Месторождения горючих и неметаллических полезных ископаемых

Геология угольных месторождений. Общие сведения о неметаллических полезных ископаемых. Месторождения фосфоритов Беларуси. Общие сведения об индустриальном сырье. Минералогия и физические свойства графита. Генетические типы промышленных месторождений.

Рубрика Геология, гидрология и геодезия
Вид курс лекций
Язык русский
Дата добавления 02.04.2019
Размер файла 224,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Классификация угленосных бассейнов. Первая классификация угленосных бассейнов была разработана более 100 лет тому назад и основывалась на признаках фациального состава угленосных толщ. В соответствии с этой классификацией выделялись бассейны двух типов: паралический (прибрежный) и лимнический (озерный).

Широкое признание и практическое применение получила классификация угольных бассейнов, разработанная Г. А. Ивановым еще в 1930-е гг. Согласно этой классификации по характеру тектонических движений бассейны разделены на три типа: геосинклинальный, переходный и платформенный.

Бассейны геосинклинального типа характеризуются большой мощностью угленосных отложений (до 10-15 км), частым переслаиванием пород различного состава, значительным числом пластов каменного угля (до 100-150 и более), выдержанностью их по латерали, а также отчетливо выраженной линейной складчатостью и интенсивным проявлением разломной тектоники. В таких бассейнах обычно наблюдается зональность метаморфизма углей по вертикали (правило Хильта - Скока) и по площади.

Бассейны платформенного типа. Мощность угленосной толщи невелика - редко до первых сотен метров. Фациальный состав угленосной толщи почти исключительно наземно-континентальный. Образование углей происходит в озерно-болотных условиях. В разрезе угленосной толщи характерно преобладание песчаных пород над глинистыми. Пласты угля не выдержаны по мощности: они выклиниваются и расщепляются на коротких расстояниях. Химический состав их также непостоянен, особенно по содержанию золы. Залегание угленосных отложений горизонтальное или слабонаклонное.

Бассейны переходного типа. Они как бы совмещают в себе черты двух вышеуказанных типов. В таких бассейнах наблюдаются промежуточные значения мощности угленосной толщи и пластов угля, а также их количество и степень выдержанности по сравнению с бассейнами геосинклинального и платформенного типов. Нередко отмечается смена типов углеобразования: формирование углей некоторых бассейнов иногда начиналось в одних условиях, а затем в связи с изменившейся палеогеографической обстановкой заканчивалось в других. К этому типу относится большинство пермских, мезозойский и кайнозойских бассейнов.

Предлагавшиеся позже советскими геологами классификации угольных бассейнов (Ю. А. Жемчужников, П. В. Васильев, Г. Ф. Крашенинников, А. К. Матвеев и др.) строились, как правило, также на тектонической основе, но в большинстве случаев количество типов бассейнов сводилось к увеличению их числа (до 16 и более).

Газы угольных месторождений. Современный газ в угленосных толщах состоит как из газа, оставшегося частично от торфяной стадии, так и из газа, образовавшегося в условиях погружения пластов углей и перекрытия их надугольной осадочной толщей. В составе газов угольных месторождений присутствуют метан, углекислый газ, азот, водород, тяжелые углеводороды и др.

Метан. Он является основным среди газов угольных месторождений (от 60 до 98 %). Образуется главным образом при биохимических процессах разложения растительного вещества. Из 1 т растительных остатков, содержащих целлюлозу, выделяется до 230-465 м3 метана. Основное и наиболее опасное его свойство - образование с воздухом при соответствующих соотношениях взрывчатой смеси. Смесь с содержанием метана 0-5 % сгорает без взрыва, при содержании его от 5-6 до 14-16 % смесь, соприкасаясь с пламенем, дает взрыв. Наибольшая сила взрыва наблюдается при 9,3 % метана в рудничном воздухе.

Углекислый газ. Содержание его в газах угольных месторождений достигает иногда 25 %. Образуется в результате превращения растительного вещества при углеобразовании. Несмотря на его большую растворимость в воде, все же при определенных геологических условиях углекислый газ мог сохраниться и накопиться в значительных объемах в угленосных толщах. Кроме того, он частично обязан своим генезисом процессам сорбции атмосферного кислорода с окислением углерода до углекислого газа, а также привносу его циркулирующими водами из верхних горизонтов биосферы. Поступление этого газа в угленосную толщу в определенных бассейнах (Донецкий, Кузнецкий и др.) может быть связано с магматическими процессами.

Азот. В угольных месторождениях он имеет в основном воздушное происхождение за счет привноса его в растворенном состоянии подземными водами. Частично азот мог образоваться в результате биохимических процессов. Показателем происхождения азота может служить отношение аргона к азоту в газе из углей к такому же отношению их в воздухе. Азот не имеет цвета, запаха и вкуса, инертен, не поддерживает горение. Он ослабляет взрывчатость метана.

Присутствие газа в угленосных толщах значительно осложняет подземную разработку месторождений. Несоблюдение техники безопасности горных работ приводит к серьезным авариям. Так, за последние 5-10 лет произошли крупные аварии на шахтах Донбасса и Кузбасса, приведшие к гибели людей.

Основные закономерности распространения углей на Земле. Распространение углей на земном шаре подчинено закономерностям его геологического развития и может быть отражено как в количественном выражении, так и в геолого-географическом плане. Основанные на сочетании этих двух критериев закономерности распространения углей впервые были установлены П. И. Степановым, выделившим в 1939 г. площади преобладающего в каждом геологическом периоде угленакопления, а для карбона - протягивающийся через Евразию и Северную Америку в широтном направлении так называемый «карбоновый пояс». В 1960 г. Н. М. Страхов установил распространение на земном шаре благоприятных для углеобразования гумидных зон.

Угли, как бурые, так и каменные, развиты во всех геологических системах, начиная с девона, и на всех континентах. Они занимают большую площадь, особенно в странах на долю которых приходится более 75 % его запасов: в России, США и Китае. В распределении этих запасов по бассейнам наблюдается резкая диспропорция. Выделяется семь бассейнов-гигантов с запасами более 500 млрд т. Это - Тунгусский, Ленский, Таймырский, Канско-Ачинский, Кузнецкий, Алта-Амазона и Аппалачский. Далее следуют четыре бассейна с запасами угля 200-500 млрд т (Донецкий, Печорский, Нижнерейнско-Вестфальский и Иллинойс). Преобладающее большинство бассейнов и самостоятельных месторождений обладает запасами менее 0,5 млн т.

Стратиграфические закономерности. Впервые стратиграфические закономерности распределения углей в осадочной оболочке Земли были установлены П. И. Степановым. Он выделил три максимума углеобразования: поздний карбон-пермь (1), юра (II), поздний мел-неоген (III) и три минимума, совпадающие с ранним карбоном (I), триасом (II) и поздним мелом (III). Полученные во второй половине ХХ в. новые данные свидетельствуют о том, что стратиграфическое распределение углей в осадочной оболочке несколько иное, чем представлялось, в частности, П. И. Степанову. Так, по новым данным, выделяются три максимума углеобразования: пермь (26,8 % мировых ресурсов угля), карбон (20,5 %) и мел (20,5 %).

Тектонические закономерности. Сопоставление размещений угольных бассейнов с положением основных геотектонических элементов земного шара указывает на ведущее влияние структурно-тектонического фактора не только на пространственное положение бассейнов, но и на сложность их геологического строения. Палеозойские угленосные бассейны, по Г. Ф. Крашенинникову, в тектоническом отношении принадлежат главным образом к краевым и внутренним прогибам геосинклинальных областей. В них обычно развиты толщи паралического характера. Типичные примеры - Донецкий и Печорский бассейны. Нижне- и среднемезозойские угленосные бассейны, как правило, приурочены к межгорным тектоническим впадинам (восточный склон Урала, месторождения Киргизии и др.). Формы залегания углей - линзовидные, сложно построенные залежи, достигающие значительной мощности. В кайнозое, за исключением альпийской зоны складчатости, углеобразование происходило в платформенных условиях.

Ресурсы, запасы, добыча

Ресурсы. Мировые прогнозные ресурсы угля до настоящего времени полностью не учтены, а оценки их весьма противоречивы. По оценке ГНПП «Аэрогеология» (1998), ресурсы угля в мире составляют около 32,5 трлн т. На суше прогнозные ресурсы достигают 24,5 трлн т (в том числе бурых углей - 8,44 трлн т). Наиболее крупными прогнозными ресурсами угля обладают следующие страны (трлн т, в скобках бурый уголь): Китай - 6,5 (1,44), Россия - 4,45 (1,32), США - 3,6 (2,31), Австралия - 1,5, Канада - 0,58, Великобритания - 0,38.

Запасы. Запасы подтвержденные (промышленные) углей всех типов (УВТ) в мире составляют 1 747,2 млрд т, в том числе углей каменных (УК) - 1353,4 млрд т, углей бурых (УБ) - 393,8 млрд т. Крупнейшими запасами углей обладают следующие страны (млрд т): США УВТ - 444,8, УК - 403,9, УБ - 40,9; Китай УВТ 296,0, УК - 257,5, УБ - 38,5; Россия УВТ - 200,6, УК - 97,5, УБ - 103,1; ЮАР УВТ - 115,5, УК - 115,5; Австралия УТВ - 114,0, УК - 68,0, УБ - 46,0; Германия УВТ - 105,5, УК - 44,0, УБ - 61,5; Канада УВТ - 77,3, УК - 71,0, УБ - 6,3; Великобритания УВТ - 45,4, УК - 45, УБ - 0,4.

Добыча. Мировая добыча углей всех типов в 1993 - 2000 гг. составляла 4,5-4,9 млрд т, в том числе бурых углей - 0,9-1,0 млрд т. Странами-лидерами по добыче углей являются Китай и США. В 1996 г. добыча (в млрд т) составила в Китае УВТ - 1,35, в том числе УК - 1,30, УБ - 0,05; в США - УВТ - 1,04, УК - 0,96, УБ - 0,08. В Индии, Австралии, России, Германии, ЮАР и Польше добыча углей всех типов составляет в пределах 200-300 млн т.

В Китае одним из приоритетных проектов является освоение месторождений Шеньфу-Доншен (провинция Шаньси). Планируется строительство новых шахт в восточных и центральных районах Китая (провинции Шаньдун и Аньхой). В США в 1995-2000 гг. добыча угля производилась на 1018 углеразрезах и 885 подземных шахтах в 26 штатах. Наиболее значительная добыча осуществлялась в штатах Вайоминг (около 250 млн т), Западная Виргиния (155 млн т) и Кентукки (135-140 млн т).

Углепроявления и месторождения угля в Беларуси. Углепроявления в Беларуси связаны с отложением нижнего и среднего карбона, средней юры и неогена. Территориально они приурочены в основном к двум крупным отрицательным структурам - Припятскому прогибу и Подлясско-Брестской впадине. Наиболее широкое распространение углепроявления имеют в кайнозойских отложениях: кроме двух вышеотмеченных структур, они выявлены также в пределах Полесской, Жлобинской, Брагинско-Лоевской седловин и на южных склонах Белорусской антеклизы. В юго-западной части Припятского прогиба разведаны два месторождения бурых углей - Житковичское и Бриневское.

Житковичское месторождение расположено в Гомельской области и в тектоническом отношении приурочено к зоне сочленения Туровской депрессии и Микашевичско-Житковичского выступа кристаллического фундамента. Угленосными являются олигоцен-миоценовые континентальные терригенные отложения. На месторождении выделяются четыре разобщенные залежи бурого угля. Форма залежей линзовидная, мощность от 0,3 до 15,6 м, средняя глубина залегания 21,2-44,4 м. По качеству угли Житковичского месторождения гумусовые, низкой степени метаморфизма, относятся к бурым углям Б1. Запасы угля по категориям А+Б+С1 составляют 69,1 млн т и по категории С2 - 1,9 млн т.

Бриневское месторождение находится в Петриковском районе Гомельской области. Мощность угленосной толщи колеблется от 6,2 до 47,9 м, коэффициент угленасыщенности в среднем составляет 25-30 %. Развита одна залежь угля мощностью от 0,4 до 19,9 м, глубина залегания 39,7-82,8 м. По данным предварительной разведки, балансовые запасы углей оценены в 38 млн т. По качеству угли относятся к гумусовым марки Б1. Теплота сгорания на сухой уголь составляет 10,88-20,13 МДж/кг, зольность - 20,1-31,7 %, выход летучих веществ на горючую массу - 52,0-60,1 %, содержание серы - 0,6-1,4 %. По условиям залегания угольная залежь Бриневского месторождения пригодна для разработки карьерным способом.

Лекция 5. ГОРЮЧИЕ СЛАНЦЫ

Горючие сланцы - это карбонатно-глинистые, глинистые, известковые или кремнистые породы с содержанием 10 % и более керогена, обладающие способностью загораться от спички, издавая при этом специфический запах горящей резины. В отличие от битумов, которые эпигенетически пропитывают песчаные породы, битумы в собственно горючих сланцах сингенетичны вмещающим породам. Содержащееся в горючих сланцах ОВ низших растений в процессе преобразования сохраняет иногда их клеточное строение, образуя так называемые талломоальгиниты, или же теряет его, переходя в коллоидоподобную массу - коллоальгиниты. В горючих сланцах нередко содержатся гумусовые компоненты преимущественно в диспергированном виде.

Условия образования сланценосных формаций. Горючие сланцы являются чисто водными образованиями. В отличие от угленосных толщ, формирующихся в основном в условиях влажного климата, при образовании горючих сланцев климат не играет решающей роли.

Фациальные условия образования горючих сланцев определяются в основном двумя факторами - накоплением в осадках достаточного количества ОВ и наличием восстановительной среды, обеспечивающей сохранность (не окисление) в илах отмерших растительных организмов с последующим их превращением в кероген. Горючие сланцы образуются в разнообразных условиях: 1) открытые морские бассейны во время медленных региональных трансгрессий; 2) лагуны и большие лиманы; 3) пресноводные озера - от небольших водоемов до обширных внутриконтинентальных или межгорных бассейнов (например, эоценовые сланцы формации Грин-Ривер в США).

Сопоставление микроэлементов горючих сланцев показало, что главная масса их накапливалась в краевых участках морских бассейнов в обстановке сероводородного заражения, определявшей восстановление многих металлов из вод с последующей их сорбцией донными илами.

Месторождениям горючих сланцев несвойственна избирательная способность по отношению к глобальным геоструктурам: они приурочены в одинаковой степени и к различного типа платформам, и к внешним областям геосинклиналей, и к переходным между ними областям, но в целом тяготеют к древним устойчивым платформам. Оптимальные обстановки для накопления горючих сланцев существовали во время стабилизации морских трансгрессий, следовавших за фазами складчатости.

Строение и состав сланценосных формаций. Сланценосные формации представлены в основном глинисто-алевролитово-терригенными и известково-мергелистыми отложениями с сапропелевым органогенным составом. Песчаный и другой, более грубый, материал в них, как правило, отсутствует. В сланценосных формациях, в особенности в известняках и мергелях, нередко присутствует разнообразная морская фаза - остатки рыб, брахиоподы, пелециподы, аммониты, белемниты и др. В породах часто наблюдаются неорганические включения, преимущественно в виде карбонатных конкреций (Прибалтийский бассейн). В горючих сланцах карбонового возраста и более молодых встречаются также остатки высших растений в виде спор, пыльцы, стеблевых тканей, гелифицированные и фюзенизированные компоненты и гумусовые угли.

Ограниченный набор слагающих сланценосных формаций литологических типов пород, в основном пелитовых и органогенных с очень тонким переслаиванием, создает характерную для этих формаций очень мелкую, на первый взгляд слабо выраженную ритмичность.

Классификация сланценосных формаций. Сланценосные формации отчетливо подразделяются на две группы - платформенные и геосинклинальные. Платформенные формации характеризуются широким распространением по площади, относительно малой мощностью (десятки метров, реже - больше), небольшим количеством пластов горючих сланцев.

Геосинклинальные сланценосные формации выделяются большой мощностью (от нескольких сотен метров до 1000 м и реже более), большим числом (до 20) достаточно мощных пластов горючих сланцев, которые не выдержаны по простиранию (Карпаты, Кавказ, Гиссарский хребет и др.).

По происхождению и промышленному значению сланценосные формации разделяют также на две группы: лагуно-морского происхождения и озерно-пресноводного. Основное промышленное значение имеют месторождения первой группы.

Пласты горючих сланцев. Пласты горючих сланцев в отличие от угольных менее четко выделяются во вмещающих их породах. Они представляют собой более или менее частое чередование слоев горючего сланца мощностью 10-20 см (изредка до 1 м) и прослоев пустых пород мощностью от единиц до десятков сантиметров. В рабочие слои горючего сланца объединяются наиболее мощные и сближенные слои, которые в сумме составляют от 1-1,5 до 2-3 м. В маломощных сланценосных формациях обычно выделяются 1-3 рабочих пласта.

Пласты горючих сланцев обычно хорошо выдержаны по мощности и строению в пределах отдельных месторождений и прослеживаются по латерали на десятки километров. В платформенных бассейнах они имеют, как правило, пластовую форму залегания, а в геосинклинальных обычно сильно дислоцированы. В пластах горючих сланцев, залегающих в карбонатных толщах, нередко наблюдаются нарушения и замещения, обусловленные карстовыми явлениями (Прибалтийский бассейн).

Макроскопически пласты горючих сланцев имеют тонкослоистое строение и ленточную структуру. Цвет их - от светло-коричневого, желтоватого до темно-коричневого, от темно-серого до почти черного. Как правило, это плотная и компактная порода. Микроскопически органическая часть почти всех горючих сланцев характеризуется наличием гомогенной, часто хлопьевидной, основой массы (коллоальгинит), светло-желтой или коричневой. В основной массе часто наблюдаются одиночные ярко-желтые тела или их скопления, представляющие относительно сохранившиеся остатки микроводорослей (альгинит). В керогене горючих сланцев присутствуют также микрокомпоненты группы витринита, липтинита и реже фюзенита.

Элементный состав керогена. В зависимости от генетического типа горючих сланцев горючий состав керогена варьирует в широких пределах: СГ 56-82 %, НГ 5,8-11,5 %, ОГ 9-10 %, S ОБЩ 1,5-9 %, NГ 1-6 %. По М. Бертрану, химическая формула керогена, в зависимости от содержания водорода, изменяется от С10Н15О до С6Н10О.

Для качественной характеристики горючих сланцев, кроме элементного анализа, определяется также в расчете на горючую массу содержание ОВ, выход смолы, химический состав золы и соотношение типов слагающего материала - органического, карбонатного, обломочного, реже вулканогенного.

Горючие сланцы с содержанием керогена от 15 до 30-68 % формировались в открытых морях в раннем палеозое. В сланцах, образовавшихся в кайнозойских пресноводных озерах, содержание органического вещества более низкое (5-50 %). Максимальное количество керогена (30-90 %) характерно для сланцев Восточно-Австралийской провинции. Наиболее высокий выход смолы (в расчете на сухое вещество) имеют горючие сланцы Восточно-Австралийской и Восточно-Европейской платформ (39-54 %), в сланцах других провинций он составляет 12-21 %.

Глобальные закономерности распространения. Горючие сланцы встречаются в больших количествах в разных регионах мира. Особенно широко они распространены в Северной Америке и Евразии. Основные массы горючих сланцев связаны с отложениями верхнего девона - нижнего карбона (более 2,3 млрд т в расчете на сланцевую смолу), верхней перми (более 1,2 млрд т) и палеогена (более 1,2 млрд т). Образовавшиеся в протерозое горючие сланцы практически не сохранились, поскольку превращены в высокометаморфизованные углеродсодержащие породы и графит.

Горючие сланцы промышленного значения обычно занимают небольшие отрезки стратиграфической шкалы, но распространены на обширных площадях в десятки и сотни тысяч квадратных километров. На земном шаре выделяется двенадцать крупных провинций: Оленекская, Прибалтийская, Аппалачская, Западно-Североамериканская, Бразильская, Восточно-Австралийская (палеозойские); Волжско-Печорская, Западно-Европейская, Центрально-Африканская (мезозойские); Центрально-североамериканская, Карпатская, Туранская (кайнозойские).

Ресурсы. По произведенным в США в 1973 г. подсчетам, мировые геологические ресурсы горючих сланцев с нижним пределом получения нефти в сланцах в 4 % составляют 53 трлн т. Ресурсы сланцевой смолы оценены в 335 млрд т, из которых к доказанным извлекаемым относятся лишь 42 млрд т. Месторождения горючих сланцев эксплуатируются в Эстонии, России, Китае и некоторых других странах. Разработка их осуществляется открытым и шахтным способами.

Геология сланцевых месторождений. В Прибалтийской сланцевой провинции разведаны Эстонское, Ленинградское, Веймарнское и Чудово-Бабинское месторождения, из которых первые два разрабатываются. В 1970-1990-х гг. добыча составляла около 30 млн т горючего сланца. Промышленными являются сланценосные отложения кукерского горизонта среднего ордовика мощностью 10-20 м. В разрезе этого горизонта насчитывается 20-30 прослоев и слоев горючего сланца суммарной мощностью 3-5 м. Промышленный интерес представляет так называемый «промпласт», состоящий из 4-6 сближенных слоев сланца, разделенных слоями известняка. Мощность «промпласта» составляет 1,8-3,2 м. На Эстонском месторождении слои горючих сланцев в разрезе «промпласта» (снизу вверх) обозначаются латинскими буквами А, В, С, D, Е и F, а на Ленинградском - римскими цифрами I, II, III и IV (сверху вниз разреза).

На Эстонском месторождении разрабатывается пять слоев сланца: подземным способом - слои А-Е суммарной мощностью 2,0-2,2 м. Рабочая мощность по этим слоям составляет на шахтах 2,35 м и на карьерах 2,7 м. По качеству эстонские сланцы считаются одними из лучших в мире. Элементный состав эстонского сланца следующий: СГ 77,1-77,8 %, НГ 9,5-9,8 %, ОГ 9,7-10,2 %, NГ 0,3-0,4 %, SОБЩ 1,7-2,0 %, Cl 0,6-0,9 %. Теплота сгорания керогена 36,4-38,5 МДж/кг. При термическом разложении сланца характерен высокий выход летучих веществ - 80-85 % исходного керогена; выход жидких продуктов при полукоксовании достигает 65-70 % органической массы. Негорючая часть сланца состоит в основном из минеральной золы и углекислоты карбонатов. Содержание золы в сухой массе колеблется по отдельным слоям сланца в пределах 40-55 %, углекислоты 22-23 % и влаги 9-13 %.

Теплота сгорания горючего сланца на сухую массу в пределах рабочих слоев А-Е составляет 14,65 МДж/кг и слоев А-F - 12,56 МДж/кг. При валовой выемке (вместе с породными прослойками) всей мощности пласта теплота сгорания составляет 9,21 МДж/кг, а на рабочее топливо - 7,53 МДж/кг.

Горючие сланцы Беларуси. В платформенном чехле на территории Беларуси выявлено 14 уровней сланцеобразования. Промышленный интерес имеют сланценосные отложения верхнего девона в Припятском прогибе. Мощность сланценосных отложений составляет 100-150 м. Разрез представлен переслаиванием мергелей, глин с подчиненными прослоями алевролитов и песчаников. Разведаны два месторождения - Любанское и Туровское. Основная проблема месторождений горючих сланцев Беларуси - это низкое их качество, и в частности невысокая теплотворная способность (5,32-8,58 МДж/кг) и высокое содержание золы (65-85 %).

ЧАСТЬ II. МЕСТОРОЖДЕНИЯ НЕМЕТАЛЛИЧЕСКИХ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

Лекция 6. общие сведения о неметаллических полезных ископаемых. КАМЕННАЯ СОЛЬ

Общие сведения о неметаллических полезных ископаемых. К неметаллическим полезным ископаемым относится обширная группа минералов и горных пород, которые, как правило, не являются сырьем для извлечения металлов и не обладают горючестью. Определить, что, собственно, нужно включать в группу неметаллических полезных ископаемых, нелегко. Так, еще в 1930-х гг. бокситы в бывшем СССР считались нерудным сырьем. В американских справочниках к неметаллам обычно причисляют пирит, марганцевые руды, гафниевое, бериллиевое и литиевое сырье.

Область применения неметаллических полезных ископаемых чрезвычайно широка: практически нет ни одной отрасли хозяйства, где бы в той или иной степени не использовалось это природное минеральное сырье. В настоящее время насчитывается более 130 видов неметаллических полезных ископаемых, используемых в естественном или переработанном виде.

Важнейшей особенностью многих неметаллических полезных ископаемых является изменчивость их физико-химических и технических свойств, учитываемых при геолого-экономической оценке месторождений. Эта изменчивость может проявляться не только в пределах одного месторождения или участка, но даже и в одной горной выработке.

В отличие от металлических полезных ископаемых состав и физические свойства нерудного сырья очень сильно сказываются не только на технологии переработки, но и в конечных промышленных изделиях. Такие особенности состава и свойств неметаллического минерального сырья могут играть главную роль в использовании его в том или ином производстве.

Неметаллическое минеральное сырье в силу тождественности тех или иных свойств нередко взаимозаменяемо. Например, барит, каолин, тальк, пирофиллит могут частично заменять друг друга в качестве наполнителей.

Рассмотренные особенности неметаллических полезных ископаемых требуют специального подхода к изучению их месторождений. Поэтому при проведении геологоразведочных работ геолог должен в совершенстве знать конкретные особенности, состав и свойства сырья, технологию переработки, возможности его использования, экономику и конъюнктуру рынка.

В сводной генетической классификации месторождений полезных ископаемых, разработанной В. И. Смирновым, неметаллические полезные ископаемые фиксируются во всех сериях и группах. Поэтому обычно распространены классификации неметаллического минерального сырья, учитывающие использование его в промышленности (Р. Л. Бейтс, П. М. Татаринов, Н. И. Еремин и др.).

Нами принята классификация Н. И. Еремина, в соответствии с которой все рассматриваемые полезные ископаемые исходя из практического их применения разделены на четыре группы. Первая из них - химическое и агрохимическое сырье - включает калийные и калийно-магниевые соли, каменную соль, апатиты, фосфориты, серу и бор. Во вторую группу («индустриальное сырье») входят асбест, слюды, графит, флюорит, барит и витерит, цеолиты, магнезит и брусит, тальк и пирофиллит. Третья группа, объединяющая «индустриально-камнесамоцветное сырье», включает пьезооптическое сырье (кварц, оптический флюорит, исландский шпат), алмазы, цветные камни. Наконец, к четвертой группе - «строительно-конструкционные материалы и сырье для их производства» - отнесены карбонатные, глинистые, кремнистые породы, гипс, каолины, фарфоровые камни, пески, песчаники, гравий, кварциты, естественные строительные камни, активные минеральные добавки, породы для каменного литья и др.

Каменная соль. Среди неметаллических полезных ископаемых значительную роль играет группа природных минеральных солей, в составе которой наиболее распространенной является каменная соль - осадочная порода химического происхождения, сложенная в основном галитом (до 99%).

Галит (NaCl) кристаллизуется в кубической сингонии, форма кристаллов кубическая, реже октаэдрическая и столбчатая. В плотных массах зерна галита обычно обладают неправильными ограничениями и имеют размеры (от долей до нескольких сантиметров). Твердость его 2, удельная масса 2,3 г/см3. Галит является постоянным компонентом всех соляных пород, образующихся в процессе галогенеза начиная с галитовой стадии и кончая эвтоникой. В трещинах и мелких пустотах несоляных пород он образует прожилки с волокнистым строением. Чистый галит прозрачен и бесцветен, обладает стеклянным блеском. Примеси окрашивают его в различные цвета - серый, желтый, розовый, красный и др.

Применение в промышленности. Около 60-65 % мировой добычи каменной соли используется в пищевой промышленности для разнообразных пищевых целей (засолка рыбы, мяса, растительных продуктов и т. д.). Человек потребляет в год 7-8 кг поваренной соли. Вплоть до ХVII в. в бедных солью странах она ценилась дороже золота. «Об абиссинской горной соли упомянем, - писал в 1763 гг. М. В. Ломоносов, - которая там вместо денег употребляется, так что за три или пять брусков, сделанных наподобие кирпича, холопа купить можно».

Каменная соль находит широкое применение в химической промышленности, где служит исходным материалом для всех соединений, в состав которых входят натрий или хлор. Она перерабатывается на соду, путем электролиза из нее получают газообразный хлор и затем соляную кислоту. Применяется также в анилино- и лакокрасочной промышленности, кожевенном, мыловаренном производстве и др. Используется также в коммунальном хозяйстве.

Общетехнические условия оценки соли поваренной. Общие технические условия оценки соли поваренной выполняются на основе ГОСТа 13830-91. Пищевую поваренную соль подразделяют по способу производства и обработки на каменную, самосадочную, садочную и выварочную соль, с добавками и без добавок; по качеству - на экстра, высший, первый и второй сорта.

Органолептические показатели соли поваренной пищевой должны отвечать следующим требованиям: 1) внешний вид - кристаллически сыпучий продукт без посторонних механических примесей; 2) вкус - соленый без постороннего привкуса; 3) цвет - белый или белый с сероватым, желтым, розоватым и голубоватым оттенками; 4) запах - отсутствует.

Физико-химические показатели соли поваренной пищевой без добавок должны соответствовать нормам, указанным в табл. 2.

Таблица 2

Физико-химические показатели соли пищевой поваренной
без добавок (ГОСТ 13830-91)

Наименование показателя

Норма для сорта в пересчете
на сухое вещество

экстра

высшего

первого

второго

1

2

3

4

5

Массовая доля хлористого натрия, %, не менее

99,70

98,40

97,70

97,00

Массовая доля кальций-иона, %, не более

0,02

0,35

0,50

0,65

Массовая доля магний-иона, %, не более

0,01

0,05

0,10

0,25

Массовая доля сульфат-иона, %, не более

0,16

0,80

1,20

1,50

Массовая доля калий-иона, %, не более

0,02

0,10

0,10

0,20

Массовая доля оксида железа (III), %, не более

0,005

0,005

0,01

0,01

Массовая доля сульфата натрия, %, не более

0,20

Не нормируется

Массовая доля нерастворимых в воде веществ, %, не более

0,03

0,16

0,45

0,85

Массовая доля влаги, %, не более: выварочной соли

0,10

0,70

0,70

-

каменной соли

-

0,25

0,25

0,25

самосадочной и садочной соли

-

3,20

4,00

5,00

рН раствора

6,5-8,0

Не нормируется

Содержание токсичных элементов (Pb, Cu, Cd, Zn, As, Hg) в соли пищевой поваренной не должно превышать предельно допустимых уровней (ПДК), установленных «Медико-биологическими требованиями и санитарными нормами качества продовольственного сырья и пищевых продуктов».

Геолого-промышленные типы месторождений. Все промышленные месторождения минеральных солей относятся к химическим, образовавшимся из истинных растворов. Среди них выделяют: 1) ископаемые или древние; 2) современные месторождения. Неисчерпаемым резервом солей следует также рассматривать морскую воду. Ископаемые месторождения солей образовались в прошлые геологические эпохи и, как правило, погребены под толщей молодых отложений. Они представлены как твердыми солями (галит), так и рассолами. Основные формы залегания соляных тел: пласты, линзы, купола, штоки. В районах интенсивного проявления соляного тектогенеза вершины соляных куполов нередко выходят на земную поверхность (месторождения каменной соли в Северной Африке, в Закарпатье и др.).

Месторождения подземных соляных вод и рассолов образуются в результате растворения ископаемых залежной каменной соли подземными водами. По условиям залегания они могут быть пластовыми, трещинными и трещинно-карстовыми, по химическому составу - чаще всего хлориднонатриевыми.

Современные соляные месторождения представляют собой разнообразные соляные озера или лиманы с концентрацией солей в воде более 3,5 % и наличием в донных отложениях залежей каменной соли.

Условия образования. Промышленные месторождения каменной соли (ископаемые залежи) образовались из морской воды в процессе ее испарения в полуизолированных бассейнах (лагуны, заливы и т. д.) и в усыхающих реликтовых озерах. Процесс образования солей называется галогенезом. Еще в 1855 г. в вышедшем учебнике «Физическая и химическая геология» Г. Бишоф, развивая идеи М. В. Ломоносова, утверждал, что образование солей могло осуществляться только в водоемах на поверхности Земли в аридной зоне, где в результате испарения сначала выпадали менее, а затем более растворимые соли. Теория галогенеза в дальнейшем наиболее полное развитие получила в трудах советских геологов (В. И. Николаева, П. И. Преображенского, Н. М. Страха, М. Г. Валяшко и др.)

Глобальные закономерности распространения. Соленосные отложения, с которыми связаны залежи ископаемых солей, имеют исключительно широкое распространение на древних платформах и зонах сочленения их со складчатыми областями. Особенно широко они развиты в Северной Америке и Евразии. Стратиграфически соленосные отложения связаны с отложениями всех геологических систем. Максимумами соленакопления выделяются кембрий, пермь, триас, юра и неоген.

Геология месторождений каменной соли. В мире крупнейшие месторождения каменной соли сосредеточены в США, Китае, Германии и в странах Северной Африки (Марокко, Алжир, Тунис). Странами-лидерами по добыче и производству поваренной соли являются Китай и США. В СНГ по запасам и добыче этого вида минерального сырья лидирующие позиции занимает Украина.

Славянско-Артемовская группа месторождений каменной соли расположена в Донецкой области и приурочена к Бахмутской котловине. Размеры ее 45 х 35 км. Залежи каменной соли связаны с нижнепермскими отложениями. В разрезе перми здесь выделяются четыре свиты (снизу вверх): 1) картамышская (свита медистых песчаников); 2) никитовская; 3) славянская; 4) краматорская.

Промышленный интерес представляют три пласта каменной соли в разрезе славянской свиты (подбрянцевский, брянцевский и надбрянцевский пласты). Мощность пластов каменной соли составляет 22-45 м. Залегают они на глубине 220-550 м от земной поверхности. Качество каменной соли удовлетворительное. Среднее содержание основных компонентов составляет (%): в надбрянцевском пласте - NaCl 98,2, Н.О. 0,36, Са2+ 0,44 Mg2+ 0,03, SO42- 1,02; в брянцевском - Na Cl 97,7, Н.О. 0,32, Са2+ 0,68, Mg2+ 0,03, SO42- 1,64. Месторождения разрабатываются ПО «Артемсоль» шахтным способом.

Месторождения каменной соли Беларуси. Разведаны три месторождения каменной соли: Давыдовское, Мозырское и Старобинское. Давыдовское месторождение открыто в 1941 г. Утвержденные запасы каменной соли составляют по категориям: А - 267,6 млн т, В - 324,9 млн т и С1 - 20 087,6 млн т. Запасы этого месторождения относятся к неактивным, т. е. имеющим минимальную вероятность быть востребованными в обозримой перспективе.

Мозырское месторождение приурочено к субширотной антиклинальной структуре, вытянутой на 10 км. Соленосный разрез представлен сильно дислоцированными отложениями галитовой подтолщи (D32fm). Запасы каменной соли этого месторождения, утвержденные ГКЗ СССР, составляли 588,9 млн т по категории С1. Месторождение эксплуатируется методом подземного растворения через скважины с земной поверхности ступенями снизу вверх. Предельная глубина отработки - 1500 м, ежегодное производство пищевой поваренной соли «Экстра» составляет 180 - 355 тыс т.

При разведке калийных солей Старобинского месторождения было выделено и изучено 6 пластов каменной соли мощностью 4-28 м, залегающих в интервале глубин 631,5-844,0 м. В настоящее время на шахтном поле 1 рудоуправления РУП ПО «Беларуськалий» разрабатывается пласт - 305 м, залегающий ниже II калийного горизонта. Каменная соль соответствует 1-2-му пищевым сортам. Ежегодные объемы производства каменной соли (пищевая, кормовая и техническая) составляют 300-550 тыс. т.

Лекция 7. КАЛИЙНЫЕ И КАЛИЙНО-МАГНИЕВЫЕ СОЛИ

Основным элементом калийных и калийно-магниевых солей является калий. Калий впервые был выделен в 1807 г. химиком Г. Дэви, который назвал его «потассий». Название «калий» (от арабского аль-кали, что значит - поташ) предложил Л. Гильберт. Углубленное изучение калия и калийных соединений началось в 40-х гг. XIX в. Особый интерес к калию появился после обоснования важной роли этого элемента в питании растений и необходимости внесения его в почву для повышения урожайности сельскохозяйственных культур. В 1840 г. вышла книга Юстуса Либиха «Химия в приложении к земледелию». В ней были сформулированы основные положения новой теории минерального питания растений, в которой обосновывалось положение о том, что главные питательные вещества растения получают за счет неорганических соединений.

Минералогия и геохимия. Калий - один из весьма распространенных элементов в земной коре. Кларк калия - 2,6 вес.%. Различают три большие группы калийсодержащих минералов: 1) алюмосиликатная; 2) сульфатная; 3) галогенная. Наибольшее практическое значение представляют минералы сульфатной и галогенной групп.

Галогенная группа калийных минералов выделяется по присутствию галогенных элементов - хлора или фтора. Среди них бывают чисто калийно-хлоридные, например минерал сильвин (KCl), либо в них присутствуют также магний или кальций, реже железо, марганец и медь. В залежах калийных солей наряду с сильвином широко распространен калийно-магниево-хлоридный минерал - карналлит (KCl . MgCl2 . 6H2O). В составе галогенной группы имеются смешанные минералы: хлоридно-сульфатный калийный минерал - каинит (KCl . MgSO4 . 3H2O) и хлоридно-сульфатно-содовый минерал - ганксит (KCl . 2Na2CO3 . 9Na2SО4).

Сульфатная группа калийных минералов характеризуется присутствием сульфат-иона (SO42-). Среди них различают легко растворимые в воде минералы: калийно-натриево-сульфатные - глазерит (3K2SO4 . Na2SO4); калийно-магниево-сульфатные - лангбейнит (K2SO4 2MgSO4), леонит (K2SO4. MgSO4. 4H2O), шенит (K2SO4 . MgSO4 . 6H2O); калийно-кальциево-сульфатные - сингенит (K2SO4. CaSO4 . H2O) и гергеит (K2SO4. 5CaSO4. H2O). К малорастворимым относится калийно-магниево-кальциево-сульфатный минерал полигалит (K2SO4. CaSO4. MgSO4. 2H2O).

Применение в промышленности. Основным потребителем калийных и калийно-магниевых солей является туковая промышленность: свыше 90 % их добычи идет на производство различных удобрений и лишь 10 % в химическую промышленность. Производятся калийные удобрения с содержанием хлористого калия от 25-40 до 80-95 %. Вырабатываются и сложные калийсодержащие удобрения: «нитрофоска», содержащая азот, фосфор и калий, «потазот», представляющий смесь хлористого калия и хлористого аммония и др. На мировой рынок поступают также сульфатно-магневые калийные удобрения, важнейшим компонентом которых является К2SO4.

Химическая промышленность выпускает свыше 30 различных веществ, в которых основной составляющей является калий. Главнейшие из них: каустический калий, хлористый калий, поташ (углекислый калий), сернокислый калий, калиевая селитра, бертолетовая соль, цианистый калий, бромистый калий, йодистый калий и др. Соединения калия находят применение в фармацевтической, лакокрасочной, стекольной, кожевенной и шерстяной промышленности, а также в медицине, пиротехнике, электрометаллургии и т. д.

Металлический магний, извлекаемый из карналлита, применяется в составе различных сплавов, используемых в авиационной, автомобильной, металлургической и других отраслях промышленности.

Первой страной, в которой возникла калийная промышленность, была Германия. В 1861 г. в Стасфурте начала работать первая в мире фабрика по переработке карналлитовой породы на хлористый калий. В 1916 г. США приступили к производству хлористого калия из рассолов озера Серлз в Калифорнии. Добыча калийных солей в мире неизменно возрастала. Так, в капиталистических странах за период 1901-1968 гг. было добыто 197 млн т калийных солей (в пересчете на К2О). Мировое производство калийных удобрений (в пересчете на К2О) составило в 1960 г. - 9,9 млн т, 1970 г. - 17,6, 1995 г. - 24,3 млн т. В настоящее время лидирующее положение по добыче калийных солей и производству калийных удобрений занимают Канада, Германия, Беларусь и Россия, обеспечивающие около 70 % мирового производства.

Исходные данные для оценки месторождений калийных солей. Экономическую эффективность разработки месторождений определяют следующие горно-геологические параметры: 1) запасы калийных руд; 2) содержание хлористого калия в руде; 3) содержание глинистой примеси (нерастворимого в воде остатка - Н.О.); 4) устойчивость вмещающих пород; 5) глубина залегания продуктивных пластов; 6) мощность продуктивных пластов; 7) условия залегания и особенности строения соленосной толщи.

По запасам полезного ископаемого калийные месторождения разделяются на весьма крупные (с разведанными запасами К2 О более 1000 млн т), крупные (300-1000 млн т) и мелкие (менее 100 млн т).

Содержание полезного компонента в промышленных рудах хлоридного типа разных месторождений варьирует от 11 % К2О (Германия) до 25-27 % (Саскачеванское месторождение в Канаде). Для сульфатных и хлоридно-сульфатных солей характерны значительно более низкие содержания полезного компонента - 8-13 % К2О (нижний предел свойственен для полигалитовых руд Жилянского месторождения, верхний - для каинитовых руд на о. Сицилия). Сульфатные и хлоридно-сульфатные руды Предкарпатья содержат в среднем 9-10 % К2О.

Вредными примесями в калийных солях являются MgCl2 и Н.О. При содержании в рудах MgCl2 более 1,5 % и Н.О. свыше 3 % в технологические схемы обогащения калийных солей вводятся дополнительные операции по освобождению сырья от указанных компонентов. Руды с наиболее высоким содержанием Н.О. (до 20 %) эксплуатируются на Эльзасском месторождении во Франции. В СНГ добывают руды с содержанием Н.О. 1,6-7,2 %.

Устойчивость кровли является достаточно надежной при содержании в ней менее 5 % глинистых и глинисто-карбонатных пород. При содержании несоляных пород более 5 % (глинистая кровля) создаются менее благоприятные условия разработки.

Предельная глубина эксплуатации месторождений калийных солей шахтным способом составляет 1200 м. Методом подземного растворения через скважины с земной поверхности калийные соли добываются на глубине 1 585-2 000 м (Канада и США).

Геолого-промышленные типы месторождений. Калийные месторождения по составу солей подразделяют на три типа - хлоридный (бессульфатный), сульфатно-хлоридный и сульфатный. Наиболее широко распространены месторождения хлоридного типа (Старобинское, Верхнекамское, Саскачеванское, Эльзасское, Непское и др.). Это, как правило, весьма крупные и крупные месторождения. Месторождения сульфатного типа имеются в Предкарпатском прогибе (Калуш-Голынское, Стебникское), на о. Сицилия и др. Состав руд этих месторождений преимущественно каинитовый, по масштабам запасов они мелкие, редко - средние.

В зависимости от сложности геологического строения калийные месторождения также подразделяют на три группы. К первой группе относят месторождения, представленные пластовыми залежами протяженностью в десятки километров, выдержанные по мощности и качеству солей (Верхнекамское месторождение в Пермской области, Старобинское в Беларуси и др.).

Во вторую группу включены месторождения, состоящие из чередующихся линзообразных залежей солей различного состава, характеризующихся изменчивой мощностью и сравнительно выдержанным качеством солей в пределах отдельных линз (Стебникское, Калуш-Голынское месторождения Украины, месторождения миоценового возраста Румынии и о. Сицилия).

К третьей группе отнесены месторождения, приуроченные к солянокупольным структурам и представленные залежами с резко изменчивой морфологией и исключительно не выдержанным распределением полезных компонентов и вредных примесей (Индерское и Эльтонское месторождения в Прикаспийской впадине).

Условия образования. Калийные породы сульфатной и галогенной групп образуются осадочным путем в основном из морских вод или их дериватов. Они формировались в солеродных бассейнах при интенсивном проявлении испарительных процессов. Калийные минералы начинали кристаллизоваться при концентрации солей в водах 33-34 % и более.

Калий, который участвует в составе соляных минералов сульфатной и галогенной групп, прошел большой и сложный путь. Сначала он был вынесен из недр Земли с магматическими алюмосиликатными породами, затем при их выветривании и разложении в зоне гипергенеза либо сразу поступил в воды морей, либо с поверхностными водами в растворенном состоянии был привнесен в океаны.

Калийные минералы сульфатной ветви осаждались из морских вод, а хлоридной (сильвин и карналлит) - из метаморфизованных вод, для которых характерна потеря сульфат-иона и эквивалентного ему количества иона магния. Метаморфизация - труднообратимый процесс, который осуществлялся в результате поступления бикарбоната кальция, привноса ветром и континентальными водами глинистого материала, бактериальной сульфатредукции, разгрузки подземных вод хлоркальциевого состава и др.

Основные закономерности распространения. Калийные соли крайне неравномерно распространены в различных регионах земного шара. В Европе расположены крупные калиеносные бассейны: Припятский, Верхнекамский, Верхнепечорский, Днепровско-Донецкий, Прикаспийский, Среднеевропейский, Каталонский, Предкарпатсткий, Сицилийский. Крупные бассейны имеются в Северной Америке: Эльк-Пойнт и Фанди (оба в Канаде), Пермский бассейн и Парадокс в США. В Южной Америке известны два бассейна - Сержипи-Алагоас и Амазонский (оба в Бразилии), в Африке - три (Габонско-Конголезский, Северо-Африканский и Данакильский), в Азии - пять (Восточно-Сибирский, Среднеазиатский, Корат, Сакон Након и бассейн Соляной кряж).

Стратиграфически основные объемы калийных солей связаны с соленосными формациями, образовавшимися в кембрии, девоне и перми. Выделяется шестнадцать этапов калиенакопления: 1) вендский, 2) раннекембрийский, 3) позднесилурийский, 4) среднедевонский, 5) позднедевонский, 6) раннекаменноугольный, 7) среднекаменноугольный, 8) раннепермский, 9) позднепермский, 10) позднетриасовый, 11) позднеюрский, 12) раннемеловой, 13) позднемеловой, 14) эоцен-олигоценовый, 15) миоценовый, 16) плиоцен-четвертичный.

Геотектоническая позиция калиеносных бассейнов достаточно разнообразна: палеозойские связаны в основном с платформенными рифтовыми зонами, краевыми прогибами; мезозойские - с континентальными рифтовыми зонами, отрицательными структурами, заложенными на эпипалеозойских платформах, реже с краевыми прогибами; кайнозойские - преимущественно с межгорными впадинами, краевыми прогибами и рифтовыми зонами континентов.

Ресурсы и запасы. Мировые прогнозные ресурсы калийных солей оцениваются в 250 млрд т. Большая часть их сосредоточена в России, Канаде, Беларуси, США и Германии. Общие запасы калийных солей в мире оцениваются примерно в 40 млрд т, подтвержденные - в 8,4 млрд т. Основными странами-держателями как общих, так и подтвержденных запасов являются Россия, Канада, Беларусь и Германия (табл. 3).

Таблица 3
Запасы калийных солей (млн т в пересчете на К2О) и среднее содержание К2О в рудах, % [8]

Страна, часть света

Запасы общие

Запасы подтвержденные

Их % от мира

Среднее содержание

1

2

3

4

5

Россия

19118

3658

31,4

17,8

Европа

3296

2178

18,5

-

Беларусь

1568

1073

9,1

16

Великобритания

30

23

0,2

14

Германия

1200

730

6,2

14

Испания

40

20

0,2

13

Италия

40

20

0,2

11

Польша

10

10

0,1

12

Украина

375

292

2,5

11

Франция

33

10

0,1

15

Азия

2780

1263

10,8

-

Израиль

600

44

0,4

1,4

Иордания

600

44

0,4

1,4

Казахстан

102

54

0,5

8

Китай

320

320

2,7

12

Таиланд

150

75

0,6

2,5

Туркменистан

850

633

5,4

11

Узбекистан

159

94

0,8

12

Африка

179

71

0,6

-

Конго

40

10

0,1

15

Тунис

34

19

0,2

1,5

Эфиопия

105

42

0,4

25

Америка

14915

4548

38,7

-

Аргентина

20

15

0,1

12

Бразилия

160

50

0,4

15

Канада

14500

4400

37,5

23

Мексика

10

-

0

12

США

175

73

0,6

12

Чили

50

10

0,1

3

Итого:

40288

11744

100

-

месторождение угольный сырье графит
Геология месторождений калийных солей. Крупнейшими в мире месторождениями калийных и калийно-магниевых солей являются Саскачеванское (Канада) и Верхнекамское (Россия).
Саскачеванское месторождение расположено в бассейне Эльк Пойнт, который находится в западной части Канады, прослеживаясь частично на территории США. В тектоническом отношении он приурочен к западному склону Североамериканской платформы. Калиеносными являются отложения среднего девона - формация Прери Эвапорайт. Мощность этой формации колеблется от 15 до 220 м. В верхней части разреза формации Прери Эвапорайт выделяются три калийных горизонта (снизу вверх): Эстерхази, Белл Плейн и Пейшенс Лейк. Мощность их варьирует от нескольких метров до 24,5 м. Калийные соли представлены сильвином и карналлитом. Эти минералы встречаются как раздельно, так и в тесной ассоциации друг с другом, образуя совместно с галитом породы смешанного состава. Калийные породы по внешнему виду бледно-окрашенные (светло-оранжевые, бледно-розовые, бесцветные, местами пестроцветные за счет синего галита), характеризуются низким содержанием Н. О. (1-3 %) и высоким содержанием полезного компонента (К2О более 18 %). По оценке канадских геологов общие запасы калийных солей составляют 16-50 млрд т.
Калийные руды разрабатываются в районе между городами Эстерхази и Роканвилл, где эксплуатируется горизонт Эстерхази, и в районе городов Саскатун, Аллан и Ланиган (разрабатываются горизонты Белл Плейн и Пейшенс Лейк). Калийные горизонты эксплуатируются шахтным способом на глубине 1000-1200 м. Функционируют 10 крупных рудников. Компания «Kalium Chemical Ltd.» осуществляет разработку калийных солей в районе г. Реджайна на глубине 1585-1600 м методом подземного растворения через скважины с земной поверхности.
Верхнекамское месторождение расположено в Соликамской впадине, представляющей одну из отрицательных структур в системе Предуральского прогиба. Калиеносные отложения (Р1 кg) распространены на площади около 3,5 тыс км2. Они относятся к бессульфатному типу и представлены сильвинитом и карналлитовой породой. В калиеносной части разреза выделяются сильвинитовая и сильвинит-карналлитовая зоны.
Сильвинитовая зона (средняя мощность 21 м) представлена калийными пластами (сверху вниз): А, Кр. I, Kp. II и Кр III. Все калийные слои, за исключением А, представлены красными слоистыми сильвинитами со слоями и прослоями каменной соли. В пласте полосчатого сильвинита А преобладают бледные и розовые разновидности сильвинита.
Сильвинит-карналлитовая зона мощностью 30-45 м расчленяется на две пачки: нижнюю карналлитовую (пласты от Б до Е) и верхнюю карналлит-галитовую (пласты (Ж-К). Калийные соли этой зоны на одних участках представлены карналлитовой породой, на других - пестрым сильвинитом.

Внутренняя тектоника сильвинитной зоны относительно сложная: калийные пласты образуют складки с линейно-слоистой текстурой в синклиналях и сложно-складчатым строением в ядрах антиклиналей. Геологические запасы месторождения огромны и оцениваются по карналлитовой породе в 96,4 млрд т, по сильвинитам - 113,2 млрд т, по каменной соли - 4 650 млрд т. Разрабатываются два крупных участка - Березниковский (на юге месторождения) и Соликамский (на севере). В настоящее время функционируют шесть рудников (СПКРУ-1 - СПКРУ-3, БПКРУ-1, БПКРУ-2 и БПКРУ-4).


Подобные документы

  • Характеристика месторождений (Таштагольского железорудного, Пуштулимского мраморного) и Кузнецкого угольного бассейна. Условия образования осадочных месторождений, их виды, форма тел, минеральный состав. Общие сведения о твердых горючих ископаемых.

    контрольная работа [20,5 K], добавлен 15.03.2010

  • Современные теории происхождения горючих ископаемых, общие сведения о них, принципы добычи и используемое при этом оборудование. Разведка угольных месторождений и добыча угля. Приоритетные направления развития топливно-энергетического комплекса.

    шпаргалка [1,2 M], добавлен 12.05.2014

  • Промышленная классификация месторождений полезных ископаемых. Приёмы оконтуривания тел полезных ископаемых. Управление качеством руды. Методы подсчёта запасов месторождений полезных ископаемых. Оценка точности подсчета запасов, формы учета их движения.

    реферат [25,0 K], добавлен 19.12.2011

  • Изучение закономерностей образования и геологических условий формирования и размещения полезных ископаемых. Характеристика генетических типов месторождений полезных ископаемых: магматические, карбонатитовые, пегматитовые, альбитит-грейзеновые, скарновые.

    курс лекций [850,2 K], добавлен 01.06.2010

  • Состав, условия залегания рудных тел. Формы полезных ископаемых. Жидкие: нефть, минеральные воды. Твердые: угли ископаемые, горючие сланцы, мрамор. Газовые: гелий, метан, горючие газы. Месторождения полезных ископаемых: магматогенные, седиментогенные.

    презентация [7,2 M], добавлен 11.02.2015

  • Общие сведения о рудных и нерудных полезных ископаемых, расположение месторождений Краснодарского края, использование в отраслях промышленности в масштабах страны. Добыча нефти, газа и торфа. Перспективы дальнейшего поиска полезных ископаемых в регионе.

    презентация [9,3 M], добавлен 21.09.2011

  • История разработки месторождений полезных ископаемых и состояние на современном этапе. Общая экономическая цель при открытой разработке. Понятия и методы обогащения полезных ископаемых. Эффективное и комплексное использование минерального сырья.

    курсовая работа [76,0 K], добавлен 24.11.2012

  • Месторождения неметаллических полезных ископаемых в Приднестровье. Содержание, химический состав, глубина залегания сырья. Запасы подземных пресных и минеральных вод в республике. Разработка месторождений песчано-гравийных пород и пильного известняка.

    реферат [27,9 K], добавлен 12.06.2011

  • Процесс контактового метасоматоза, приводящий к образованию скарновых месторождений рудных и нерудных полезных ископаемых. Метасоматический процесс и условия залегания скарнов. Морфология, вещественный состав, строение месторождения полезных ископаемых.

    реферат [25,4 K], добавлен 25.03.2015

  • Поисковые работы как процесс прогнозирования, выявления и перспективной оценки новых месторождений полезных ископаемых, заслуживающих разведки. Поля и аномалии как современная основа поисков полезных ископаемых. Проблема изучения полей и аномалий.

    презентация [1,0 M], добавлен 19.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.