Организация работы в буровой бригаде

Проведение подготовительных работ к строительству и бурению скважин. Анализ схемы обвязки буровых насосов и противовыбросового оборудования. Проверка забойных двигателей и подготовка их к работе на буровой. Характерные виды износа труб и замков.

Рубрика Геология, гидрология и геодезия
Вид отчет по практике
Язык русский
Дата добавления 12.11.2017
Размер файла 1,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Универсальные превенторы со сферическим уплотняющим элементом и с коническим уплотнителем изготовляет ВЗБТ.

Универсальный гидравлический превентор со сферическим уплотнением плунжерного действия (рис. XIII.4) состоит из корпуса 3, кольцевого плунжера 5 и кольцевого резинометал-лического сферического уплотнителя /. Уплотнитель имеет форму массивного кольца, армированного металлическими вставками двухтаврового сечения для жесткости и снижения износа за счет более равномерного распределения напряжений. Плунжер 5 ступенчатой формы с центральным отверстием. Уплотнитель / фиксируется крышкой 2 и распорным кольцом 4. Корпус, плунжер и крышка образуют в превенторе две гидравлические камеры А и Б, изолированные друг от друга манжетами плунжера.

При подаче рабочей жидкости под плунжер 5 через отверстие в корпусе превентора плунжер перемещается вверх и обжимает по сфере уплотнение / так, что оно расширяется к центру и обжимает трубу, находящуюся внутри кольцевого уплотнения. При этом давление бурового раствора в скважине будет действовать на плунжер и поджимать уплотнитель. Если в скважине нет колонны, уплотнитель полностью перекрывает отверстие. Верхняя камера Б служит для открытия превентора. При нагнетании в нее масла плунжер движется вниз, вытесняя жидкость из камеры А в сливную линию.

Вращающиеся превенторы

Вращающийся превентор применяется для герметизации устья скважины в процессе ее бурения при вращении и расхаживании бурильной колонны, а также при СПО и повышенном давлении в скважине. Этот превентор уплотняет ведущую трубу, замок или бурильные трубы, он позволяет поднимать, спускать или вращать бурильную колонну, бурить с обратной промывкой, с аэрированными растворами, с продувкой газообразным агентом, с равновесной системой гидростатического давления на пласт, опробовать пласты в процессе газопроявлений

5. Механическое бурение. Режимы бурения ( проектные и фактические). Режимно-технологические карты. Порядок отработки долот

Механическое бурение.

Технологический процесс механического бурения складывается из операций по разрушению породы, подаче ее на поверхность, обеспечению устойчивости стенок буровых выработок и вспомогательных операций. Грунт в забое разрушают резанием, истиранием, ударами, сколом и комбинированным воздействием (например, истиранием и ударом).

Измельченный грунт транспортируют на поверхность двумя методами: гидравлическим, при котором грунт удаляют путем вымывания его водой, направляемой в выработку под давлением, и сухим, когда измельченный грунт удаляют сжатым воздухом или винтовым конвейером.

Механическое бурение ведут тремя основными способами: вращательным, ударным и вибрационным.

При вращательном способе бурения грунт забоя разрушают вращением бурового инструмента, при ударном способе -- нанося удары по грунту буровым снарядом, при вибрационном -- воздействием колебаний высокой частоты (до 2500 колебаний в 1 мин). В некоторых случаях для получения наибольшей эффективности при бурении пользуются комбинированными способами -- ударно-вращательным или вибровращательным.

Вращательный способ бурения характеризуется высокой производительностью (в 3...5 раз превышающей производительность ударного бурения), более низкой стоимостью буровых работ, возможностью бурения вертикальных, наклонных и горизонтальных скважин. При вращательном способе бурения порода забоя истирается, ее режут или скалывают буровым инструментом, жестко закрепленным на нижнем конце вращающейся штанги.

Основные виды вращательного способа бурения -- шнековое, колонковое и роторное, выполняемые с помощью самоходных установок или станков.

Шнековое бурение применяют для скважин диаметром 110 ...125 мм и глубиной до 30 м в мягких и мерзлых грунтах. Шнековые буровые станки () имеют металлическую раму, состоящую из двух направляющих стоек, установленных на передвижной платформе или на полозьях. По (направляющим стойкам рамы перемещается электродвигатель с редуктором, в шпиндель которого вставлены рабочие буровые штанги. Рабочие штанги длиной 2 м представляют собой трубы, на поверхности которых по винтовой линии наварены стальные полосы -- реборды. Извлекают штанги с помощью ручной лебедки. По мере углубления скважины штанги наращивают, соединяя их между собой специальными патронами. Звенья заканчиваются рабочей частью в виде долота или лопастного резца, которые при вращении штанг врезаются в породу. Выбуренная порода с помощью винтового конвейера выдается на поверхность.

Колонковое бурение применяют для проходки скважин диаметром 45... 130 мм и глубиной до 200 м. Колонковые установки или станки имеют лебедку подъема трубчатых штанг и механизм для их вращения. На конце штанги находится рабочая часть -- колонковый снаряд () с кольцевой коронкой, армированной : резцами из твердых сплавов или алмазами (). При вращении бурового снаряда колонка под действием осевого давления внедряется в породу, образуя кольцевую выработку породы вокруг керна, входящего в колонковую трубу. После проходки «а необходимую глубину буровые штанги вместе с колонковым снарядом и керном поднимают лебедкой на поверхность. В процессе бурения в забой скважины насосом через бурильные трубы подают глинистый раствор (или воду). Смешиваясь с частицами разрушенной породы, глинистый раствор выносит их «а поверхность по кольцевому пространству между штангами и стенками скважины. Глинистый раствор охлаждает бурильный инструмент и одновременно предотвращает обрушение стенок скважины.

Роторное бурение чаще всего используют для устройства скважин значительных диаметров (300...400 мм) и большой глубины (150...1200 ад). Роторная бурильная установка состоит из вращателя-- ротора, сборной вышки и оборудования для промывки скважины глинистым раствором (). Рабочая (ведущая) труба проходит через вкладыши круглого стола ротора, который предназначен для передачи вращения от двигателя к бурильным трубам, присоединенным к рабочей трубе. Размеры вкладышей ротора соответствуют наружному диаметру рабочей трубы, что позволяет ей одновременно с вращением перемещаться вверх и вниз. Нижний конец бурильной трубы чаще всего имеет шарошечные и лопастные долота (), которые разрабатывают грунт по всей площади забоя скважины. Верхним концом рабочая труба соединена с вертлюгом, к нему присоединен рукав от насоса, подающий в бурильные трубы глинистый раствор. Всю систему рабочих и бурильных труб с вертлюгом подвешивают к крюку. Рабочие и бурильные трубы поднимают и опускают канатом, навитым на барабан лебедки.

Электрическими сверлильными машинами бурят шпуры в мягких и средней твердости породах, а также в мерзлых грунтах. Различают электрические сверлильные машины легкие (с ручной подачей) и тяжелые (колонковые). В ручной электросверлильной машине осевое давление создается за счет мускульной энергии бурильщика. Колонковые электросверлильные машины имеют автоматическую подачу. Буровую штангу сверл закрепляют в патроне шпинделя. К нижнему концу электрической ручной сверлильной машины с помощью замка присоединяют резец из твердого сплава. Буровые штанги подбирают комплектно в соответствии с глубиной шпура. При бурении ручной электрической сверлильной машиной шлам или буровую мелочь удаляют из шпура путем быстрого извлечения сверла, без прекращения его вращения. При работе колонковыми сверлильными машинами шлам удаляют промывкой.

При ударном способе бурения разработку ведут сплошным забоем на полное сечение скважин глубиной до 250 м (с начальным диаметром 300 и конечным 150 мм). Сплошной забой применяют при бурении скважин для водоснабжения, детальной разведки каменных материалов, иженерно-геологических исследований, при замораживании грунта, устройстве набивных свай и т. п.

Ударный способ бурения подразделяют на ударно-канатный, ударно-штанговый и ударно-вращательный.

При ударно-канатном бурении буровой снаряд массой до 3 т падает с высоты более 1 м в забой скважины, развивая значительную силу удара. Станок ударно-канатного бурения () работает следующим образом. Через блок опорной мачты бурильного станака перекинут канат, проходящий под балансирным роликом и огибающий далее направляющий ролик. Канат закреплен на барабане лебедки. Балансирный ролик получает от кривошипно-шатунной передачи качательное движение, благодаря чему происходят периодические подъемы и падения бурового снаряда, состоящего из ударной штанги, канатного замка и долота. Долото может быть плоским, двутавровым, крестовым и округляющим. Изготовляют их из легированной стали. Во время бурения в скважину заливают воду, образующую с тонкоизмельченной породой шлам, который периодически вычерпывают полым цилиндром (желонкой) с клапаном на нижнем конце. Производительность станков ударно-каиатного бурения до 30 м в смену.

Ударно-штанговое бурение применяют, когда необходимо обеспечить минимальное вертикальное отклонение оси скважины. Буровой снаряд опускают в скважину на бурильных трубчатых штангах, соединенных между собой замками с конической резьбой. Подвешивают колонны бурильных штанг с помощью вертлюгов усиленной конструкции.

Ударно-вращательным бурением устраивают шпуры и скважины в породах различной крепости.

С помощью станков ударно-вращательного бурения () проходят скважины глубиной до 30 м в весьма крепких породах. Главная особенность этого способа состоит в том, что вращение и ударное действие инструмента выполняют двумя независимыми механизмами--вращателем и пневмоударником. Пневмоударник () представляет собой пневматический молоток, в котором движущийся возвратно-поступательный поршень со штоком наносит своим бойком удары по хвостовику коронки. Коронка при бурении может передвигаться вдоль оси пневмоударника на 20 мм. Сжатый воздух поступает к пневмоударнику по буровым штангам. При работе станка вращатель, состоящий из электродвигателя и редуктора, приводит во вращение буровую штангу и пневмоударник, внедряющийся в грунт. Самая оптимальная частота вращения штанги 25 мин

Выходящую из скважины буровую пыль улавливает обеспыливатель.

Перфораторы, применяемые для бурения шпуров, бывают ручные массой до 24 кг (при глубине шпура до 3 м) и колонковые (или станковые) массой до 40 кг. Они обеспечивают бурение шпуров глубиной до 5 м. Воздух (2...4 м3/мин) к перфоратору подводится от компрессора. Рабочий орган перфоратора -- буровая головка (). При бурении нетрещиноватых пород мягкой и средней крепости применяют головку с одним долотом, армированную твердыми сплавами. Двухдолотчатыми головками бурят вязкие и трещиноватые породы. Головки крестообразной формы используют для бурения пород средней крепости с незначительной трещиноватостью, а также вязких пород. Крепкие и трещиноватые породы бурят с помощью кресто- и звездообразных головок.

Перфораторные молотки по очистке каналов от пыли и каменной мелочи подразделяют на сухие и мокрые. Перфораторы мокрого типа имеют специальные устройства для промывки кана дой, а в перфораторах сухого типа канал продувают воздухом Более предпочтительным является мокрое бурение, так как применение для промывки канала воды снижает сопротивляемость породы и увеличивает стойкость головки бура из-за ее охлаждения водой и уменьшения трения о стенки канала.

Вибрационным способом бурят шпуры и скважины (диаметром до 125 мм и глубиной до 25 м) в мягких грунтах.

При вибрационном способе бурения грунт под действием вибрирующего снаряда выделяет связную жидкость, а частицы грунта в зоне контакта с вибрирующими наконечниками переходят в подвижное состояние. При этом резко снижается сопротивляемость грунта сдвигу и буровой инструмент внедряется в породу. Методы образования каналов вибрационным бурением идентичны вибропогружению свай и шпунта.

Скорость вибробурения довольно высокая. Например, в суглинистых почвах за несколько секунд можно пробурить шпур глубиной до 1 м. С увеличением глубины выработки вибрация бурового инструмента затухает, скорость проходки уменьшается, а на глубине 20...25 м проходка прекращается.

При всех механических способах (бурения стенки скважин крепят обсадными трубами с внутренним диаметром 50...200 мм. Колонны обсадных труб составляют из звеньев длиной 1,5...4,5 м, которые опускают при бурении, начиная с большего диаметра. По мере углубления скважин переходят на меньшие диаметры. Звенья труб соединяют муфтами, ниппелями или свинчивают между собой (труба в трубу). Внутренний диаметр труб должен быть 5... 10 мм больше диаметра бурового инструмента. Вверху обсадных труб устанавливают патрубок, защищающий нарезку труб от ударов буровым оборудованием, а внизу -- коронку (фрезер), облегчающую опускание колонн обсадных труб.

Режимные показатели бурения.

Эффективность бурения зависит от комплекса факторов: осевой нагрузки на долото, частоты вращения долота, расхода бурового раствора и параметров качества бурового раствора, типа долота, геологических условий, механических свойств горных пород.

Выделяют параметры режима бурения, которые можно изменять с пульта бурильщика в процессе работы долота на забое, и факторы, установленные на стадии проектирования строительства скважины, отдельные из которых нельзя оперативно изменять. Первые называются управляемыми. Определённое сочетание их, при котором осуществляется механическое бурение скважины, называется режимом бурения.

Режим бурения, обеспечивающий получение наилучших показателей при данных условиях бурения, называется оптимальным. Иногда в процессе бурения приходится решать и специальные задачи - проводка скважины через поглощаюшие пласты, обеспечение минимального искривления скважины, максимального выхода керна, качественного вскрытия продуктивных пластов. Режимы бурения, при которых решаются такие задачи, называются специальными. Каждый параметр режима бурения влияет на эффективность разрушения горных пород, причём влияние одного параметра зависти от уровня другого, то есть наблюдается взаимовлияние факторов.

Выделяют следующие основные показатели эффективности бурения нефтяных и газовых скважин: проходка на долото, механическая и рейсовая скорости бурения.

Проходка на долото Hд (м) очень важный показатель, определяющий расход долот на бурение скважины и потребность в них по площади и УБР в целом, число СПО, изнашивание подъемного оборудования, трудоемкость бурения, возможность некоторых осложнений. Проходка на долото в большей мере зависит от абразивности пород, стойкости долот, правильности их подбора, режимов бурения и критериев отработки долот.

Механическая скорость (Vм):

Vм = Hд / Тм

где Hд - проходка на долото, м; Тм - продолжительность механического разрушения горных пород на забое или время проходки интервалов, ч.

Таким образом, Vм - средняя скорость углубления забоя. Она может быть определена по отдельному долоту, отдельному интервалу, всей скважине Lс, по УБР и т.д.:

Vм = Lс / Тм

Выделяют текущую (мгновенную) механическую скорость:

Vм = dh / dt

При известных свойствах горных пород механическая скорость характеризует эффективность разрушения их, правильность подбора и отработки долот, способа бурения и режимных параметров, величину подведенной на забой мощности и ее использование. Если в одинаковых породах и интервалах одной скважины скорость ниже, чем в другой, надо улучшать режим. Изменение текущей механической скорости связано с изнашиванием долота, чередованием пород по твердости, изменением режимных параметров в процессе отработки долота, свидетельствует о целесообразности подъема долота.

Рейсовая скорость

Vр = Hд / (Тм + Тсп)

где Hд - проходка на долото, м; Тм - продолжительность работы долота на забое, ч; Тсп - продолжительность спуска и подъема долота, наращивания инструмента, ч.

Рейсовая скорость определяет темп углубления скважины, она показывает, что темп проходки ствола зависит не только от отработки долота, но и от объема и скорости выполнения СПО. Если долго работать изношенным долотом или поднимать долото преждевременно, то Vр снижается. Долото, поднятое при достижении максимума рейсовой скорости, обеспечивает наиболее быструю проходку ствола.

Средняя рейсовая скорость по скважине выражается:

Vр = Lс / (Тм + Тсп)

Влияние осевой нагрузки на режим бурения.

Разрушение горной породы на забое механическим способом невозможна без создания осевой нагрузки на долото. На рис. 5.1. показана зависимость механической скорости бурения Vм от осевой нагрузки G на трёхшарошечное долото при проходке мягких (кривая 1), средней твёрдости (кривая 2), твёрдых (кривая 3) и крепких (кривая 4) пород при неизменной низкой (до 60 об/мин) частоте вращения и достаточной промывке за короткий промежуток времени, когда изнашиванием долота можно пренебречь.

Как видно из рисунка, механическая скорость непрерывно возрастает с увеличением осевой нагрузки, но темп её роста для мягких пород более быстрый, так как больше глубина погружения зубьев при одинаковой нагрузке. На стенде, и в промысловых условиях наблюдается изменение темпа роста Vм от G при переходе от разрушения пород истиранием при небольшой осевой нагрузке к разрушению пород в усталостной и объёмной областях при больших нагрузках.

Если скорость вращения долота неизменна и обеспечивается достаточная чистота забоя, величина углубления за один оборот ?у возрастает с увеличением удельной осевой нагрузки Руд так, как это показано на рис. 5.2. (кривая ОАВС). При весьма малой нагрузке напряжение на площадке контакта зуба шарошки с породой меньше предела усталости последней; поэтому при вдавливании происходит лишь упругая деформация породы (участок ОА). Разрушение же породы в этой зоне, которую обычно называют областью поверхностного разрушения, может происходить путём истирания и, возможно, микроскалывания шероховатостей поверхности при проскальзывании зубка.

Если нагрузка более высокая (участок АВ), то давление на площадки контакта зубка с забоем превышает предел усталости, но меньше предела прочности породы. Поэтому при первом ударе зубка по данной площадке происходит деформация породы, возможно, образуются начальные микротрещины, но разрушения ещё не происходит. При повторных ударах зубков по той же площадке начальные микротрещины развиваются вглубь до тех пор, пока при очередном ударе не произойдёт выкол.

Чем больше действующая на зубок сила, тем меньше ударов требуется для разрушения. Эту зону называют областью объёмно - усталостного разрушения.

При более высоких нагрузках разрушение породы происходит при каждом ударе зубка. Поэтому участок правее точки В называют областью эффективного объёмного разрушения породы.

В области ОА углубление за один оборот ?у мало и возрастает очень медленно, пропорционально удельной нагрузке на долото Руд. Под удельной нагрузкой понимают отношение нагрузки на долото G к его диаметру. В области усталостного разрушения углубление растет быстрее увеличения удельной нагрузки и зависимость между ними имеет степенной характер. В области эффективного объёмного разрушения породы углубление за один оборот быстро возрастает - примерно пропорционально удельной нагрузке (или несколько быстрее), если обеспечена достаточная очистка забоя.

Характер зависимости между углублением за один оборот долота и удельной нагрузкой Руд существенно изменяется, как только очистка забоя становится недостаточной и на нём скапливаются ранее сколотые частицы, которые не успели переместиться в наддолотную зону. Такие частицы дополнительно измельчаются при новых ударах зубков шарошек по забою. Поэтому с ухудшением очистки забоя прирост углубления за один оборот долота с увеличением удельной нагрузки будет уменьшаться.

Так, согласно кривой ОАВДЕ, полученной при бурении с секундным расходом промывочной жидкости Q1, углубление за 1 оборот быстро возрастает, до тех пор, пока удельная нагрузка не превышает Р111уд. При нагрузках выше Р111уд прирост углубления сначала замедляется, а затем (правее точки F) углубление за один оборот уменьшается из-за ухудшения очистки забоя. В случае же увеличения секундного расхода до Q2 влияние ухудшения очистки забоя становится заметным при более высокой удельной нагрузке (правее точки G на кривой АВGH).

Влияние частоты вращения долота

С изменением частоты вращения долота меняется число поражений забоя зубками шарошечного долота.

При малой частоте вращения долота промежуток времени, в течение которого остаётся раскрытой трещина в породе, образующаяся при вдавливании зубка, достаточен для того, чтобы в эту трещину проник фильтрат бурового раствора (или сам раствор). Давления на частицу сверху и снизу практически сравниваются и трещина не может сомкнуться после отрыва зубка от породы. В этом случае отрыв сколотой частицы от забоя и её удаление облегчаются. При увеличении же частоты вращения уменьшается промежуток времени, в течение которого трещина раскрыта, и фильтрат может заполнять её. Если же этот промежуток станет весьма малым, фильтрат в трещину не успеет проникнуть, трещина после отрыва зубка шарошки от породы сомкнётся, а прижимающая сила и фильтрационная корка будут удерживать частицу, препятствовать её удалению с забоя. Поэтому на забое сохраниться слой сколотых, но не удалённых частиц, которые будут повторно размалываться зубцами долота.

Влияние расхода бурового раствора.

Непрерывная циркуляция бурового раствора при бурении должна обеспечивать чистоту ствола скважины и забоя, охлаждение долота, способствовать эффективному разрушению породы, предупреждать осложнения. Влияние расхода раствора на механическую скорость бурения показано на рис. 5.4. Как видно из рисунка, при неизменной осевой нагрузке и частоте вращения долота с увеличением секундного расхода бурового раствора улучшается очистка забоя и возрастает механическая скорость проходки. Однако увеличение секундного раствора эффективно лишь пока он не достигнет некоторой величины Qд, при Qмах механическая скорость проходки стабилизируется. Величина Qд зависит от конструкции долота, схемы очистки забоя, удельной осевой нагрузки, частоты вращения, твёрдости породы и свойств бурового раствора.

При дальнейшем возрастании расхода начнёт преобладать повышение потерь напора на преодоление гидравлических сопротивлений в кольцевом пространстве, общее давление на забой начнёт расти и механическая скорость будет снижаться.

Влияние свойств бурового раствора.

На механическую скорость бурения влияют плотность, вязкость, фильтрация, содержание песка и ряд других параметров бурового раствора. Наиболее существенно оказывает влияние плотность бурового раствора. Это влияние объясняется в основном повышением гидростатического давления на забой и ростом перепада давления между скважиной и разбуриваемым пластом, в результате чего ухудшаются условия образования трещин, выкалываемые частицы прижимаются к массиву. Поэтому наиболее значительно влияние ? в области объёмного разрушения породы, а при бурении в области поверхностного разрушения и истирания оно незначительно.

С понижением плотности в большей мере проявляется эффект неравномерного всестороннего сжатия, облегчающего разрушение пород.

Чем выше проницаемость пород и больше водоотдача (фильтрация), меньше вязкость фильтрата, ниже частота вращения, больше продолжительность контакта, тем слабее влияние плотности раствора, поскольку давление на забое и на глубине выкола успевает выровняться.

Особенности режимов вращательного бурения.

Увеличение осевой нагрузки и частоты вращения, повышение плотности, вязкости и концентрации твёрдых частиц, снижение расхода ниже Qд, а также теплоёмкости, теплопроводности и смазывающих свойств буровых растворов, неравномерная (рывками) подача долота, продольные и поперечные колебания низа бурильной колонны, высокая температура на забое - всё это сокращает производительное время пребывания долота на забое. Однако конечная цель - не увеличение продолжительности пребывания долота на забое, а получение большей проходки на долото за возможно более короткое время. Поэтому если изменение какого-то параметра обуславливает сокращение продолжительности работы долота на забое, но одновременно увеличивается механическая скорость и повышается проходка на долото, то оно целесообразно.

Так как параметры режима бурения взаимосвязаны, то наибольшая эффективность бурения достигается лишь при оптимальном сочетании этих параметров, зависящем от физико-механических свойств породы, конструкции долота, глубины залегания разбуриваемой породы и других факторов. Увеличение одного из параметров режима, например, осевой нагрузки, способствует повышению эффективности бурения лишь до тех пор, пока он не достигнет оптимального значения при данном сочетании других параметров. Увеличение рассматриваемого параметра выше этого оптимального значения может способствовать дальнейшему повышению эффективности бурения только в том случае, если одновременно будут изменены все или некоторые другие параметры (например, увеличен расход промывочной жидкости, уменьшена частота вращения).

Измененному сочетанию других параметров режима соответствует новое оптимальное значение рассматриваемого. Изменение параметров режима возможно лишь в определённых пределах, которые зависят от прочности долота, особенностей способа бурения, технических параметров буровой установки и ряда других факторов.

Регулировать расход бурового раствора можно тремя способами: заменой втулок одного диаметра в цилиндрах бурового насоса на втулки другого диаметра, изменением числа одновременно параллельно работающих буровых насосов, изменением числа двойных ходов поршней в насосе. При первых двух способах расход раствора можно изменять только ступенчато, при третьем возможно также плавное изменение. Второй из названных выше способов применяют, как правило, в случае изменения диаметра долота: при бурении верхнего участка скважины долотами большого диаметра используют два одновременно работающих насоса. При переходе к бурению следующего участка долотами меньшего диаметра один из насосов часто отключают. Менять втулки можно только в неработающем насосе. Поэтому в большинстве случаев расход жидкости в период работы долота на забое остаётся практически неизменным. Если продолжительность рейса велика (несколько десятков часов), расход к концу рейса может несколько уменьшиться вследствие возрастания утечек в насосе, обусловленного износом поршней. Гидравлическую мощность на забое можно регулировать изменением либо расхода бурового раствора, либо диаметра гидромониторных насадок в долоте, либо числа таких насадок. Очевидно, диаметр насадок можно изменить только при подготовке нового долота к спуску в скважину. Число же работающих насадок можно уменьшить так же в период работы долота на забое, если в поток жидкости в бурильных трубах сбросить шар соответствующего диаметра, он перекроет входное отверстие в одной из насадок и выключит её из работы. При этом скорости струй и перепад давлений в оставшихся работающих насадках возрастут, и соответственно увеличится гидравлическая мощность на забое. Такой способ регулирования гидравлической мощности на забое можно использовать тогда, когда рабочее давление в насосах меньше предельно допустимого при данном диаметре втулок в них.

6. Буровые долота применяемые в целом по УБР, показатели их работы. Износ вооружения и опор долот при бурении в различных горных породах

Долото основной элемент бурового инструмента для механического разрушения горной породы в процессе бурения скважины. Термин "долото" сохранился от раннего периода развития техники бурения, когда единственным способом проходки скважины было ударное бурение, при котором буровое долото имело сходство с плотничным инструментом того же наименования. По назначению различают 3 класса буровых долот: для сплошного бурения (разрушение горной породы по всему забою скважины), колонкового бурения (разрушение горной породы по кольцу забоя скважины с оставлением в её центральной части керна) и для специальных целей (зарезные долота, расширители, фрезеры и др.). По характеру воздействия на горные породы буровые долота делятся на 4 класса: дробящие, дробяще-скалывающие, истирающе-режущие и режуще-скалывающие. По виду рабочей (разрушающей горные породы) части выделяют шарошечные и лопастные буровые долота.

Шарошечными буровыми долотами осуществляется большей частью общего объёма бурения нефтяных, газовых и взрывных скважин. Шарошечное буровое долото (или бурильная головка для колонкового бурения) состоит из (одной, двух, трёх, четырёх или шести конических) сферических или цилиндрических шарошек, смонтированных на подшипниках качения или скольжения (или их комбинации) на цапфах секций бурового долота. Основная разновидность шарошечных долот для сплошного бурения -- трёхшарошечное долото (рис. 1, а), при бурении глубоких скважин получило распространение также одношарошечное буровое долото (рис. 1, б).

В зависимости от конструкции корпуса шарошечные буровые долота разделяют на секционные и корпусные. В секционных корпус сваривается из отдельных (двух, трёх или четырёх) секций (лап), на цапфах которых монтируются шарошки; в корпусных -- корпус литой, к нему привариваются лапы со смонтированными на их цапфах шарошками. Для присоединения буровых долот к бурильной колонне у секционных долот предусматривается наружная конусная резьба (ниппель), у корпусных -- внутренняя конусная резьба (муфта). В СССР выпускаются 13 типов шарошечных долот сплошного бурения диаметрами 46-508 мм (ГОСТ 20692-75).

По принципу воздействия на горные породы шарошечные буровые долота делятся на дробящие и дробяще-скалывающие. Буровые долота дробящего действия характеризуются минимальным скольжением зубьев при перекатывании шарошек по забою и отсутствием фрезерующего действия по стенке скважины периферийными зубьями; различают следующие их типы: Т -- для бурения твёрдых пород, ТЗ -- твёрдых абразивных пород, ТК -- твёрдых пород с пропластками крепких, ТКЗ -- твёрдых крепких абразивных пород, К -- крепких пород, OK -- очень крепких пород. Шарошечные буровые долота дробяще-скалывающего действия характеризуются увеличением скольжения зубьев при перекатывании шарошек по забою и стенке скважины. Типы буровых долот дробяще-скалывающего действия: М -- для бурения мягких пород, МЗ -- мягких абразивных пород, MC -- пород мягких с пропластками средней твёрдости, МСЗ -- мягких абразивных пород с пропластками средней твёрдости, С -- пород средней твёрдости, СЗ -- абразивных пород средней твёрдости, CT -- пород средней твёрдости с пропластками твёрдых. Породоразрушающим элементом (вооружением) шарошечных буровых долот служат фрезерованные зубья или запрессованные твердосплавные зубки и комбинации зубьев с зубками на поверхности шарошек. Для повышения износостойкости фрезерованных зубьев шарошек от абразивного износа их наплавляют твёрдым сплавом, состоящим из зёрен карбидов вольфрама. Для уменьшения износа долота по диаметру периферийные венцы долот типов С, CT и Т имеют Г- или Т-образную форму. Геометрическая форма и параметры зубьев (высота, длина, шаг, а также смещение осей шарошек) различны (уменьшаются от типа М к типу Т) и зависят от физических свойств разбуриваемых горных пород. Современное вооружение шарошек буровых долот выполняется из вставных твердосплавных зубков с призматическими (типы МЗ, СЗ, МСЗ и ТЗ) и сферическими (тип ТК) рабочими головками. Опора шарошечных буровых долот в процессе вращения шарошки обеспечивает передачу осевой нагрузки от бурильной колонны через цапфы и тела качения вооружению шарошки, находящемуся в контакте с горными породами забоя скважины. В опорах буровых долот в качестве радиальных используются подшипники роликовые, шариковые и скольжения, радиально-упорных -- шариковые подшипники, упорных -- подшипники скольжения. На рис. 2 показаны наиболее известные схемы опор, которые применяют в шарошечных буровых долотах. В каждой опоре имеется замковый шариковый подшипник, удерживающий шарошку на цапфе и воспринимающий осевую составляющую нагрузку на долото.

Число роликов и шариков в опоре шарошек и их размеры зависят от размера долота, схема опоры -- от режима бурения. Долота, использующиеся для высокооборотного бурения (более 250 об/мин), имеют опору с телами качения без герметизации (серия 1АВ), для среднеоборотного бурения (до 250 об/мин) -- опору по схеме ролик-шарик -- скольжение -- упорная пята без герметизации (серия 1АН) либо с герметизацией при помощи торцевой манжеты (серия 2АН). Долота для низкооборотного бурения (до 60 об/мин) имеют герметизированную маслонаполненную опору по схеме скольжение -- шарик -- скольжение -- упорная пята с радиальной уплотняющей манжетой. В долотах с герметизированной маслонаполненной опорой в утолщённой части лапы имеется специальный резервуар со смазкой, в который вмонтирован эластичный мешок, изменяющий форму по мере увеличения давления при спуске долота в скважину и способствующий вытеснению смазки по смазочным каналам к трущимся элементам опоры. При этом уплотнительная манжета должна обеспечить герметичность опор со стороны торца шарошки. Это достигается жёсткостью торцевой манжеты и плотным прилеганием её к торцу шарошки.

Для подвода промывочной жидкости через долото к забою скважины в шарошечных буровых долотах имеются специальные промывочные или продувочные устройства. В зависимости от конструктивного выполнения выделяют шарошечные буровые долота с центральной, боковой промывкой, а также продувкой воздухом. Буровые долота с центральной промывкой имеют одно отверстие в центре долота либо 3 отверстия или щели в корпусе (промывочной плите), через которые промывочная жидкость направляется на шарошки в центральную часть скважины. В долотах с боковой промывкой (гидромониторные буровые долота, рис. 3, а) промывочная жидкость через сопла направляется между шарошками в периферийную зону забоя скважины.

В буровых долотах с продувкой воздухом (рис. 3, б), газом или воздушно-водяной смесью одна часть потока через центральное отверстие в корпусе долота подаётся на шарошки, другая -- по специальным каналам в лапах и их цапфах поступает в полость опор шарошек для их охлаждения и очищения от бурового шлама. При бурении взрывных скважин в долотах с продувкой воздухом применяют обратные клапаны, которые обеспечивают немедленное закрытие центрального продувочного канала долота после прекращения подачи воздуха и тем самым не допускают засасывания частиц породы в полость корпуса долота над входом в продувочные каналы лап.

Лопастные буровые долота предназначены для бурения вращательным способом мягких и средней твёрдости пород.

Лопастные буровые долота (рис. 4, а, б, в) состоят из кованого корпуса с присоединительной резьбой, к которому привариваются 3 и более лопастей. У двухлопастного долота корпус и лопасти отштамповываются как одно целое. Для повышения износостойкости долот лопасти армируются твёрдым сплавом. Пластинки твёрдого сплава заплавляются на передней грани лопастей в специально профрезерованные пазы. Боковые (калибрующие стенку скважины) грани лопастей армируются цилиндрическими зубками (сплав ВК8-В), запрессовываемыми в просверленные отверстия. Промежутки между зубками наплавляются твёрдым сплавом. В СССР лопастные долота (ГОСТ 26-02-1282-75) с промывкой изготовляют с цилиндрическими отверстиями в корпусе (тип 2Л, диаметры 76-165,1 мм, скорость движения промывочной жидкости до 50 м/с) и сменными гидромониторными насадками в корпусе (тип ЗЛ, диаметры 120,6-469,9 мм, скорость промывочной жидкости не менее 90 м/с). Истирающе-режущие буровые долота (тип ЗИР) имеют диаметры 190,5-269,9 мм. Пикообразные буровые долота (тип П, диаметры 98,4-444,5 мм) изготовляют двух разновидностей: Ц -- для разбуривания цементных пробок и металлических деталей низа обсадных колонн; R -- для расширения ствола скважины. К лопастным относятся также буровые долота для ударно-канатного бурения. Для бурения без промывки скважины применяют шнековые долота (рис. 4, г).

Для вспомогательных работ (разбуривания цементных мостов, металла в скважине) выпускаются фрезерные буровые долота: тип ФР в виде плоскодонных фрезеров, нижняя рабочая поверхность которых оснащена твердосплавными зубками или пластинками, выступающими над корпусом буровых долот; тип ДФТС с расположением твердосплавных зубков по 3 спиралям, имеющим плавный переход от центрального канала долота на рабочую сферу.

Для бурения скважин с отбором керна применяют шарошечные и лопастные бурильные головки, которые изготовляют для специальных керноприёмных устройств со съёмным и несъёмным керноприёмниками. Колонковые долота со съёмным керноприёмником позволяют отбирать с забоя скважины керн без подъёма бурильной колонны.

Керноприёмник с керном извлекают из скважины шлипсом, спускаемым в бурильные трубы со специальныой лебёдки, а бурильную головку поднимают только после её износа вместе с колонной. При работе колонковыми долотами с несъёмным керноприёмником для выноса керна из скважины необходимо поднимать всю бурильную колонну; при этом часто головки оказываются неизношенными. Кернообразующие элементы долот передают на керн минимальные поперечные усилия, что снижает вероятность его разрушения; промывочные каналы в бурильных головках расположены так, что струя промывочного раствора минует керноприёмник.

Буровые долота и бурильные головки изготовляют из прочных и износостойких материалов, т.к. в процессе бурения на долото действуют осевые и ударные нагрузки, вращающий момент, а также давление и химическая активность промывочной жидкости. Для секций (лап) и шарошек буровых долот применяют хромникельмолибденовые, хромникелевые и никельмолибденовые стали. Выпускаются буровые долота и бурильные головки, оснащённые природными или синтетическими алмазами (см. Алмазное бурение). Некоторые типы долот изготовляют из сталей электрошлакового и вакуумно-дугового переплавов.

Совершенствование буровых долот осуществляется в направлении улучшения их конструкций: создания новых схем опор с герметизированными маслонаполненными опорами для низкооборотного и высокооборотного бурения; применения новых форм твёрдосплавных зубков; изыскания более износостойких материалов; повышения точности изготовления деталей и сборки буровых долот, а также применения более совершенных схем подвода промывочной жидкости к забою скважины.

Снаряды для колонкового бурения.

Колонковое бурение проводят с целью получения из скважины образцов горных пород (кернов). Керн формируется на забое скважины в процессе ее углубления с помощью породоразрушающего инструмента, который разрушает горную породу лишь по кольцевому забою и оставляет в центре нетронутый целик породы (колонку). Отсюда специфическая особенность конструкции породоразрушающего инструмента для колонкового бурения состоит в том, что его вооружение располагается кольцеобразно вокруг свободного прохода для поступления керна.

Рис 9. Одинарный колонковый снаряд

Задача получения достаточно полноценных образцов из скважины определяет дополнительные требования к породоразрушающему инструменту, который в этом случае должен обеспечивать не только эффективное разрушение породы на забое, но и хорошую сохранность керна при его формировании и поступлении в керноприемную трубу или грунтоноску. бурение скважина насос труба

7. Забойные двигатели. Как производится их проверка и подготовкак работе на буровой. Неполадки в работе забойных двигателей и способы их устранения

При бурении нефтяных и газовых скважин применяют гидравлические и электрические забойные двигатели , преобразующие соответственно гидравлическую энергию бурового раствора и электрическую энергию в механическую на выходном валу двигателя. Гидравлические забойные двигатели выпускают гидродинамического и гидростатического типов. Первые из них

называют турбобурами, а вторые - винтовыми забойными двигателями. Электрические забойные двигатели получили наименование электробуров.

ТУРБОБУРЫ

Турбобур представляет собой многоступенчатую гидравлическую турбину, к валу которой непосредственно или через редуктор присоединяется долото.

Каждая ступень турбины состоит из диска статора и диска ротора .

В статоре, жестко соединенном с корпусом турбобура, поток бурового раствора меняет свое направление и поступает в ротор , где отдает часть своей гидравлической мощности на вращение лопаток ротора относительно оси турбины. При этом на лопатках статора создается реактивный вращающий момент, равный по величине и противоположный по направлению вращающему моменту ротора. Перетекая из ступени в ступень буровой раствор отдает часть своей гидравлической мощности каждой ступени. В результате вращающие моменты всех ступеней суммируются на валу турбобура и передаются долоту. Создаваемый при этом в статорах реактивный момент воспринимается корпусом турбобура и БК.

Работа турбины характеризуется частотой вращения вала n , вращающим моментом на валу М, мощностью N, перепадом давления DР и коэфициентом полезного действия h.

Как показали стендовые испытания турбины, зависимость момента от частоты вращения ротора почти прямолинейная. Следовательно, чем больше n , тем меньше М, и наоборот.

В этой связи различают два режима работы турбины: тормозной, когда n = 0, а М достигает максимального значения , и холостой, когда n достигает максимального , а М=0. В первом случае необходимо к валу турбины приложить такую нагрузку, чтобы его вращение прекратилось, а во втором - совершенно снять нагрузку.

Максимальное значение мощности достигается при частоте вращения турбины n = n0.

Режим, при котором мощность турбины достигает максимального значения называется экстремальным. Все технические характеристики турбобуров даются для значений экстремального режима. В этом режиме работа турбобура наиболее устойчива, так как небольшое изменение нагрузки на вал турбины не приводит к сильному изменению n и, следовательно, к возникновению вибраций, нарушающих работу турбобура. Режим, при котором коэфициент полезного действия h турбины достигает максимального значения называется оптимальным. При работе на оптимальном режиме , т.е. при одной определенной частоте вращения ротора турбины для данного расхода бурового раствора Q, потери напора на преодоление гидравлических сопротивлений в турбине DР минимальны.

При выборе профиля лопаток турбины стремятся найти такое конструктивное решение, чтобы при работе турбины кривые максимальных значений N и h располагались близко друг к другу. Линия давления DР таких турбин располагается почти симметрично относительно вертикали, на которой лежит максимум мощности.

Таким образом, при постоянном расходе бурового раствора Q параметры характеристики турбины определяются частотой вращения ее ротора n, зависящей от нагрузки на вал турбины (на долото).

При изменении расхода бурового раствора Q параметры характеристики турбины изменяются совершенно по другому.

Пусть при расходе бурового раствора Q1 и соответствующей этому значению частоте вращения ротора турбины n1 при оптимальном режиме турбина создает мощность N1

и вращающий момент М1 , а перепад давления в турбине составляет DР1. Если расход бурового раствора увеличить до Q2 , параметры характеристики турбины изменятся следующим образом:

n1 / n2 = Q1 / Q2 ;

N1 / N2 = (Q1 / Q2)3

М1 / М2 = (Q1 / Q2)2

DР1 / DР2 = (Q1 / Q2)2

Видно, что эффективность турбины значительно зависит от расхода бурового раствора Q. Однако увеличение расхода Q ограничивается допустимым давлением в скважине.

Параметры характеристики турбины изменяются также пропорционально изменению плотности бурового раствора r.

N1 / N2 = М1 / М2 = Р1 / DР2 = r1 / r2

Частота вращения ротора турбины n от изменения плотности r не зависит. Параметры характеристики турбины изменяются также пропорционально изменению числа ступеней.

ГОСТ 26673-90 предусматривает изготовление бесшпиндельных (ТБ) и шпиндельных (ТШ) турбобуров.

Турбобуры ТБ применяются при бурении вертикальных и наклонных скважин малой и средней глубины без гидромониторных долот. Применение гидромониторных долот невозможно по тем причинам, что через нижнюю радиальную опору (ниппель) даже при незначительном перепаде давления протекает 10 - 25% бурового раствора.

Значительное снижение потерь бурового раствора достигается в турбобурах, нижняя секция которых, названная шпинделем, укомплектована многорядной осевой опорой и радиальными опорами, а турбин не имеет.

Присоединяется секция шпиндель к одной (при бурении неглубоких скважин), двум или трём последовательно соединённым турбинным секциям.

Поток бурового раствора, пройдя турбинные секции, поступает в секцию - шпиндель, где основная его часть направляется во внутрь вала шпинделя и далее к долоту, а незначительная часть - к опорам шпинделя, смазывая трущиеся поверхности дисков пяты и подпятников, втулок средних опор и средних опор. Благодаря непроточной конструкции опор и наличию уплотнений вала, значительно уменьшены потери бурового раствора через зазор между валом шпинделя и ниппелем .

Для бурения наклонно - направленных скважин разработаны шпиндельные турбобуры - отклонители типа ТО.

Турбобур - отклонитель состоит из турбинной секции и укороченного шпинделя. Корпуса турбинной секции и шпинделя соединены кривым переводником.

Для бурения с отбором керна предназначены колонковые турбобуры типа КТД, имеющие полый вал , к которому через переводник присоединяется бурильная головка . Внутри полого вала размещается съёмный керноприёмник . Верхняя часть керноприёмника снабжена головкой с буртом для захвата его ловителем, а нижняя - кернорвателем, вмонтированным в переводник . Для выхода бурового раствора, вытесняемого из керноприёмника по мере заполнения его керном, вблизи верхней части керноприёмника имеются радиально расположенные отверстия в его стенке, а несколько ниже их - клапанный узел . Последний предотвращает попадание выбуренной породы внутрь керноприёмника, когда он не заполняется керном, и в это время клапан закрыт.

Керноприёмник подвешан на опоре , установленной между переводником к БК и распорной втулкой . Под действием гидравлического усилия, возникающего от перепада давления в турбобуре и долоте, и сил собственного веса, керноприёмник прижимается к опоре и во время работы турбобура не вращается.

ВИНТОВОЙ ЗАБОЙНЫЙ ДВИГАТЕЛЬ

Рабочим органом винтового забойного двигателя (ВЗД) является винтовая пара: статор и ротор .

Статор представляет собой металлическую трубу, к внутренней поверхности которой привулканизирована резиновая обкладка, имеющая 10 винтовых зубьев левого направления, обращённых к ротору.

Ротор выполнен из высоколегированной стали с девятью винтовыми зубьями левого направления и расположен относительно оси статора эксцентрично

Кинематическое отношение винтовой пары 9: 10 и соответствующее профилирование её зубьев обеспечивает при движении бурового раствора планетарное обкатывание ротора по зубьям статора и сохранение при этом непрерывного контакта ротора и статора по всей длине. В связи с этим образуются полости высокого и низкого давления и осуществляется рабочий процесс двигателя.

Вращающий момент от ротора передаётся с помощью двухшарнирного соединения на вал шпинделя, укомплектованного многорядной осевой шаровой опорой и радиальными резино - металлическими опорами . К валу шпинделя присоединяется долото . Уплотнение вала достигается с помощью торцевых сальников.

Типичная характеристика ВЗД при постоянном расходе бурового раствора следующая . По мере роста момента М перепад давления в двигателе Р увеличивается почти линейно, а частота вращения вала двигателя снижается вначале незначительно, а при торможении - резко. Зависимости изменения мощности двигателя и К.П.Д. от момента М имеют максимумы. Когда двигатель работает с максимальным, режим называют оптимальным, а с максимальной мощностью - экстремальным. Увеличение нагрузки на долото после достижения экстремального режима работы двигателя приводит к торможению вала двигателя и к резкому ухудшению его характеристики.

Неэффективны и нагрузки на долото, при которых момент, развиваемый двигателем, меньше момента, обеспечивающего оптимальный режим его работы.

Характер изменения от момента М при любом расходе бурового раствора остаётся примерно одинаковым. Значения при увеличении растут почти линейно, - несколько уменьшается, а возрастает по зависимости, близкой к квадратичной.

Условия работы БК при роторном способе бурения и при бурении с забойными двигателями различны.

При роторном бурении БК, передающая вращение от ротора к долоту и нагрузку на долото, испытывает действие ряда сил. Верхняя часть БК под действием сил собственного веса и перепада давления в промывочных отверстиях долота находится в растянутом , а нижняя, воспринимающая реакцию забоя- в сжатом состоянии. Следовательно, в БК имеется сечение, в котором отсутствуют осевые растягивающие и сжимающие силы. Выше этого сечения действуют напряжения растяжения, возрастающие к вертлюгу, а ниже него - напряжения сжатия, увеличивающиеся к долоту.


Подобные документы

  • Тенденция развития привода буровых установок. Описание существующей системы привода. Выбор системы привода ротора, буровых насосов и буровой лебёдки. Выбор дизель-генераторов для дизельной электростанции. Методика определения марки и сечения кабелей.

    дипломная работа [960,6 K], добавлен 22.03.2014

  • Назначение устьевого оборудования скважин и колонных головок. Способы монтажа и транспортировки буровых установок. Схемы работы комплексов механизмов для механизации АСП-3. Модуль компрессоров в системе пневмоуправления буровой установки БУ-2900/175.

    контрольная работа [467,8 K], добавлен 17.01.2011

  • Исследование схемы стандартной буровой установки. Описание оборудования, предназначенного для подъема и спуска бурильной колонны и обсадных труб в скважину, удержания колонны на весу во время бурения. Разрушение горной породы. Вынос породы из скважины.

    лекция [201,3 K], добавлен 28.11.2014

  • Общие сведения о промысловом объекте. Географо-экономические условия и геологическое строение месторождения. Организация и производство буровых работ. Методы увеличения производительности скважин. Текущий и капитальный ремонт нефтяных и газовых скважин.

    отчет по практике [1,0 M], добавлен 22.10.2012

  • Нефтепоисковые работы на территории Татарстана. Цикл строительства скважины. Типовая схема размещения оборудования, инструмента, запасных частей и материалов на буровой. Выбор породоразрушающих инструментов. Состав бурильной колоны и забойные двигатели.

    отчет по практике [1,8 M], добавлен 01.12.2010

  • Ознакомление с основными сведениями о районе буровых работ и геологическом строении Песчаной площади. Проектирование конструкции скважины. Выбор оборудования буровой установки, породоразрушающего инструмента, технологии бурения и цементирования.

    дипломная работа [109,9 K], добавлен 07.09.2010

  • Организация и механизация буровзрывных работ. Буровзрывные работы в городских условиях. Производство взрывных работ при разборке зданий и сооружений. Разработка выемок, котлованов, траншей, колодцев. Охрана труда при производстве буровых и взрывных работ.

    курсовая работа [37,1 K], добавлен 22.06.2013

  • Техника безопасности при транспортировке и монтаже самоходных и передвижных буровых установок. Ликвидация аварий при колонковом бурении. Безопасное проведение подземных горных работ. Технические характеристики буровой установки фирмы Boart Longyear.

    отчет по практике [23,9 M], добавлен 09.06.2014

  • Проектирование буровых работ для инженерно-геологических изысканий. Выбор способа бурения и промывки, определение конструкции скважины. Выбор буровой установки, породоразрушающего и спуско-подъемного инструмента. Способы и методы повышения выхода керна.

    курсовая работа [167,6 K], добавлен 28.08.2013

  • Выбор класса буровой установки в соответствии с ГОСТ 16293-89. Расчет параметров талевой системы и буровой лебедки. Анализ скорости спуска и подъема крюка. Мощность, развиваемая на барабане. Подсчет параметров бурового ротора. Подбор буровой установки.

    курсовая работа [1,4 M], добавлен 12.05.2021

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.