполнение требований, приведенных в таблице 5.
В основе обеспечения безопасности населения от биологического действия электромагнитных полей - система контроля за соблюдением государственных санитарно-гигиенических норм. Чтобы максимально обезопасить себя от биологического действия электромагнитных полей, надо соблюдать простые принципы безопасности.
- защита расстоянием - находиться от источников электромагнитных полей на возможно большем расстоянии.
- защита временем - находиться вблизи источников электромагнитных полей как можно меньше времени.
- снижение величины электромагнитного поля - использовать специально разработанные электромагнитные экраны из радиоэкранирующих материалов, в том числе изделия из радиоэкранирующей ткани.
Одним из вариантов реализации принципа защиты расстоянием является установление охранных зон воздушных ЛЭП напряжением выше 1000 В (ГОСТ 12.1.051-90. ССБТ. Электробезопасность. Расстояния безопасности в охранной зоне ЛЭП напряжением выше 1000 В).
Охранная зона вдоль воздушных линий электропередачи устанавливается в виде воздушного пространства над землей, ограниченного параллельными вертикальными плоскостями, отстоящими по обе стороны линии на расстоянии от крайних проводов по горизонтали, указанном в табл. 7.
Таблица 7 |
||
Напряжение линии, кв |
Расстояние, м |
|
До 20 |
10 |
|
Св 20 « 35 |
15 |
|
«35« 110 |
20 |
|
« 110 «220 |
25 |
|
« 220 « 500 |
30 |
|
« 500 « 750 |
40 |
|
«750« 1150 |
55 |
Охранная зона воздушных линий электропередачи, проходящих через водоемы (реки, каналы, озера и т.д.), устанавливается в виде воздушного пространства над водной поверхностью водоемов, ограниченного параллельными вертикальными плоскостями, отстоящими по обе стороны линии на расстоянии по горизонтали от крайних проводов для судоходных водоемов - 100 м, для несудоходных водоемов - на расстоянии, указанном в табл. 7.
В охранной зоне линий электропередачи запрещается проводить действия которые могли бы нарушить безопасность и непрерывность эксплуатации или в ходе которых могла бы возникнуть опасность по отношению к людям. В частности запрещается:
* размещать хранилища горючесмазочных материалов;
* устраивать свалки;
* проводить взрывные работы;
* разводить огонь;
* сбрасывать и сливать едкие и коррозионные вещества и горючесмазочные материалы;
* набрасывать на провода, опоры и приближать к ним посторонние предметы, а также подниматься на опоры;
* проводить работы и пребывать в охранной зоне воздушных линий электропередачи во время грозы или экстремальных погодных условиях;
* без согласия организации, эксплуатирующей эти линии, осуществлять строительные, монтажные и поливные работы, проводить посадку и вырубку деревьев, складировать корма, удобрения, топливо и другие материалы, устраивать проезды для машин и механизмов имеющих общую высоту с грузом или без груза от поверхности дороги более 4 м;
* размещать жилые здания, стоянки и остановки всех видов транспорта, устраивать места отдыха, спортивные и игровые площадки.
В целях защиты населения от ЭМП, излучаемого электробытовыми приборами и оргтехникой, специалисты Центра электромагнитной безопасности дают следующие рекомендации:
* используйте модели электроприборов с меньшим уровнем энергопотребления (меньшей мощности) - они создают электромагнитные поля меньшего уровня;
* размещайте приборы, включающиеся часто и на продолжительное время (электропечь, СВЧ-печь, холодильник, телевизор, электрообогреватели, воздухоочистители, аэроионизаторы), на расстоянии не менее 1,5 м от мест продолжительного пребывания или ночного отдыха, особенно детей;
* если ваша кухня оснащена большим количеством электробытовой техники, старайтесь включать одновременно как можно меньше приборов;
* по возможности используйте приборы с автоматическим управлением, позволяющие не находиться рядом с ними во время работы;
* приобретайте мониторы ПК с пониженным уровнем излучения (меньше всего излучение у мониторов, соответствующих шведским стандартам ТСО-91/92 или 95);
* обязательно заземляйте мониторы и компьютеры на контур заземления здания (нельзя заземлять на батарею отопления, водопроводные трубы, "ноль" розетки);
* используйте дополнительные средства защиты - заземленные защитные фильтры для экрана монитора, снижающие уровень электромагнитного поля;
* ограничивайте время непрерывной работы за компьютером и суммарное время работы согласно, СанПиН 2.2.2.542-96 «Гигиенические требования к видеодисплейным терминалам, персональным электронно-вычислительным машинам и организация работы» (табл. 8).
Таблица 8 Допустимое время работы на компьютере |
|||
Категория пользователей ПЭВМ |
Продолжительность работы на ПЭВМ в течение дня |
||
непрерывная |
общая |
||
Дети дошкольного возраста |
- |
7-10 мин |
|
Школьники |
10-30 мин |
45-90 мин |
|
Студенты |
1-2 часа |
2-3 часа |
|
Взрослые |
до 2 часов |
до 6 часов |
Нетрудно видеть, что все рассмотренные выше способы и средства защиты как персонала, так и населения, являются реализацией принципов безопасности (защита временем, расстоянием, экранами).
7. СТАТИЧЕСКОЕ ЭЛЕКТРИЧЕСТВО И МЕРЫ БОРЬБЫ С НИМ
7.1 Причины электризации
Согласно определению ГОСТ 12.1.018-93 «ССБТ. Пожаровзрывобезопасность статического электричества», статическое электричество (СЭ) это совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности или в объеме диэлектриков или на изолированных проводниках.
По существующим представлениям, в основе процесса электризации лежит образование на границе контактирующих веществ двойного электрического слоя, при механическом разделении которого одно из веществ заряжается положительно, другое - отрицательно. Положительный заряд приобретает вещество, диэлектрическая проницаемость которого больше. При одинаковой диэлектрической проницаемости взаимодействующих веществ статические заряды не возникают. Интенсивность статической электризации при прочих равных условиях зависит от диэлектрических свойств контактирующих вещества по крайней мере, одно из них должно быть диэлектриком. Если оба вещества электропроводны, то возникающие заряды быстро рассеиваются (релаксируют), и электризация отсутствует.
На практике статическое электричество возникает и накапливается в следующих случаях:
При соприкосновении или трении твердых материалов;
При измельчении, перемешивании, пересыпании сыпучих материалов;
При разбрызгивании жидкостей, фильтровании нефтепродуктов через пористые материалы, очистке загрязненных материалов в растворителях;
При транспортировке сыпучих материалов и жидкостей по трубопроводам;
При движении сжатых и сжиженных газов по трубам и истечении их через отверстия;
При движении транспортерных лент и ременных передач;
При движении транспортных средств на резиновом ходу по сухому изолирующему покрытию.
Таков далеко не полный перечень причин и обстоятельств возникновения статического электричества.
7.2 Опасность статического электричества
Опасность статического электричества рассматривают в трех аспектах:
А) искровые разряды статического электричества могут привести к взрыву и пожару;
Б) Электростатическое поле и искровые разряды оказывают вредное воздействие на человека;
В) Статическое электричество может негативно влиять на технологический процесс, выбывая брак продукции, снижая производительность оборудования, создавая помехи в работе радиоэлектронной аппаратуры.
Искровые разряды составляют главную опасность статического электричества. Они возникают в тех случаях, когда напряженность электростатического поля достигает или превышает электрическую прочность диэлектрика (для воздуха 30 кВ/см). При определенном значении энергии искры могут воспламеняться парогазовоздушные или горючие пылевоздушные смеси, имеющие место в окружающем пространстве. Такое состояние объекта считается электростатически искроопасным. По ГОСТ 12.1.018-93 электростатическая искроопасность - это возможность возникновения в объекте или на его поверхности разрядов статического электричества, способных зажечь объект, окружающую или проникающую в него среду.
Для воспламенения многих газо- и паровоздушных горючих смесей требуется энергия искры 0,2-0,5 мДж; энергия воспламенения пылевоздушных смесей на один-два порядка больше. Практически при напряжении 3 кВ от искрового разряда могут воспламеняться почти все газо- и паровоздушные смеси, а при 5 кВ - большая часть пылевоздушных смесей.
Разряды статического электричества на производствах, где образуются или используются взрывоопасные горючие смеси, стали причиной многочисленных взрывов и пожаров со значительным материальным ущербом и травматизмом. Во избежание взрыва и пожара необходимо добиваться электростатической искробезопасности объекта. По ГОСТ 12.1.018-93 это состояние объекта, при котором исключается возможность возникновения пожара или взрыва от разрядов статического электричества.
Электростатическая искробезопасность объекта достигается при выполнении соотношения:
W<k*Wmin(5)
где W - максимальная энергия разрядов, которые могут возникнуть внутри объекта или с его поверхности, Дж;
k - коэффициент безопасности, выбираемый из условий допустимой (безопасной) вероятности зажигания; в случае невозможности определения вероятности его принимают равным 0,4;
Wmin - минимальная энергия зажигания веществ и материалов, Дж.
Как видно из (5), безопасность обеспечивается: снижением искроопасности (уменьшением W) и/или снижением чувствительности объекта к зажигающему действию статических разрядов (увеличением Wmin). В то же время многие технологические процессы и операции противоречат соотношению (5). Так легковоспламеняющиеся и горючие жидкости (ЛВЖ и ГЖ) с одной стороны, являются диэлектриками, что способствует интенсивной электризации (увеличению W), а с другой стороны, являются взрывопожароопасными веществами, утечки которых из аппаратов и трубопроводов образуют горючие смеси в опасных концентрациях (Wmin уменьшается). Другой пример: наполнение емкости нефтепродуктами свободно падающей струёй приводит к их разбрызгиванию и перемешиванию, что увеличивает скорость испарения жидкости и образование опасных концентраций паров (уменьшается Wmin) и одновременно увеличивается интенсивность электризации (увеличивается W).
Заряды статического электричества могут накапливаться на людях. Это происходит при контактировании с материалами и изделиями, обладающими высокими диэлектрическими свойствами (синтетические полы, ковровые дорожки; обувь с неэлектропроводящими подошвами; одежда и белье из шерсти, шелка, искусственного волокна). В этих условиях потенциал тела человека, изолированного от земли, может достигать 15 кВ и более. При контакте наэлектризованного человека с заземленным предметом возникает искровой разряд, которой во взрывоопасной среде может вызывать взрыв и пожар.
Для человека искровой разряд непосредственной опасности не представляет, так как разрядный ток составляет ничтожно малую величину. В зависимости от величины накопленного потенциала искровой разряд ощущается человеком как легкий укол (при 5...7кВ), острый укол (при 7...12кВ), лёгкая судорога (при 12...25 кВ), средняя судорога (при 25...35кВ), острая судорога (при 35...40кВ). Укол или судорога могут вызвать резкие рефлекторные движения и, как следствие, падение с высоты, попадание в опасную зону оборудования и пр. Постоянное ощущение уколов или судорог раздражает нервную систему человека, создаёт психологический дискомфорт, снижает работоспособность.
Кроме искровых разрядов, на человека вредное воздействие оказывает электростатическое поле, вызывая функциональные изменения со стороны нервной, сердечно-сосудистой и других систем организма. Это выражается в ухудшении общего самочувствия, головных болях, болях в области сердца. Кроме того, пыль и вредные вещества, приобретая заряд в электрическом поле, легче проникают в организм. Степень негативного воздействия электростатического поля на человека зависит от напряжённости поля и длительности пребывания в нём человека. В связи с этим указанные параметры нормируются в соответствии с ГОСТ 12.1.045-84 «ССБТ. Электростатические поля. Допустимые уровни на рабочих местах и требования к проведению контроля», а также с СН 1757-77 «Санитарно-гигиенические нормы допустимой напряжённости электростатического поля»
7.3 Нормирование параметров СЭ
Допустимые уровни напряжённости электростатических полей (Ед, кВ/м) устанавливаются в зависимости от времени пребывания персонала на рабочих местах (t, ч). Предельно допустимый уровень напряжённости электростатического поля устанавливается равным Епд = 60 кВ/м в течение времени t=1ч. При напряжённости поля менее 20 кВ/м время пребывания в нём не регламентируется. При времени воздействия поля свыше 1 ч до 9 ч величину Ед , кВ/м определяют по формуле:
Ед = 60/vt,(6)
В диапазоне напряжённостей поля от 20 до 60 кВ/м допустимое время пребывания в нём персонала, без средств защиты (tд, ч) определяется по формуле:
Tд = (60/Е)2,(7)
где Е - фактическое значение напряжённости электростатического поля, кВ/м.
Контроль напряжённости электростатических полей проводится при приёме в эксплуатацию новых установок постоянного тока высокого напряжения; при вводе нового технологического процесса, сопровождающегося электризацией материалов; при организации нового рабочего места; в порядке текущего надзора за действующими электроустановками и технологическими процессами. Напряженность электростатического поля контролируется на уровне головы и груди работающих в их отсутствие, не менее 3 раз. Определяющим является наибольшее значение измеренной напряжённости. Для измерения напряжённости электростатического поля используются приборы отечественного производства ИНЭП - 20Д и ИЭЗ-П.
Средства защиты от статического электричества должны применяться в соответствии с ГОСТ 12.4.124-83 «ССБТ. Средства защиты от статического электричества. Общие технические требования». Применение средств защиты работающих обязательно в тех случаях, когда фактические уровни напряжённости или времени воздействия полей превышают значения, соответствующие формулам (6) и (7).
7.4 Меры борьбы со СЭ
Меры защиты от искровых разрядов статического электричества направлены на предотвращение возникновения и накопления статических зарядов и на устранение уже образовавшихся зарядов. Осуществление этих мер обязательно во взрыво- и пожароопасных зонах, классов B-I, B-Ia, B-Iб, В-П, В-Па, П-I, П-П (Правила устройства электроустановок - ПУЭ, издание 6, гл., 7.3, 7.4). Вне указанных зон защиту осуществляют в тех случаях, когда статическое электричество негативно влияет на технологический процесс или представляет опасность для работающих.
В соответствии с ГОСТ 12.4.124-83 средства коллективной защиты от статического электричества по принципу действия делятся на следующие виды:
Заземляющие устройства;
Нейтрализаторы;
Увлажняющие устройства;
Антиэлектростатические вещества;
Экранирующие устройства.
Наиболее простой и часто применяемой мерой защиты является заземление оборудования, на котором могут возникать и накапливаться электростатические заряды. Заземлению подлежат все металлические и электропроводные неметаллические части оборудования.
Для заземления неметаллических объектов их поверхность покрывают электропроводными эмалями или металлической фольгой и присоединяют к заземлителю. Например, трубопровод из диэлектрического материала с проводящим покрытием присоединяется к заземляющим проводникам с помощью металлических хомутов.
Обычно заземляющие устройства для защиты от статического электричества объединяют с устройствами защитного заземления электроустановок, выполняемого в соответствии с требованиями ПУЭ. Если же заземляющее устройство предназначено только для отвода в землю электростатических зарядов, то его сопротивление растеканию не должно превышать 100 Ом. Неметаллическое оборудование считается электростатически заземленным, если сопротивление любой его точки относительно контура заземления не превышает 107 Ом. Агрегаты, трубопроводы, вентиляционные воздуховоды и другое оборудование, образующее технологическую линию, должны представлять собой непрерывную электрическую цепь, которая в пределах цеха присоединяется к заземлителю не менее чем в двух точках.
Изложенные выше требования находят отражение в ведомственных правилах. Например, в соответствии с ВГШБ 01-04-98 «Правила пожарной безопасности для предприятий и организаций газовой промышленности» для защиты от разрядов статического электричества вся металлическая аппаратура, резервуары, газопроводы, нефтепроводы и другие устройства, расположенные как внутри помещений, так и вне их и содержащие ЛВЖ и ГЖ (легковоспламеняющиеся и горючие жидкости) должны быть заземлены.
Эстакады для трубопроводов следует в начале и в конце, а также через каждые 300 м соединять с проходящими по ним трубопроводами и заземлять. При транспортировке и наливе сжиженных углеводородных газов, ЛВЖ и ГЖ, на всем протяжении системы транспортировки должна обеспечиваться непрерывная токопроводящая цепь, замкнутая на заполняемую емкость и эстакаду. Для заземления следует использовать гибкий медный проводник сечением не менее 16 мм2. Заземление передвижных объектов, подвергающихся статической электризации, осуществляется с помощью колес из токопроводящей резины, а также с помощью металлических цепей, контактирующих с землей.
Заземление выполняется во всех случаях, вне зависимости от применения других мер защиты.
Снижения уровня электростатических зарядов можно добиться путем ионизации электризующегося материала или среды вблизи его поверхности. Для этой цели применяются нейтрализаторы, которые по принципу ионизации делятся на индукционные, высоковольтные, лучевые, аэродинамические.
Для уменьшения интенсивности образования электростатических зарядов применяют меры, направленные на снижение удельного поверхностного сs, или объемного сv электрического сопротивления материалов. Повышение влажности воздуха до 65...70% значительно снижает сs, и практически полностью устраняет электризацию гидрофильных материалов (древесина, бумага, х/б ткань). Это достигается местным или общим увлажнением воздуха в помещении, если это допустимо по условиям производства. Однако, если электризующиеся материалы гидрофобны (сера, парафин, масла), то увлажнение воздуха не дает эффекта. Снижение сs гидрофобных материалов может быть достигнуто химической обработкой их кислотами или поверхностно-активными веществами. Для снижения объемного электрического сопротивления диэлектрических жидкостей (нефтепродукты, растворы полимеров) в них вводят антиэлектростатические присадки АСП-1, Аккор-1, Сигбол (10-15 г на 100л), что приводит к снижению сv в 1000 раз и более. Для снижения объемного электрического сопротивления твердого диэлектрика в его массу вводят антиэлектростатики: ацетиленовый технический углерод, алюминиевую пудру, графит, цинковую пыль. Например, полимер, содержащий 20% ацетиленового углерода, имеет сv, на 10 порядков ниже, чем полимер с другим наполнителем.
В соответствии с ГОСТ 12.4.124-83 антиэлектростатические вещества должны обеспечивать снижение сv материала до 107 Ом х м, сs до 109 Ом х м. Содержание паров антистатиков в рабочей зоне не должно превышать ПДК по ГОСТ 12.1.005-88.
К коллективным средствам защиты от статического электричества можно отнести экранирующие устройства, которые обеспечивают снижение напряженности электростатического поля и количества аэроионов в рабочей зоне за счет их концентрации в ограниченном объеме вне этой зоны. Экранирующие устройства должны быть заземлены в соответствии с требованиями ПУЭ.
В некоторых случаях уменьшение интенсивности электризации может быть достигнуто подбором материалов контактирующих пар, в результате взаимодействия которых возникают заряды противоположных знаков, либо эффект электризации совсем не проявляется. Например, при трении материала, состоящего из 40% нейлона и 60% дакрона, о хромированную поверхность электризация не происходит.
Снижения интенсивности электризации можно добиться изменением параметров технологического процесса, например, уменьшая скорость движения нефтепродуктов по трубопроводам, применяя нижний (а не верхний) налив-слив легковоспламеняющихся жидкостей в емкости, резервуары. Согласно ВППБ 01-04-98 не допускается наливать сжиженные углеводородные газы, легковоспламеняющиеся и горючие жидкости в резервуары, цистерны и тару свободно падающей струёй.
Налив следует производить только под уровень жидкости. Трубопровод, подающий продукт, должен быть ниже уровня «мертвого» остатка жидкости в резервуаре.
При истечении жидкостей, имеющих сv > 109 Ом х м, в резервуары применяют релаксационные емкости, представляющие собой участок трубопровода увеличенного диаметра, находящийся у входа в приемную емкость и имеющий хороший контакт с землей, что обеспечивает стекание заряда в землю.
Для предотвращения искровых разрядов с человека необходимо уменьшить электрическое сопротивление его одежды, обуви, пола. Для изготовления специальной антиэлектростатической одежды должны применяться материалы с сs < 107 Ом х м. Электрическое сопротивление между токопроводящим элементом специальной антиэлектростатической одежды и землей должно быть от 106 до 108 Ом. Специальная антиэлектростатическая обувь должна иметь электрическое сопротивление между подпятником и ходовой стороной от 106 до 108 Ом.
8. ПЕРВАЯ ДОВРАЧЕБНАЯ ПОМОЩЬ ПОСТРАДАВШЕМУ ОТ ЭЛЕКТРИЧЕСКОГО ТОКА
Этот вопрос подробно изложен в Межотраслевой инструкции по оказанию первой помощи при несчастных случаях на производстве. Здесь приводятся основные принципиальные положения.
Необходимо как можно быстрее освободить пострадавшего от действия электрического тока, предварительно позаботившись о собственной безопасности. Прежде всего, нужно немедленно отключить электроустановку ближайшим выключателем. При этом надо обезопасить возможное падение пострадавшего и исключить другие травмы. Если быстро отключить установку не удаётся, надо немедленно отделить пострадавшего от токоведущей части.
При номинальном напряжении электроустановки до 1000 В, при отсутствии электрозащитных средств (диэлектрические перчатки, изолирующие клещи, штанга и т. п.), можно пользоваться подручными средствами (сухие канат, доска, палка и др.), оттаскивать пострадавшего за одежду, если она сухая и отстаёт от тела, перерубить провода топором с сухой рукояткой и т.д.
В установках выше 1000 В можно пользоваться лишь табельными электрозащитными средствами - основными (штанга, изолирующие клещи, указатель напряжения и т.п.) и дополнительными (диэлектрические перчатки, боты, коврики и др.). Использовать только дополнительные средства, без основных, и тем более подручные материалы в установках выше 1000 В категорически запрещается.
После освобождения пострадавшего от электрического тока нужно оценить его состояние и действовать по универсальной схеме оказания первой помощи на месте происшествия (Схема 1).
Эта схема является универсальной для всех случаев оказания первой помощи на месте происшествия.
Какое бы несчастье ни произошло - автодорожное происшествие, падение с высоты, поражение электрическим током или утопление - в любом случае оказание помощи следует начать с восстановления сердечной деятельности и дыхания, затем приступать к временной остановке кровотечения.
После этого можно приступить к наложению фиксирующих повязок и транспортных шин.
Именно такая схема (см рисунок) действий поможет сохранить жизнь пострадавшего до прибытия медицинского персонала.
Если нет дыхания и нет пульса на сонной артерии (внезапная смерть):
убедиться в отсутствии пульса; нельзя терять время на определение признаков дыхания;
освободить грудную клетку от одежды и расстегнуть поясной ремень;
прикрыть двумя пальцами мечевидный отросток;
нанести удар кулаком по грудине; нельзя наносить удар при наличии пульса на сонной артерии;
проверить пульс; если пульса нет, начать непрямой массаж сердца. Частота нажатия 50-80 раз в минуту, глубина продавливания грудной клетки не менее 3-4 см;
сделать «вдох» искусственного дыхания. Зажать нос, захватить подбородок, запрокинуть голову пострадавшего и сделать выдох ему в рот;
выполнять комплекс реанимации.
Правила выполнения реанимации:
Если оказывает помощь один спасатель, то 2 «вдоха» искусственного дыхания делают после 15 надавливаний на грудину.
Если оказывает помощь группа спасателей, то 2 «вдоха» искусственного дыхания делают после 5 надавливаний на грудину.
Для быстрого возврата крови к сердцу - приподнять ноги пострадавшего.
Для сохранения жизни головного мозга - приложить холод к голове.
Для удаления воздуха из желудка - повернуть пострадавшего на живот и надавить кулаками ниже пупка.
Взаимодействие партнеров:
Первый спасатель - проводит непрямой массаж сердца, отдает команду «Вдох!» и контролирует эффективность вдоха по подъему грудной клетки.
Второй спасатель -- проводит искусственное дыхание, контролирует реакцию зрачков, пульс на сонной артерии и информирует партнеров о состоянии пострадавшего: «Есть реакция зрачков! Нет пульса! Есть пульс!» и т.д.
Третий спасатель - приподнимает ноги пострадавшего для лучшего притока крови к сердцу и готовится к смене партнера, выполняющего непрямой массаж сердца.
Если нет сознания, но есть пульс на сонной артерии (состояние комы):
-повернуть пострадавшего на живот, только в положении лежа на животе пострадавший должен ожидать прибытия врачей. Нельзя оставлять человека в состоянии комы лежать на спине;
-удалить слизь и содержимое желудка из ротовой полости с помощью салфетки или резинового баллончика и делать это периодически;
-приложить холод к голове (пузырь со льдом, бутылки с холодной водой и пр.).
Реанимационные мероприятия необходимо проводить до прибытия врача. Констатировать смерть пострадавшего может только врач.
Практические навыки оказания первой помощи пострадавшему от электрического тока должны иметь все лица электротехнического (электротехнологического) персонала, имеющие группу по электробезопасности (Межотраслевые Правила, приложение №1).
Размещено на Allbest.ru
Подобные документы
Теоретические основы техники безопасности в электроустановках (электробезопасности) – системы организационных и технических мероприятий и средств, обеспечивающих защиту людей от вредного и опасного воздействия электрического тока. Статическое напряжение.
реферат [31,0 K], добавлен 23.01.2011Действие электрического тока на организм человека. Классификация электроустановок по группам. Варианты оказания первой доврачебной помощи пострадавшему от электрического тока. Меры безопасности при пользовании бытовыми электроприборами и инструментом.
реферат [502,2 K], добавлен 24.03.2012Основные понятия электробезопасности. Общие требования безопасности перед и во время работы. Снижение напряжения прикосновения. Группы допуска по электробезопасности. Обязанности персонала, обслуживающего электроустановки и электрооборудование.
отчет по практике [23,6 K], добавлен 06.09.2015Электротравматизм на производстве и в быту. Воздействие электрического тока на организм человека. Электротравма. Условия поражения электрическим током. Технические способы и средства электробезопасности. Оптимизация защиты в распределительных сетях.
реферат [609,9 K], добавлен 04.01.2009Виды поражения организма человека электрическим током. Факторы, определяющие исход воздействия электричества. Основные способы обеспечения электробезопасности. Оказание помощи пострадавшему от электрического тока. Безопасное напряжение, его значения.
презентация [2,1 M], добавлен 17.09.2013Группы по электробезопасности. Статистика электротравматизма и травм. Факторы, определяющие исход поражения. Величина тока и напряжения. Продолжительность воздействия тока. Сопротивление тела человека. Организация эксплуатации электроустановок.
презентация [620,1 K], добавлен 09.02.2015Рассмотрение системы организационных и технических мероприятий и средств, направленных на защиту человека от поражений током. Действие тока на организм человека и основные электрозащитные средства. Меры безопасности при работе с электроинструментом.
конспект урока [58,8 K], добавлен 22.11.2012Сущность и значение электробезопасности, законодательные требования к ее обеспечению. Особенности действия электрического тока на организм человека. Анализ факторов, влияющих на исход поражения электрическим током. Способы защиты от этого вида поражения.
контрольная работа [34,7 K], добавлен 21.12.2010Виды поражений электрическим током. Электрическое сопротивление тела человека. Основные факторы, влияющие на исход поражения током. Критерии безопасности для электрического тока. Организационные меры по обеспечению электробезопасности на производстве.
реферат [29,1 K], добавлен 20.04.2011Система организационных и технических мероприятий. Причины возникновения травм, вызванных воздействием электрического тока или электрической дуги. Особенности воздействия электрического тока на организм человека. Виды электрических ожогов и травм.
презентация [2,7 M], добавлен 25.12.2013