Месторождения горючих и неметаллических полезных ископаемых
Геология угольных месторождений. Общие сведения о неметаллических полезных ископаемых. Месторождения фосфоритов Беларуси. Общие сведения об индустриальном сырье. Минералогия и физические свойства графита. Генетические типы промышленных месторождений.
Рубрика | Геология, гидрология и геодезия |
Вид | курс лекций |
Язык | русский |
Дата добавления | 02.04.2019 |
Размер файла | 224,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Классификация угленосных бассейнов. Первая классификация угленосных бассейнов была разработана более 100 лет тому назад и основывалась на признаках фациального состава угленосных толщ. В соответствии с этой классификацией выделялись бассейны двух типов: паралический (прибрежный) и лимнический (озерный).
Широкое признание и практическое применение получила классификация угольных бассейнов, разработанная Г. А. Ивановым еще в 1930-е гг. Согласно этой классификации по характеру тектонических движений бассейны разделены на три типа: геосинклинальный, переходный и платформенный.
Бассейны геосинклинального типа характеризуются большой мощностью угленосных отложений (до 10-15 км), частым переслаиванием пород различного состава, значительным числом пластов каменного угля (до 100-150 и более), выдержанностью их по латерали, а также отчетливо выраженной линейной складчатостью и интенсивным проявлением разломной тектоники. В таких бассейнах обычно наблюдается зональность метаморфизма углей по вертикали (правило Хильта - Скока) и по площади.
Бассейны платформенного типа. Мощность угленосной толщи невелика - редко до первых сотен метров. Фациальный состав угленосной толщи почти исключительно наземно-континентальный. Образование углей происходит в озерно-болотных условиях. В разрезе угленосной толщи характерно преобладание песчаных пород над глинистыми. Пласты угля не выдержаны по мощности: они выклиниваются и расщепляются на коротких расстояниях. Химический состав их также непостоянен, особенно по содержанию золы. Залегание угленосных отложений горизонтальное или слабонаклонное.
Бассейны переходного типа. Они как бы совмещают в себе черты двух вышеуказанных типов. В таких бассейнах наблюдаются промежуточные значения мощности угленосной толщи и пластов угля, а также их количество и степень выдержанности по сравнению с бассейнами геосинклинального и платформенного типов. Нередко отмечается смена типов углеобразования: формирование углей некоторых бассейнов иногда начиналось в одних условиях, а затем в связи с изменившейся палеогеографической обстановкой заканчивалось в других. К этому типу относится большинство пермских, мезозойский и кайнозойских бассейнов.
Предлагавшиеся позже советскими геологами классификации угольных бассейнов (Ю. А. Жемчужников, П. В. Васильев, Г. Ф. Крашенинников, А. К. Матвеев и др.) строились, как правило, также на тектонической основе, но в большинстве случаев количество типов бассейнов сводилось к увеличению их числа (до 16 и более).
Газы угольных месторождений. Современный газ в угленосных толщах состоит как из газа, оставшегося частично от торфяной стадии, так и из газа, образовавшегося в условиях погружения пластов углей и перекрытия их надугольной осадочной толщей. В составе газов угольных месторождений присутствуют метан, углекислый газ, азот, водород, тяжелые углеводороды и др.
Метан. Он является основным среди газов угольных месторождений (от 60 до 98 %). Образуется главным образом при биохимических процессах разложения растительного вещества. Из 1 т растительных остатков, содержащих целлюлозу, выделяется до 230-465 м3 метана. Основное и наиболее опасное его свойство - образование с воздухом при соответствующих соотношениях взрывчатой смеси. Смесь с содержанием метана 0-5 % сгорает без взрыва, при содержании его от 5-6 до 14-16 % смесь, соприкасаясь с пламенем, дает взрыв. Наибольшая сила взрыва наблюдается при 9,3 % метана в рудничном воздухе.
Углекислый газ. Содержание его в газах угольных месторождений достигает иногда 25 %. Образуется в результате превращения растительного вещества при углеобразовании. Несмотря на его большую растворимость в воде, все же при определенных геологических условиях углекислый газ мог сохраниться и накопиться в значительных объемах в угленосных толщах. Кроме того, он частично обязан своим генезисом процессам сорбции атмосферного кислорода с окислением углерода до углекислого газа, а также привносу его циркулирующими водами из верхних горизонтов биосферы. Поступление этого газа в угленосную толщу в определенных бассейнах (Донецкий, Кузнецкий и др.) может быть связано с магматическими процессами.
Азот. В угольных месторождениях он имеет в основном воздушное происхождение за счет привноса его в растворенном состоянии подземными водами. Частично азот мог образоваться в результате биохимических процессов. Показателем происхождения азота может служить отношение аргона к азоту в газе из углей к такому же отношению их в воздухе. Азот не имеет цвета, запаха и вкуса, инертен, не поддерживает горение. Он ослабляет взрывчатость метана.
Присутствие газа в угленосных толщах значительно осложняет подземную разработку месторождений. Несоблюдение техники безопасности горных работ приводит к серьезным авариям. Так, за последние 5-10 лет произошли крупные аварии на шахтах Донбасса и Кузбасса, приведшие к гибели людей.
Основные закономерности распространения углей на Земле. Распространение углей на земном шаре подчинено закономерностям его геологического развития и может быть отражено как в количественном выражении, так и в геолого-географическом плане. Основанные на сочетании этих двух критериев закономерности распространения углей впервые были установлены П. И. Степановым, выделившим в 1939 г. площади преобладающего в каждом геологическом периоде угленакопления, а для карбона - протягивающийся через Евразию и Северную Америку в широтном направлении так называемый «карбоновый пояс». В 1960 г. Н. М. Страхов установил распространение на земном шаре благоприятных для углеобразования гумидных зон.
Угли, как бурые, так и каменные, развиты во всех геологических системах, начиная с девона, и на всех континентах. Они занимают большую площадь, особенно в странах на долю которых приходится более 75 % его запасов: в России, США и Китае. В распределении этих запасов по бассейнам наблюдается резкая диспропорция. Выделяется семь бассейнов-гигантов с запасами более 500 млрд т. Это - Тунгусский, Ленский, Таймырский, Канско-Ачинский, Кузнецкий, Алта-Амазона и Аппалачский. Далее следуют четыре бассейна с запасами угля 200-500 млрд т (Донецкий, Печорский, Нижнерейнско-Вестфальский и Иллинойс). Преобладающее большинство бассейнов и самостоятельных месторождений обладает запасами менее 0,5 млн т.
Стратиграфические закономерности. Впервые стратиграфические закономерности распределения углей в осадочной оболочке Земли были установлены П. И. Степановым. Он выделил три максимума углеобразования: поздний карбон-пермь (1), юра (II), поздний мел-неоген (III) и три минимума, совпадающие с ранним карбоном (I), триасом (II) и поздним мелом (III). Полученные во второй половине ХХ в. новые данные свидетельствуют о том, что стратиграфическое распределение углей в осадочной оболочке несколько иное, чем представлялось, в частности, П. И. Степанову. Так, по новым данным, выделяются три максимума углеобразования: пермь (26,8 % мировых ресурсов угля), карбон (20,5 %) и мел (20,5 %).
Тектонические закономерности. Сопоставление размещений угольных бассейнов с положением основных геотектонических элементов земного шара указывает на ведущее влияние структурно-тектонического фактора не только на пространственное положение бассейнов, но и на сложность их геологического строения. Палеозойские угленосные бассейны, по Г. Ф. Крашенинникову, в тектоническом отношении принадлежат главным образом к краевым и внутренним прогибам геосинклинальных областей. В них обычно развиты толщи паралического характера. Типичные примеры - Донецкий и Печорский бассейны. Нижне- и среднемезозойские угленосные бассейны, как правило, приурочены к межгорным тектоническим впадинам (восточный склон Урала, месторождения Киргизии и др.). Формы залегания углей - линзовидные, сложно построенные залежи, достигающие значительной мощности. В кайнозое, за исключением альпийской зоны складчатости, углеобразование происходило в платформенных условиях.
Ресурсы, запасы, добыча
Ресурсы. Мировые прогнозные ресурсы угля до настоящего времени полностью не учтены, а оценки их весьма противоречивы. По оценке ГНПП «Аэрогеология» (1998), ресурсы угля в мире составляют около 32,5 трлн т. На суше прогнозные ресурсы достигают 24,5 трлн т (в том числе бурых углей - 8,44 трлн т). Наиболее крупными прогнозными ресурсами угля обладают следующие страны (трлн т, в скобках бурый уголь): Китай - 6,5 (1,44), Россия - 4,45 (1,32), США - 3,6 (2,31), Австралия - 1,5, Канада - 0,58, Великобритания - 0,38.
Запасы. Запасы подтвержденные (промышленные) углей всех типов (УВТ) в мире составляют 1 747,2 млрд т, в том числе углей каменных (УК) - 1353,4 млрд т, углей бурых (УБ) - 393,8 млрд т. Крупнейшими запасами углей обладают следующие страны (млрд т): США УВТ - 444,8, УК - 403,9, УБ - 40,9; Китай УВТ 296,0, УК - 257,5, УБ - 38,5; Россия УВТ - 200,6, УК - 97,5, УБ - 103,1; ЮАР УВТ - 115,5, УК - 115,5; Австралия УТВ - 114,0, УК - 68,0, УБ - 46,0; Германия УВТ - 105,5, УК - 44,0, УБ - 61,5; Канада УВТ - 77,3, УК - 71,0, УБ - 6,3; Великобритания УВТ - 45,4, УК - 45, УБ - 0,4.
Добыча. Мировая добыча углей всех типов в 1993 - 2000 гг. составляла 4,5-4,9 млрд т, в том числе бурых углей - 0,9-1,0 млрд т. Странами-лидерами по добыче углей являются Китай и США. В 1996 г. добыча (в млрд т) составила в Китае УВТ - 1,35, в том числе УК - 1,30, УБ - 0,05; в США - УВТ - 1,04, УК - 0,96, УБ - 0,08. В Индии, Австралии, России, Германии, ЮАР и Польше добыча углей всех типов составляет в пределах 200-300 млн т.
В Китае одним из приоритетных проектов является освоение месторождений Шеньфу-Доншен (провинция Шаньси). Планируется строительство новых шахт в восточных и центральных районах Китая (провинции Шаньдун и Аньхой). В США в 1995-2000 гг. добыча угля производилась на 1018 углеразрезах и 885 подземных шахтах в 26 штатах. Наиболее значительная добыча осуществлялась в штатах Вайоминг (около 250 млн т), Западная Виргиния (155 млн т) и Кентукки (135-140 млн т).
Углепроявления и месторождения угля в Беларуси. Углепроявления в Беларуси связаны с отложением нижнего и среднего карбона, средней юры и неогена. Территориально они приурочены в основном к двум крупным отрицательным структурам - Припятскому прогибу и Подлясско-Брестской впадине. Наиболее широкое распространение углепроявления имеют в кайнозойских отложениях: кроме двух вышеотмеченных структур, они выявлены также в пределах Полесской, Жлобинской, Брагинско-Лоевской седловин и на южных склонах Белорусской антеклизы. В юго-западной части Припятского прогиба разведаны два месторождения бурых углей - Житковичское и Бриневское.
Житковичское месторождение расположено в Гомельской области и в тектоническом отношении приурочено к зоне сочленения Туровской депрессии и Микашевичско-Житковичского выступа кристаллического фундамента. Угленосными являются олигоцен-миоценовые континентальные терригенные отложения. На месторождении выделяются четыре разобщенные залежи бурого угля. Форма залежей линзовидная, мощность от 0,3 до 15,6 м, средняя глубина залегания 21,2-44,4 м. По качеству угли Житковичского месторождения гумусовые, низкой степени метаморфизма, относятся к бурым углям Б1. Запасы угля по категориям А+Б+С1 составляют 69,1 млн т и по категории С2 - 1,9 млн т.
Бриневское месторождение находится в Петриковском районе Гомельской области. Мощность угленосной толщи колеблется от 6,2 до 47,9 м, коэффициент угленасыщенности в среднем составляет 25-30 %. Развита одна залежь угля мощностью от 0,4 до 19,9 м, глубина залегания 39,7-82,8 м. По данным предварительной разведки, балансовые запасы углей оценены в 38 млн т. По качеству угли относятся к гумусовым марки Б1. Теплота сгорания на сухой уголь составляет 10,88-20,13 МДж/кг, зольность - 20,1-31,7 %, выход летучих веществ на горючую массу - 52,0-60,1 %, содержание серы - 0,6-1,4 %. По условиям залегания угольная залежь Бриневского месторождения пригодна для разработки карьерным способом.
Лекция 5. ГОРЮЧИЕ СЛАНЦЫ
Горючие сланцы - это карбонатно-глинистые, глинистые, известковые или кремнистые породы с содержанием 10 % и более керогена, обладающие способностью загораться от спички, издавая при этом специфический запах горящей резины. В отличие от битумов, которые эпигенетически пропитывают песчаные породы, битумы в собственно горючих сланцах сингенетичны вмещающим породам. Содержащееся в горючих сланцах ОВ низших растений в процессе преобразования сохраняет иногда их клеточное строение, образуя так называемые талломоальгиниты, или же теряет его, переходя в коллоидоподобную массу - коллоальгиниты. В горючих сланцах нередко содержатся гумусовые компоненты преимущественно в диспергированном виде.
Условия образования сланценосных формаций. Горючие сланцы являются чисто водными образованиями. В отличие от угленосных толщ, формирующихся в основном в условиях влажного климата, при образовании горючих сланцев климат не играет решающей роли.
Фациальные условия образования горючих сланцев определяются в основном двумя факторами - накоплением в осадках достаточного количества ОВ и наличием восстановительной среды, обеспечивающей сохранность (не окисление) в илах отмерших растительных организмов с последующим их превращением в кероген. Горючие сланцы образуются в разнообразных условиях: 1) открытые морские бассейны во время медленных региональных трансгрессий; 2) лагуны и большие лиманы; 3) пресноводные озера - от небольших водоемов до обширных внутриконтинентальных или межгорных бассейнов (например, эоценовые сланцы формации Грин-Ривер в США).
Сопоставление микроэлементов горючих сланцев показало, что главная масса их накапливалась в краевых участках морских бассейнов в обстановке сероводородного заражения, определявшей восстановление многих металлов из вод с последующей их сорбцией донными илами.
Месторождениям горючих сланцев несвойственна избирательная способность по отношению к глобальным геоструктурам: они приурочены в одинаковой степени и к различного типа платформам, и к внешним областям геосинклиналей, и к переходным между ними областям, но в целом тяготеют к древним устойчивым платформам. Оптимальные обстановки для накопления горючих сланцев существовали во время стабилизации морских трансгрессий, следовавших за фазами складчатости.
Строение и состав сланценосных формаций. Сланценосные формации представлены в основном глинисто-алевролитово-терригенными и известково-мергелистыми отложениями с сапропелевым органогенным составом. Песчаный и другой, более грубый, материал в них, как правило, отсутствует. В сланценосных формациях, в особенности в известняках и мергелях, нередко присутствует разнообразная морская фаза - остатки рыб, брахиоподы, пелециподы, аммониты, белемниты и др. В породах часто наблюдаются неорганические включения, преимущественно в виде карбонатных конкреций (Прибалтийский бассейн). В горючих сланцах карбонового возраста и более молодых встречаются также остатки высших растений в виде спор, пыльцы, стеблевых тканей, гелифицированные и фюзенизированные компоненты и гумусовые угли.
Ограниченный набор слагающих сланценосных формаций литологических типов пород, в основном пелитовых и органогенных с очень тонким переслаиванием, создает характерную для этих формаций очень мелкую, на первый взгляд слабо выраженную ритмичность.
Классификация сланценосных формаций. Сланценосные формации отчетливо подразделяются на две группы - платформенные и геосинклинальные. Платформенные формации характеризуются широким распространением по площади, относительно малой мощностью (десятки метров, реже - больше), небольшим количеством пластов горючих сланцев.
Геосинклинальные сланценосные формации выделяются большой мощностью (от нескольких сотен метров до 1000 м и реже более), большим числом (до 20) достаточно мощных пластов горючих сланцев, которые не выдержаны по простиранию (Карпаты, Кавказ, Гиссарский хребет и др.).
По происхождению и промышленному значению сланценосные формации разделяют также на две группы: лагуно-морского происхождения и озерно-пресноводного. Основное промышленное значение имеют месторождения первой группы.
Пласты горючих сланцев. Пласты горючих сланцев в отличие от угольных менее четко выделяются во вмещающих их породах. Они представляют собой более или менее частое чередование слоев горючего сланца мощностью 10-20 см (изредка до 1 м) и прослоев пустых пород мощностью от единиц до десятков сантиметров. В рабочие слои горючего сланца объединяются наиболее мощные и сближенные слои, которые в сумме составляют от 1-1,5 до 2-3 м. В маломощных сланценосных формациях обычно выделяются 1-3 рабочих пласта.
Пласты горючих сланцев обычно хорошо выдержаны по мощности и строению в пределах отдельных месторождений и прослеживаются по латерали на десятки километров. В платформенных бассейнах они имеют, как правило, пластовую форму залегания, а в геосинклинальных обычно сильно дислоцированы. В пластах горючих сланцев, залегающих в карбонатных толщах, нередко наблюдаются нарушения и замещения, обусловленные карстовыми явлениями (Прибалтийский бассейн).
Макроскопически пласты горючих сланцев имеют тонкослоистое строение и ленточную структуру. Цвет их - от светло-коричневого, желтоватого до темно-коричневого, от темно-серого до почти черного. Как правило, это плотная и компактная порода. Микроскопически органическая часть почти всех горючих сланцев характеризуется наличием гомогенной, часто хлопьевидной, основой массы (коллоальгинит), светло-желтой или коричневой. В основной массе часто наблюдаются одиночные ярко-желтые тела или их скопления, представляющие относительно сохранившиеся остатки микроводорослей (альгинит). В керогене горючих сланцев присутствуют также микрокомпоненты группы витринита, липтинита и реже фюзенита.
Элементный состав керогена. В зависимости от генетического типа горючих сланцев горючий состав керогена варьирует в широких пределах: СГ 56-82 %, НГ 5,8-11,5 %, ОГ 9-10 %, S ОБЩ 1,5-9 %, NГ 1-6 %. По М. Бертрану, химическая формула керогена, в зависимости от содержания водорода, изменяется от С10Н15О до С6Н10О.
Для качественной характеристики горючих сланцев, кроме элементного анализа, определяется также в расчете на горючую массу содержание ОВ, выход смолы, химический состав золы и соотношение типов слагающего материала - органического, карбонатного, обломочного, реже вулканогенного.
Горючие сланцы с содержанием керогена от 15 до 30-68 % формировались в открытых морях в раннем палеозое. В сланцах, образовавшихся в кайнозойских пресноводных озерах, содержание органического вещества более низкое (5-50 %). Максимальное количество керогена (30-90 %) характерно для сланцев Восточно-Австралийской провинции. Наиболее высокий выход смолы (в расчете на сухое вещество) имеют горючие сланцы Восточно-Австралийской и Восточно-Европейской платформ (39-54 %), в сланцах других провинций он составляет 12-21 %.
Глобальные закономерности распространения. Горючие сланцы встречаются в больших количествах в разных регионах мира. Особенно широко они распространены в Северной Америке и Евразии. Основные массы горючих сланцев связаны с отложениями верхнего девона - нижнего карбона (более 2,3 млрд т в расчете на сланцевую смолу), верхней перми (более 1,2 млрд т) и палеогена (более 1,2 млрд т). Образовавшиеся в протерозое горючие сланцы практически не сохранились, поскольку превращены в высокометаморфизованные углеродсодержащие породы и графит.
Горючие сланцы промышленного значения обычно занимают небольшие отрезки стратиграфической шкалы, но распространены на обширных площадях в десятки и сотни тысяч квадратных километров. На земном шаре выделяется двенадцать крупных провинций: Оленекская, Прибалтийская, Аппалачская, Западно-Североамериканская, Бразильская, Восточно-Австралийская (палеозойские); Волжско-Печорская, Западно-Европейская, Центрально-Африканская (мезозойские); Центрально-североамериканская, Карпатская, Туранская (кайнозойские).
Ресурсы. По произведенным в США в 1973 г. подсчетам, мировые геологические ресурсы горючих сланцев с нижним пределом получения нефти в сланцах в 4 % составляют 53 трлн т. Ресурсы сланцевой смолы оценены в 335 млрд т, из которых к доказанным извлекаемым относятся лишь 42 млрд т. Месторождения горючих сланцев эксплуатируются в Эстонии, России, Китае и некоторых других странах. Разработка их осуществляется открытым и шахтным способами.
Геология сланцевых месторождений. В Прибалтийской сланцевой провинции разведаны Эстонское, Ленинградское, Веймарнское и Чудово-Бабинское месторождения, из которых первые два разрабатываются. В 1970-1990-х гг. добыча составляла около 30 млн т горючего сланца. Промышленными являются сланценосные отложения кукерского горизонта среднего ордовика мощностью 10-20 м. В разрезе этого горизонта насчитывается 20-30 прослоев и слоев горючего сланца суммарной мощностью 3-5 м. Промышленный интерес представляет так называемый «промпласт», состоящий из 4-6 сближенных слоев сланца, разделенных слоями известняка. Мощность «промпласта» составляет 1,8-3,2 м. На Эстонском месторождении слои горючих сланцев в разрезе «промпласта» (снизу вверх) обозначаются латинскими буквами А, В, С, D, Е и F, а на Ленинградском - римскими цифрами I, II, III и IV (сверху вниз разреза).
На Эстонском месторождении разрабатывается пять слоев сланца: подземным способом - слои А-Е суммарной мощностью 2,0-2,2 м. Рабочая мощность по этим слоям составляет на шахтах 2,35 м и на карьерах 2,7 м. По качеству эстонские сланцы считаются одними из лучших в мире. Элементный состав эстонского сланца следующий: СГ 77,1-77,8 %, НГ 9,5-9,8 %, ОГ 9,7-10,2 %, NГ 0,3-0,4 %, SОБЩ 1,7-2,0 %, Cl 0,6-0,9 %. Теплота сгорания керогена 36,4-38,5 МДж/кг. При термическом разложении сланца характерен высокий выход летучих веществ - 80-85 % исходного керогена; выход жидких продуктов при полукоксовании достигает 65-70 % органической массы. Негорючая часть сланца состоит в основном из минеральной золы и углекислоты карбонатов. Содержание золы в сухой массе колеблется по отдельным слоям сланца в пределах 40-55 %, углекислоты 22-23 % и влаги 9-13 %.
Теплота сгорания горючего сланца на сухую массу в пределах рабочих слоев А-Е составляет 14,65 МДж/кг и слоев А-F - 12,56 МДж/кг. При валовой выемке (вместе с породными прослойками) всей мощности пласта теплота сгорания составляет 9,21 МДж/кг, а на рабочее топливо - 7,53 МДж/кг.
Горючие сланцы Беларуси. В платформенном чехле на территории Беларуси выявлено 14 уровней сланцеобразования. Промышленный интерес имеют сланценосные отложения верхнего девона в Припятском прогибе. Мощность сланценосных отложений составляет 100-150 м. Разрез представлен переслаиванием мергелей, глин с подчиненными прослоями алевролитов и песчаников. Разведаны два месторождения - Любанское и Туровское. Основная проблема месторождений горючих сланцев Беларуси - это низкое их качество, и в частности невысокая теплотворная способность (5,32-8,58 МДж/кг) и высокое содержание золы (65-85 %).
ЧАСТЬ II. МЕСТОРОЖДЕНИЯ НЕМЕТАЛЛИЧЕСКИХ ПОЛЕЗНЫХ ИСКОПАЕМЫХ
Лекция 6. общие сведения о неметаллических полезных ископаемых. КАМЕННАЯ СОЛЬ
Общие сведения о неметаллических полезных ископаемых. К неметаллическим полезным ископаемым относится обширная группа минералов и горных пород, которые, как правило, не являются сырьем для извлечения металлов и не обладают горючестью. Определить, что, собственно, нужно включать в группу неметаллических полезных ископаемых, нелегко. Так, еще в 1930-х гг. бокситы в бывшем СССР считались нерудным сырьем. В американских справочниках к неметаллам обычно причисляют пирит, марганцевые руды, гафниевое, бериллиевое и литиевое сырье.
Область применения неметаллических полезных ископаемых чрезвычайно широка: практически нет ни одной отрасли хозяйства, где бы в той или иной степени не использовалось это природное минеральное сырье. В настоящее время насчитывается более 130 видов неметаллических полезных ископаемых, используемых в естественном или переработанном виде.
Важнейшей особенностью многих неметаллических полезных ископаемых является изменчивость их физико-химических и технических свойств, учитываемых при геолого-экономической оценке месторождений. Эта изменчивость может проявляться не только в пределах одного месторождения или участка, но даже и в одной горной выработке.
В отличие от металлических полезных ископаемых состав и физические свойства нерудного сырья очень сильно сказываются не только на технологии переработки, но и в конечных промышленных изделиях. Такие особенности состава и свойств неметаллического минерального сырья могут играть главную роль в использовании его в том или ином производстве.
Неметаллическое минеральное сырье в силу тождественности тех или иных свойств нередко взаимозаменяемо. Например, барит, каолин, тальк, пирофиллит могут частично заменять друг друга в качестве наполнителей.
Рассмотренные особенности неметаллических полезных ископаемых требуют специального подхода к изучению их месторождений. Поэтому при проведении геологоразведочных работ геолог должен в совершенстве знать конкретные особенности, состав и свойства сырья, технологию переработки, возможности его использования, экономику и конъюнктуру рынка.
В сводной генетической классификации месторождений полезных ископаемых, разработанной В. И. Смирновым, неметаллические полезные ископаемые фиксируются во всех сериях и группах. Поэтому обычно распространены классификации неметаллического минерального сырья, учитывающие использование его в промышленности (Р. Л. Бейтс, П. М. Татаринов, Н. И. Еремин и др.).
Нами принята классификация Н. И. Еремина, в соответствии с которой все рассматриваемые полезные ископаемые исходя из практического их применения разделены на четыре группы. Первая из них - химическое и агрохимическое сырье - включает калийные и калийно-магниевые соли, каменную соль, апатиты, фосфориты, серу и бор. Во вторую группу («индустриальное сырье») входят асбест, слюды, графит, флюорит, барит и витерит, цеолиты, магнезит и брусит, тальк и пирофиллит. Третья группа, объединяющая «индустриально-камнесамоцветное сырье», включает пьезооптическое сырье (кварц, оптический флюорит, исландский шпат), алмазы, цветные камни. Наконец, к четвертой группе - «строительно-конструкционные материалы и сырье для их производства» - отнесены карбонатные, глинистые, кремнистые породы, гипс, каолины, фарфоровые камни, пески, песчаники, гравий, кварциты, естественные строительные камни, активные минеральные добавки, породы для каменного литья и др.
Каменная соль. Среди неметаллических полезных ископаемых значительную роль играет группа природных минеральных солей, в составе которой наиболее распространенной является каменная соль - осадочная порода химического происхождения, сложенная в основном галитом (до 99%).
Галит (NaCl) кристаллизуется в кубической сингонии, форма кристаллов кубическая, реже октаэдрическая и столбчатая. В плотных массах зерна галита обычно обладают неправильными ограничениями и имеют размеры (от долей до нескольких сантиметров). Твердость его 2, удельная масса 2,3 г/см3. Галит является постоянным компонентом всех соляных пород, образующихся в процессе галогенеза начиная с галитовой стадии и кончая эвтоникой. В трещинах и мелких пустотах несоляных пород он образует прожилки с волокнистым строением. Чистый галит прозрачен и бесцветен, обладает стеклянным блеском. Примеси окрашивают его в различные цвета - серый, желтый, розовый, красный и др.
Применение в промышленности. Около 60-65 % мировой добычи каменной соли используется в пищевой промышленности для разнообразных пищевых целей (засолка рыбы, мяса, растительных продуктов и т. д.). Человек потребляет в год 7-8 кг поваренной соли. Вплоть до ХVII в. в бедных солью странах она ценилась дороже золота. «Об абиссинской горной соли упомянем, - писал в 1763 гг. М. В. Ломоносов, - которая там вместо денег употребляется, так что за три или пять брусков, сделанных наподобие кирпича, холопа купить можно».
Каменная соль находит широкое применение в химической промышленности, где служит исходным материалом для всех соединений, в состав которых входят натрий или хлор. Она перерабатывается на соду, путем электролиза из нее получают газообразный хлор и затем соляную кислоту. Применяется также в анилино- и лакокрасочной промышленности, кожевенном, мыловаренном производстве и др. Используется также в коммунальном хозяйстве.
Общетехнические условия оценки соли поваренной. Общие технические условия оценки соли поваренной выполняются на основе ГОСТа 13830-91. Пищевую поваренную соль подразделяют по способу производства и обработки на каменную, самосадочную, садочную и выварочную соль, с добавками и без добавок; по качеству - на экстра, высший, первый и второй сорта.
Органолептические показатели соли поваренной пищевой должны отвечать следующим требованиям: 1) внешний вид - кристаллически сыпучий продукт без посторонних механических примесей; 2) вкус - соленый без постороннего привкуса; 3) цвет - белый или белый с сероватым, желтым, розоватым и голубоватым оттенками; 4) запах - отсутствует.
Физико-химические показатели соли поваренной пищевой без добавок должны соответствовать нормам, указанным в табл. 2.
Таблица 2
Физико-химические показатели соли пищевой поваренной
без добавок (ГОСТ 13830-91)
Наименование показателя |
Норма для сорта в пересчете |
||||
экстра |
высшего |
первого |
второго |
||
1 |
2 |
3 |
4 |
5 |
|
Массовая доля хлористого натрия, %, не менее |
99,70 |
98,40 |
97,70 |
97,00 |
|
Массовая доля кальций-иона, %, не более |
0,02 |
0,35 |
0,50 |
0,65 |
|
Массовая доля магний-иона, %, не более |
0,01 |
0,05 |
0,10 |
0,25 |
|
Массовая доля сульфат-иона, %, не более |
0,16 |
0,80 |
1,20 |
1,50 |
|
Массовая доля калий-иона, %, не более |
0,02 |
0,10 |
0,10 |
0,20 |
|
Массовая доля оксида железа (III), %, не более |
0,005 |
0,005 |
0,01 |
0,01 |
|
Массовая доля сульфата натрия, %, не более |
0,20 |
Не нормируется |
|||
Массовая доля нерастворимых в воде веществ, %, не более |
0,03 |
0,16 |
0,45 |
0,85 |
|
Массовая доля влаги, %, не более: выварочной соли |
0,10 |
0,70 |
0,70 |
- |
|
каменной соли |
- |
0,25 |
0,25 |
0,25 |
|
самосадочной и садочной соли |
- |
3,20 |
4,00 |
5,00 |
|
рН раствора |
6,5-8,0 |
Не нормируется |
Содержание токсичных элементов (Pb, Cu, Cd, Zn, As, Hg) в соли пищевой поваренной не должно превышать предельно допустимых уровней (ПДК), установленных «Медико-биологическими требованиями и санитарными нормами качества продовольственного сырья и пищевых продуктов».
Геолого-промышленные типы месторождений. Все промышленные месторождения минеральных солей относятся к химическим, образовавшимся из истинных растворов. Среди них выделяют: 1) ископаемые или древние; 2) современные месторождения. Неисчерпаемым резервом солей следует также рассматривать морскую воду. Ископаемые месторождения солей образовались в прошлые геологические эпохи и, как правило, погребены под толщей молодых отложений. Они представлены как твердыми солями (галит), так и рассолами. Основные формы залегания соляных тел: пласты, линзы, купола, штоки. В районах интенсивного проявления соляного тектогенеза вершины соляных куполов нередко выходят на земную поверхность (месторождения каменной соли в Северной Африке, в Закарпатье и др.).
Месторождения подземных соляных вод и рассолов образуются в результате растворения ископаемых залежной каменной соли подземными водами. По условиям залегания они могут быть пластовыми, трещинными и трещинно-карстовыми, по химическому составу - чаще всего хлориднонатриевыми.
Современные соляные месторождения представляют собой разнообразные соляные озера или лиманы с концентрацией солей в воде более 3,5 % и наличием в донных отложениях залежей каменной соли.
Условия образования. Промышленные месторождения каменной соли (ископаемые залежи) образовались из морской воды в процессе ее испарения в полуизолированных бассейнах (лагуны, заливы и т. д.) и в усыхающих реликтовых озерах. Процесс образования солей называется галогенезом. Еще в 1855 г. в вышедшем учебнике «Физическая и химическая геология» Г. Бишоф, развивая идеи М. В. Ломоносова, утверждал, что образование солей могло осуществляться только в водоемах на поверхности Земли в аридной зоне, где в результате испарения сначала выпадали менее, а затем более растворимые соли. Теория галогенеза в дальнейшем наиболее полное развитие получила в трудах советских геологов (В. И. Николаева, П. И. Преображенского, Н. М. Страха, М. Г. Валяшко и др.)
Глобальные закономерности распространения. Соленосные отложения, с которыми связаны залежи ископаемых солей, имеют исключительно широкое распространение на древних платформах и зонах сочленения их со складчатыми областями. Особенно широко они развиты в Северной Америке и Евразии. Стратиграфически соленосные отложения связаны с отложениями всех геологических систем. Максимумами соленакопления выделяются кембрий, пермь, триас, юра и неоген.
Геология месторождений каменной соли. В мире крупнейшие месторождения каменной соли сосредеточены в США, Китае, Германии и в странах Северной Африки (Марокко, Алжир, Тунис). Странами-лидерами по добыче и производству поваренной соли являются Китай и США. В СНГ по запасам и добыче этого вида минерального сырья лидирующие позиции занимает Украина.
Славянско-Артемовская группа месторождений каменной соли расположена в Донецкой области и приурочена к Бахмутской котловине. Размеры ее 45 х 35 км. Залежи каменной соли связаны с нижнепермскими отложениями. В разрезе перми здесь выделяются четыре свиты (снизу вверх): 1) картамышская (свита медистых песчаников); 2) никитовская; 3) славянская; 4) краматорская.
Промышленный интерес представляют три пласта каменной соли в разрезе славянской свиты (подбрянцевский, брянцевский и надбрянцевский пласты). Мощность пластов каменной соли составляет 22-45 м. Залегают они на глубине 220-550 м от земной поверхности. Качество каменной соли удовлетворительное. Среднее содержание основных компонентов составляет (%): в надбрянцевском пласте - NaCl 98,2, Н.О. 0,36, Са2+ 0,44 Mg2+ 0,03, SO42- 1,02; в брянцевском - Na Cl 97,7, Н.О. 0,32, Са2+ 0,68, Mg2+ 0,03, SO42- 1,64. Месторождения разрабатываются ПО «Артемсоль» шахтным способом.
Месторождения каменной соли Беларуси. Разведаны три месторождения каменной соли: Давыдовское, Мозырское и Старобинское. Давыдовское месторождение открыто в 1941 г. Утвержденные запасы каменной соли составляют по категориям: А - 267,6 млн т, В - 324,9 млн т и С1 - 20 087,6 млн т. Запасы этого месторождения относятся к неактивным, т. е. имеющим минимальную вероятность быть востребованными в обозримой перспективе.
Мозырское месторождение приурочено к субширотной антиклинальной структуре, вытянутой на 10 км. Соленосный разрез представлен сильно дислоцированными отложениями галитовой подтолщи (D32fm). Запасы каменной соли этого месторождения, утвержденные ГКЗ СССР, составляли 588,9 млн т по категории С1. Месторождение эксплуатируется методом подземного растворения через скважины с земной поверхности ступенями снизу вверх. Предельная глубина отработки - 1500 м, ежегодное производство пищевой поваренной соли «Экстра» составляет 180 - 355 тыс т.
При разведке калийных солей Старобинского месторождения было выделено и изучено 6 пластов каменной соли мощностью 4-28 м, залегающих в интервале глубин 631,5-844,0 м. В настоящее время на шахтном поле 1 рудоуправления РУП ПО «Беларуськалий» разрабатывается пласт - 305 м, залегающий ниже II калийного горизонта. Каменная соль соответствует 1-2-му пищевым сортам. Ежегодные объемы производства каменной соли (пищевая, кормовая и техническая) составляют 300-550 тыс. т.
Лекция 7. КАЛИЙНЫЕ И КАЛИЙНО-МАГНИЕВЫЕ СОЛИ
Основным элементом калийных и калийно-магниевых солей является калий. Калий впервые был выделен в 1807 г. химиком Г. Дэви, который назвал его «потассий». Название «калий» (от арабского аль-кали, что значит - поташ) предложил Л. Гильберт. Углубленное изучение калия и калийных соединений началось в 40-х гг. XIX в. Особый интерес к калию появился после обоснования важной роли этого элемента в питании растений и необходимости внесения его в почву для повышения урожайности сельскохозяйственных культур. В 1840 г. вышла книга Юстуса Либиха «Химия в приложении к земледелию». В ней были сформулированы основные положения новой теории минерального питания растений, в которой обосновывалось положение о том, что главные питательные вещества растения получают за счет неорганических соединений.
Минералогия и геохимия. Калий - один из весьма распространенных элементов в земной коре. Кларк калия - 2,6 вес.%. Различают три большие группы калийсодержащих минералов: 1) алюмосиликатная; 2) сульфатная; 3) галогенная. Наибольшее практическое значение представляют минералы сульфатной и галогенной групп.
Галогенная группа калийных минералов выделяется по присутствию галогенных элементов - хлора или фтора. Среди них бывают чисто калийно-хлоридные, например минерал сильвин (KCl), либо в них присутствуют также магний или кальций, реже железо, марганец и медь. В залежах калийных солей наряду с сильвином широко распространен калийно-магниево-хлоридный минерал - карналлит (KCl . MgCl2 . 6H2O). В составе галогенной группы имеются смешанные минералы: хлоридно-сульфатный калийный минерал - каинит (KCl . MgSO4 . 3H2O) и хлоридно-сульфатно-содовый минерал - ганксит (KCl . 2Na2CO3 . 9Na2SО4).
Сульфатная группа калийных минералов характеризуется присутствием сульфат-иона (SO42-). Среди них различают легко растворимые в воде минералы: калийно-натриево-сульфатные - глазерит (3K2SO4 . Na2SO4); калийно-магниево-сульфатные - лангбейнит (K2SO4 2MgSO4), леонит (K2SO4. MgSO4. 4H2O), шенит (K2SO4 . MgSO4 . 6H2O); калийно-кальциево-сульфатные - сингенит (K2SO4. CaSO4 . H2O) и гергеит (K2SO4. 5CaSO4. H2O). К малорастворимым относится калийно-магниево-кальциево-сульфатный минерал полигалит (K2SO4. CaSO4. MgSO4. 2H2O).
Применение в промышленности. Основным потребителем калийных и калийно-магниевых солей является туковая промышленность: свыше 90 % их добычи идет на производство различных удобрений и лишь 10 % в химическую промышленность. Производятся калийные удобрения с содержанием хлористого калия от 25-40 до 80-95 %. Вырабатываются и сложные калийсодержащие удобрения: «нитрофоска», содержащая азот, фосфор и калий, «потазот», представляющий смесь хлористого калия и хлористого аммония и др. На мировой рынок поступают также сульфатно-магневые калийные удобрения, важнейшим компонентом которых является К2SO4.
Химическая промышленность выпускает свыше 30 различных веществ, в которых основной составляющей является калий. Главнейшие из них: каустический калий, хлористый калий, поташ (углекислый калий), сернокислый калий, калиевая селитра, бертолетовая соль, цианистый калий, бромистый калий, йодистый калий и др. Соединения калия находят применение в фармацевтической, лакокрасочной, стекольной, кожевенной и шерстяной промышленности, а также в медицине, пиротехнике, электрометаллургии и т. д.
Металлический магний, извлекаемый из карналлита, применяется в составе различных сплавов, используемых в авиационной, автомобильной, металлургической и других отраслях промышленности.
Первой страной, в которой возникла калийная промышленность, была Германия. В 1861 г. в Стасфурте начала работать первая в мире фабрика по переработке карналлитовой породы на хлористый калий. В 1916 г. США приступили к производству хлористого калия из рассолов озера Серлз в Калифорнии. Добыча калийных солей в мире неизменно возрастала. Так, в капиталистических странах за период 1901-1968 гг. было добыто 197 млн т калийных солей (в пересчете на К2О). Мировое производство калийных удобрений (в пересчете на К2О) составило в 1960 г. - 9,9 млн т, 1970 г. - 17,6, 1995 г. - 24,3 млн т. В настоящее время лидирующее положение по добыче калийных солей и производству калийных удобрений занимают Канада, Германия, Беларусь и Россия, обеспечивающие около 70 % мирового производства.
Исходные данные для оценки месторождений калийных солей. Экономическую эффективность разработки месторождений определяют следующие горно-геологические параметры: 1) запасы калийных руд; 2) содержание хлористого калия в руде; 3) содержание глинистой примеси (нерастворимого в воде остатка - Н.О.); 4) устойчивость вмещающих пород; 5) глубина залегания продуктивных пластов; 6) мощность продуктивных пластов; 7) условия залегания и особенности строения соленосной толщи.
По запасам полезного ископаемого калийные месторождения разделяются на весьма крупные (с разведанными запасами К2 О более 1000 млн т), крупные (300-1000 млн т) и мелкие (менее 100 млн т).
Содержание полезного компонента в промышленных рудах хлоридного типа разных месторождений варьирует от 11 % К2О (Германия) до 25-27 % (Саскачеванское месторождение в Канаде). Для сульфатных и хлоридно-сульфатных солей характерны значительно более низкие содержания полезного компонента - 8-13 % К2О (нижний предел свойственен для полигалитовых руд Жилянского месторождения, верхний - для каинитовых руд на о. Сицилия). Сульфатные и хлоридно-сульфатные руды Предкарпатья содержат в среднем 9-10 % К2О.
Вредными примесями в калийных солях являются MgCl2 и Н.О. При содержании в рудах MgCl2 более 1,5 % и Н.О. свыше 3 % в технологические схемы обогащения калийных солей вводятся дополнительные операции по освобождению сырья от указанных компонентов. Руды с наиболее высоким содержанием Н.О. (до 20 %) эксплуатируются на Эльзасском месторождении во Франции. В СНГ добывают руды с содержанием Н.О. 1,6-7,2 %.
Устойчивость кровли является достаточно надежной при содержании в ней менее 5 % глинистых и глинисто-карбонатных пород. При содержании несоляных пород более 5 % (глинистая кровля) создаются менее благоприятные условия разработки.
Предельная глубина эксплуатации месторождений калийных солей шахтным способом составляет 1200 м. Методом подземного растворения через скважины с земной поверхности калийные соли добываются на глубине 1 585-2 000 м (Канада и США).
Геолого-промышленные типы месторождений. Калийные месторождения по составу солей подразделяют на три типа - хлоридный (бессульфатный), сульфатно-хлоридный и сульфатный. Наиболее широко распространены месторождения хлоридного типа (Старобинское, Верхнекамское, Саскачеванское, Эльзасское, Непское и др.). Это, как правило, весьма крупные и крупные месторождения. Месторождения сульфатного типа имеются в Предкарпатском прогибе (Калуш-Голынское, Стебникское), на о. Сицилия и др. Состав руд этих месторождений преимущественно каинитовый, по масштабам запасов они мелкие, редко - средние.
В зависимости от сложности геологического строения калийные месторождения также подразделяют на три группы. К первой группе относят месторождения, представленные пластовыми залежами протяженностью в десятки километров, выдержанные по мощности и качеству солей (Верхнекамское месторождение в Пермской области, Старобинское в Беларуси и др.).
Во вторую группу включены месторождения, состоящие из чередующихся линзообразных залежей солей различного состава, характеризующихся изменчивой мощностью и сравнительно выдержанным качеством солей в пределах отдельных линз (Стебникское, Калуш-Голынское месторождения Украины, месторождения миоценового возраста Румынии и о. Сицилия).
К третьей группе отнесены месторождения, приуроченные к солянокупольным структурам и представленные залежами с резко изменчивой морфологией и исключительно не выдержанным распределением полезных компонентов и вредных примесей (Индерское и Эльтонское месторождения в Прикаспийской впадине).
Условия образования. Калийные породы сульфатной и галогенной групп образуются осадочным путем в основном из морских вод или их дериватов. Они формировались в солеродных бассейнах при интенсивном проявлении испарительных процессов. Калийные минералы начинали кристаллизоваться при концентрации солей в водах 33-34 % и более.
Калий, который участвует в составе соляных минералов сульфатной и галогенной групп, прошел большой и сложный путь. Сначала он был вынесен из недр Земли с магматическими алюмосиликатными породами, затем при их выветривании и разложении в зоне гипергенеза либо сразу поступил в воды морей, либо с поверхностными водами в растворенном состоянии был привнесен в океаны.
Калийные минералы сульфатной ветви осаждались из морских вод, а хлоридной (сильвин и карналлит) - из метаморфизованных вод, для которых характерна потеря сульфат-иона и эквивалентного ему количества иона магния. Метаморфизация - труднообратимый процесс, который осуществлялся в результате поступления бикарбоната кальция, привноса ветром и континентальными водами глинистого материала, бактериальной сульфатредукции, разгрузки подземных вод хлоркальциевого состава и др.
Основные закономерности распространения. Калийные соли крайне неравномерно распространены в различных регионах земного шара. В Европе расположены крупные калиеносные бассейны: Припятский, Верхнекамский, Верхнепечорский, Днепровско-Донецкий, Прикаспийский, Среднеевропейский, Каталонский, Предкарпатсткий, Сицилийский. Крупные бассейны имеются в Северной Америке: Эльк-Пойнт и Фанди (оба в Канаде), Пермский бассейн и Парадокс в США. В Южной Америке известны два бассейна - Сержипи-Алагоас и Амазонский (оба в Бразилии), в Африке - три (Габонско-Конголезский, Северо-Африканский и Данакильский), в Азии - пять (Восточно-Сибирский, Среднеазиатский, Корат, Сакон Након и бассейн Соляной кряж).
Стратиграфически основные объемы калийных солей связаны с соленосными формациями, образовавшимися в кембрии, девоне и перми. Выделяется шестнадцать этапов калиенакопления: 1) вендский, 2) раннекембрийский, 3) позднесилурийский, 4) среднедевонский, 5) позднедевонский, 6) раннекаменноугольный, 7) среднекаменноугольный, 8) раннепермский, 9) позднепермский, 10) позднетриасовый, 11) позднеюрский, 12) раннемеловой, 13) позднемеловой, 14) эоцен-олигоценовый, 15) миоценовый, 16) плиоцен-четвертичный.
Геотектоническая позиция калиеносных бассейнов достаточно разнообразна: палеозойские связаны в основном с платформенными рифтовыми зонами, краевыми прогибами; мезозойские - с континентальными рифтовыми зонами, отрицательными структурами, заложенными на эпипалеозойских платформах, реже с краевыми прогибами; кайнозойские - преимущественно с межгорными впадинами, краевыми прогибами и рифтовыми зонами континентов.
Ресурсы и запасы. Мировые прогнозные ресурсы калийных солей оцениваются в 250 млрд т. Большая часть их сосредоточена в России, Канаде, Беларуси, США и Германии. Общие запасы калийных солей в мире оцениваются примерно в 40 млрд т, подтвержденные - в 8,4 млрд т. Основными странами-держателями как общих, так и подтвержденных запасов являются Россия, Канада, Беларусь и Германия (табл. 3).
Таблица 3
Запасы калийных солей (млн т в пересчете на К2О) и среднее содержание К2О в рудах, % [8]
Страна, часть света |
Запасы общие |
Запасы подтвержденные |
Их % от мира |
Среднее содержание |
|
1 |
2 |
3 |
4 |
5 |
|
Россия |
19118 |
3658 |
31,4 |
17,8 |
|
Европа |
3296 |
2178 |
18,5 |
- |
|
Беларусь |
1568 |
1073 |
9,1 |
16 |
|
Великобритания |
30 |
23 |
0,2 |
14 |
|
Германия |
1200 |
730 |
6,2 |
14 |
|
Испания |
40 |
20 |
0,2 |
13 |
|
Италия |
40 |
20 |
0,2 |
11 |
|
Польша |
10 |
10 |
0,1 |
12 |
|
Украина |
375 |
292 |
2,5 |
11 |
|
Франция |
33 |
10 |
0,1 |
15 |
|
Азия |
2780 |
1263 |
10,8 |
- |
|
Израиль |
600 |
44 |
0,4 |
1,4 |
|
Иордания |
600 |
44 |
0,4 |
1,4 |
|
Казахстан |
102 |
54 |
0,5 |
8 |
|
Китай |
320 |
320 |
2,7 |
12 |
|
Таиланд |
150 |
75 |
0,6 |
2,5 |
|
Туркменистан |
850 |
633 |
5,4 |
11 |
|
Узбекистан |
159 |
94 |
0,8 |
12 |
|
Африка |
179 |
71 |
0,6 |
- |
|
Конго |
40 |
10 |
0,1 |
15 |
|
Тунис |
34 |
19 |
0,2 |
1,5 |
|
Эфиопия |
105 |
42 |
0,4 |
25 |
|
Америка |
14915 |
4548 |
38,7 |
- |
|
Аргентина |
20 |
15 |
0,1 |
12 |
|
Бразилия |
160 |
50 |
0,4 |
15 |
|
Канада |
14500 |
4400 |
37,5 |
23 |
|
Мексика |
10 |
- |
0 |
12 |
|
США |
175 |
73 |
0,6 |
12 |
|
Чили |
50 |
10 |
0,1 |
3 |
|
Итого: |
40288 |
11744 |
100 |
- |
месторождение угольный сырье графит
Геология месторождений калийных солей. Крупнейшими в мире месторождениями калийных и калийно-магниевых солей являются Саскачеванское (Канада) и Верхнекамское (Россия).
Саскачеванское месторождение расположено в бассейне Эльк Пойнт, который находится в западной части Канады, прослеживаясь частично на территории США. В тектоническом отношении он приурочен к западному склону Североамериканской платформы. Калиеносными являются отложения среднего девона - формация Прери Эвапорайт. Мощность этой формации колеблется от 15 до 220 м. В верхней части разреза формации Прери Эвапорайт выделяются три калийных горизонта (снизу вверх): Эстерхази, Белл Плейн и Пейшенс Лейк. Мощность их варьирует от нескольких метров до 24,5 м. Калийные соли представлены сильвином и карналлитом. Эти минералы встречаются как раздельно, так и в тесной ассоциации друг с другом, образуя совместно с галитом породы смешанного состава. Калийные породы по внешнему виду бледно-окрашенные (светло-оранжевые, бледно-розовые, бесцветные, местами пестроцветные за счет синего галита), характеризуются низким содержанием Н. О. (1-3 %) и высоким содержанием полезного компонента (К2О более 18 %). По оценке канадских геологов общие запасы калийных солей составляют 16-50 млрд т.
Калийные руды разрабатываются в районе между городами Эстерхази и Роканвилл, где эксплуатируется горизонт Эстерхази, и в районе городов Саскатун, Аллан и Ланиган (разрабатываются горизонты Белл Плейн и Пейшенс Лейк). Калийные горизонты эксплуатируются шахтным способом на глубине 1000-1200 м. Функционируют 10 крупных рудников. Компания «Kalium Chemical Ltd.» осуществляет разработку калийных солей в районе г. Реджайна на глубине 1585-1600 м методом подземного растворения через скважины с земной поверхности.
Верхнекамское месторождение расположено в Соликамской впадине, представляющей одну из отрицательных структур в системе Предуральского прогиба. Калиеносные отложения (Р1 кg) распространены на площади около 3,5 тыс км2. Они относятся к бессульфатному типу и представлены сильвинитом и карналлитовой породой. В калиеносной части разреза выделяются сильвинитовая и сильвинит-карналлитовая зоны.
Сильвинитовая зона (средняя мощность 21 м) представлена калийными пластами (сверху вниз): А, Кр. I, Kp. II и Кр III. Все калийные слои, за исключением А, представлены красными слоистыми сильвинитами со слоями и прослоями каменной соли. В пласте полосчатого сильвинита А преобладают бледные и розовые разновидности сильвинита.
Сильвинит-карналлитовая зона мощностью 30-45 м расчленяется на две пачки: нижнюю карналлитовую (пласты от Б до Е) и верхнюю карналлит-галитовую (пласты (Ж-К). Калийные соли этой зоны на одних участках представлены карналлитовой породой, на других - пестрым сильвинитом.
Внутренняя тектоника сильвинитной зоны относительно сложная: калийные пласты образуют складки с линейно-слоистой текстурой в синклиналях и сложно-складчатым строением в ядрах антиклиналей. Геологические запасы месторождения огромны и оцениваются по карналлитовой породе в 96,4 млрд т, по сильвинитам - 113,2 млрд т, по каменной соли - 4 650 млрд т. Разрабатываются два крупных участка - Березниковский (на юге месторождения) и Соликамский (на севере). В настоящее время функционируют шесть рудников (СПКРУ-1 - СПКРУ-3, БПКРУ-1, БПКРУ-2 и БПКРУ-4).
Подобные документы
Характеристика месторождений (Таштагольского железорудного, Пуштулимского мраморного) и Кузнецкого угольного бассейна. Условия образования осадочных месторождений, их виды, форма тел, минеральный состав. Общие сведения о твердых горючих ископаемых.
контрольная работа [20,5 K], добавлен 15.03.2010Современные теории происхождения горючих ископаемых, общие сведения о них, принципы добычи и используемое при этом оборудование. Разведка угольных месторождений и добыча угля. Приоритетные направления развития топливно-энергетического комплекса.
шпаргалка [1,2 M], добавлен 12.05.2014Промышленная классификация месторождений полезных ископаемых. Приёмы оконтуривания тел полезных ископаемых. Управление качеством руды. Методы подсчёта запасов месторождений полезных ископаемых. Оценка точности подсчета запасов, формы учета их движения.
реферат [25,0 K], добавлен 19.12.2011Изучение закономерностей образования и геологических условий формирования и размещения полезных ископаемых. Характеристика генетических типов месторождений полезных ископаемых: магматические, карбонатитовые, пегматитовые, альбитит-грейзеновые, скарновые.
курс лекций [850,2 K], добавлен 01.06.2010Состав, условия залегания рудных тел. Формы полезных ископаемых. Жидкие: нефть, минеральные воды. Твердые: угли ископаемые, горючие сланцы, мрамор. Газовые: гелий, метан, горючие газы. Месторождения полезных ископаемых: магматогенные, седиментогенные.
презентация [7,2 M], добавлен 11.02.2015Общие сведения о рудных и нерудных полезных ископаемых, расположение месторождений Краснодарского края, использование в отраслях промышленности в масштабах страны. Добыча нефти, газа и торфа. Перспективы дальнейшего поиска полезных ископаемых в регионе.
презентация [9,3 M], добавлен 21.09.2011История разработки месторождений полезных ископаемых и состояние на современном этапе. Общая экономическая цель при открытой разработке. Понятия и методы обогащения полезных ископаемых. Эффективное и комплексное использование минерального сырья.
курсовая работа [76,0 K], добавлен 24.11.2012Месторождения неметаллических полезных ископаемых в Приднестровье. Содержание, химический состав, глубина залегания сырья. Запасы подземных пресных и минеральных вод в республике. Разработка месторождений песчано-гравийных пород и пильного известняка.
реферат [27,9 K], добавлен 12.06.2011Процесс контактового метасоматоза, приводящий к образованию скарновых месторождений рудных и нерудных полезных ископаемых. Метасоматический процесс и условия залегания скарнов. Морфология, вещественный состав, строение месторождения полезных ископаемых.
реферат [25,4 K], добавлен 25.03.2015Поисковые работы как процесс прогнозирования, выявления и перспективной оценки новых месторождений полезных ископаемых, заслуживающих разведки. Поля и аномалии как современная основа поисков полезных ископаемых. Проблема изучения полей и аномалий.
презентация [1,0 M], добавлен 19.12.2013