Предмет и задачи инженерной геодезии

Способы измерений и изображений земной поверхности на планах, картах, геодезические приборы для изучения формы и размеров Земли. Системы координат, используемые в геодезии. Топографические планы, карты и профили. Устройство теодолита, угловые измерения.

Рубрика Геология, гидрология и геодезия
Вид шпаргалка
Язык русский
Дата добавления 18.04.2014
Размер файла 1017,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

23. Методы нивелирования и их точность

Нивелированием называются геодезические работы по измерению превышений, разности высот точек. Различают следующие методы нивелирования: геометрическое, тригонометрическое, гидростатическое, барометрическое, механическое, стереофотограмметрическое.

Геометрическое нивелирование производится горизонтальным визирным лучом, который получают чаще всего при помощи приборов, называемых нивелирами. Точность геометрического нивелирования характеризуется средней квадратической погрешностью нивелирования на 1 км двойного хода равной от 0.5 до 10.0 мм в зависимости от типа используемых приборов.

Тригонометрическое нивелирование предусматривает измерение расстояния и угла наклона, которые необходимы для вычисления превышения по тригонометрическим формулам. Точность определения превышения на станции зависит от погрешностей измерений угла и расстояния и обычно на один порядок (в 10 раз) меньше чем при геометрическом нивелировании.

Гидростатическое нивелирование основано на свойстве поверхности жидкости в сообщающихся сосудах устанавливаться на одной высоте. Этот метод применяют для выверки строительных конструкций по высоте в стесненных условиях, а также при наблюдениях за деформациями инженерных сооружений. Точность определения превышений достигает 0.1 - 1.0 мм.

Барометрическое нивелирование использует зависимость высот точек местности от величины атмосферного давления в этих точках. Наиболее точные барометры позволяют определять превышения с погрешностью 0.3 -0.5 м.

Радиолокационное нивелирование производят с летательных аппаратов посредством определения длины пути прохождения электромагнитных волн отраженных от земной поверхности.

Механическое нивелирование производят при помощи специального прибора, содержащего датчик углов наклона продольной оси транспортного средства относительно маятника, сохраняющего отвесное положение, и датчик пути. Погрешность такого нивелирования со скоростью 30 км/ч от 0.3 до 0.6 м на 1 км хода.

24. Способы геометрического нивелирования

Геометрическое нивелирование выполняется горизонтальным лучом визирования. Перед нивелированием точки на местности закрепляют колышками, костылями, башмаками, на которые устанавливают вертикально нивелирные рейки. Место установки нивелира для работы называют станцией, а расстояние от нивелира до рейки - плечом нивелирования.

Различают два способа геометрического нивелирования: из середины и вперед. При нивелировании из середины (рис.30а) нивелир устанавливается примерно на равных расстояниях от реек, поставленных на точки А и В, а превышение вычисляют по формуле:

Рис.30. Способы геометрического нивелирования: а - из середины; б - вперед

h = a - b,

где а и b - отсчеты в мм по рейкам, установленным соответственно на задней по ходу движения при нивелировании и передней точках.

Знак превышения h получится положительным, если а больше b, и отрицательным, если а меньше b. Если известна высота НА задней точки А, то высота передней точки В

НВ = НА + h.

При нивелировании вперед нивелир ставят так, чтобы его окуляр находился над точкой А, измеряют высоту прибора i, затем визируя на рейку, отвесно поставленную в точке В, берут отсчет b. В этом случае:

h = i - b.

При нивелировании нескольких точек для вычисления их высот используют горизонт прибора, которым называют высоту горизонтальной линии визирования, т.е. горизонт прибора равен высоте точки, на которой установлена рейка, плюс отсчет по рейке. Из рис. 30 б следует:

ГП = HA + i; НB = ГП - b.

Последовательное нивелирование применяется для измерения превышений между точками А и D, разделенными значительным расстоянием или превышениями.

25. Классификация нивелиров. Устройство технических нивелиров.

В зависимости от устройств, применяемых для приведения визирной оси трубы в горизонтальное положение, нивелиры изготавливают двух видов - с цилиндрическим уровнем на зрительной трубе (рис.31) и с компенсатором углов наклона, т.е. без цилиндрического уровня.

Рис.31. Общая схема нивелира, название его частей и осей, поле зрения трубы

Нивелиры бывают трех классов точности:

Н-05, Н-1, Н-2 - высокоточные для нивелирования I и II классов;

Н-3 - точные для нивелирования III и IV классов;

Н-10 - технические для топографических съемок и других видов инженерных работ.

Число в названии нивелира означает среднюю квадратическую погрешность в мм нивелирования на 1 км двойного хода. Для обозначения нивелиров с компенсатором к цифре добавляется буква К, а для нивелиров с горизонтальным лимбом - буква Л, например Н-10КЛ.

Для установки нивелира в рабочее положение его закрепляют на штативе становым винтом и вращением сначала двух, а затем третьего подъемных винтов приводят пузырек круглого уровня на середину. Отклонение пузырька от середины допускается в пределах второй окружности. В этом случае диапазон работы элевационного винта позволит установить пузырек цилиндрического уровня в нульпункт и установить визирную ось зрительной трубы в горизонтальное положение при соблюдении главного условия (для нивелира с цилиндрическим уровнем UU1 WW1). Приближенное наведение на нивелирную рейку выполняют с помощью мушки, расположенной сверху зрительной трубы. Более точное наведение осуществляют вращением наводящего винта зрительной трубы, которую перед отсчетом по рейке предварительно устанавливают по глазу (вращением окуляра) и по предмету (вращением кремальеры) для четкого совместного изображения сетки нитей и делений на нивелирной рейке. Перед отсчетом по средней нити тщательно совмещают концы пузырька цилиндрического уровня в поле зрения трубы, медленно вращая элевационный винт.

26. Работа и контроль на станции при техническом нивелировании. Источники погрешностей при нивелировании. Уравнивание превышений и вычисление высот связующих и промежуточных точек

Для технического нивелирования используют нивелиры Н-10, Н-3 и рейки РН-3, РН-10. Работу на станции выполняют в следующей последовательности:

1. На крайние точки A и В нивелируемой линии устанавливают рейки, и примерно на равном удалении от них - нивелир. Неравенство плеч на станции не должно превышать 10 м;

2. Нивелир приводят в рабочее положение, наводят трубу на заднюю рейку и берут отсчет по черной ее стороне ач;

3. Наводят трубу на переднюю рейку и берут отсчеты сначала по черной, а затем по красной стороне bч и bк;

4. Наводят трубу на заднюю рейку и берут отсчет по красной стороне ак;

5. Если кроме крайних точек A и B необходимо определить высоты точек C1, C2,..., Cn промежуточных точек, то заднюю рейку последовательно устанавливают на эти точки и берут отсчеты C1, C2,..., Cn по черной стороне. При выполнении ответственных работ отсчеты на промежуточных точках производят по обеим сторонам рейки. При использовании уровенных нивелиров перед каждым отсчетом пузырек приводят в нуль-пункт;

6. Для контроля вычисляют разность нулей передней РОпкч и задней

РОз=bк-bч.

Расхождение разности нулей по абсолютной величине не должно превышать 5 мм;

7. На каждой станции вычисляют значения превышений, определяемых по черным и красным сторонам реек:

hчч-bч, hкк-bк.

Измерения считают выполненными правильно, если hч-hк<5 мм;

В техническом нивелировании расстояние от нивелира д реек не должно превышать 120 м. Высоту передней точки вычисляют по формуле

НBA+h.

Высоты промежуточных точек удобно вычислять через горизонт прибора (ГП). ГП - высота визирного луча над исходной уровенной поверхностью.

ГП=НA+а=НB+b.

Высоты промежуточных точек

НCi=ГП-Ci.

Случайные и систематические погрешности при нивелировании возникают вследствие недостаточной точности нивелира и реек, неполной юстировки нивелира, влияния внешней среды и нарушении методики измерений.

Для уменьшения приборных погрешностей превышения рекомендуется измерять способом из середины по двум сторонам реек, а рейки удерживать отвесно на устойчивых предметах. Предельные расстояния от нивелира до реек ограничивают 100-120 м, погрешности измерений превышений на станции в этом случае не превысят 5 мм.

27. Полевые проверки и юстировки уровенных нивелиров

1. Ось круглого уровня должна быть параллельна оси вращения нивелира.

При проверке, подъемными винтами подставки пузырек круглого уровня приводят в нуль-пункт и верхнюю часть нивелира поворачивают на 180 вокруг оси ращения нивелира. Если пузырек остался в нуль-пункте -условие выполнено. Если же отклонился, вращением юстировочных винтов его возвращают к центру ампулы до половины дуги отклонения. Проверку повторяют.

2. Горизонтальная нить сетки должна быть перпендикулярна к оси вращения нивелира. Вращая зрительную трубу наводящим винтом, следят, изменяется ли отсчет при перемещении изображения рейки от одного края поля зрения к другому. Если отсчет изменяется больше чем на 1 мм, диафрагму с сеткой необходимо развернуть в требуемое положение, ослабив крепящие ее винты.

3. Ось цилиндрического уровня должна быть параллельна визирной оси зрительной трубы. Это условие, называемое главным, проверяют двойным нивелированием пары точек способом "из середины" и "вперед". Для этого закрепляют неподвижно две нивелирные рейки на расстоянии 60-90 м, а нивелир устанавливают между ними на середину с погрешностью 1 м. Расстояния до реек измеряют нитяным дальномером. Определяют превышение между рейками при двух горизонтах прибора, как разность отсчетов на заднюю и переднюю рейки. Превышение, полученное при одном горизонте прибора, не должно отличаться от превышения, полученного при втором горизонте прибора, не более 3 мм. Затем выбирают вторую станцию на расстоянии предела фокусирования (2...3 м) от одной из реек и берут по ней отсчет, который считают свободным от влияния непараллельности оси цилиндрического уровня и визирной оси. Используя этот отсчет и превышение, полученное на первой станции вычисляют отсчет по дальней рейке. Если вычисленный отсчет отличается от наблюдаемого более чем на 3 мм, устанавливают вычисленный отсчет на рейке элевационным винтом, а исправительными винтами цилиндрического уровня (двумя вертикальными, предварительно ослабив один горизонтальный) приводят пузырек на середину.

Рис.26. Поверка главного условия нивелира

28. Поверки и юстировки нивелиров с компенсаторами

Для нивелиров с компенсатором поверки и юстировки 1 и 2 (круглого уровня и сетки нитей) выполняются так же, как и для нивелиров с цилиндрическим уровнем. Рассмотрим особенности юстировки главного условия (поверка 3).

Визирный луч зрительной трубы должен быть горизонтален в диапазоне работы компенсатора. При выполнении проверки нивелир устанавливают в рабочее состояние по круглому уровню. На второй станции, при нивелировании способом "вперед", наклон визирного луча устраняют перемещением диафрагмы с сеткой ее вертикальным юстировочным винтом, устанавливают среднюю нить на отсчет по рейке, который соответствует горизонтальному положению визирного луча.

Проверяя работу компенсатора, пузырек уровня приводят в нуль-пункт и берут отсчет по рейке, удаленной на 70-80 м от нивелира. Затем подъемными винтами нивелир наклоняют вперед, назад, влево, и вправо на углы, равные отклонению пузырька круглого уровня от нуль-пункта на одно кольцевое деление. Отсчеты не должны изменяться более чем на 1-2 мм. Нивелир исправляют в заводских условиях.

29. Отличительные особенности проверки и юстировки главного условия нивелиров Н 3 и Н 3К

Главное условие нивелира НЗК: линия визирования должна быть горизонтальна при наклонах оси прибора в диапазоне работы компенсатора.

Главное условие нивелира НЗ: визирная ось и ось цилиндрического уровня должны быть параллельны.

Проверка этих условий выполняется двойным нивелированием пары точек способом "из середины" и "вперед". Для этого закрепляют неподвижно две нивелирные рейки на расстоянии 60-90 м, а нивелир устанавливают между ними на середину с погрешностью 1 м. Расстояния до реек измеряют нитяным дальномером. Определяют превышение между рейками при двух горизонтах прибора, как разность отсчетов на заднюю и переднюю рейки.

Превышение, полученное при одном горизонте прибора, не должно отличаться от превышения, полученного при втором горизонте прибора, не более 3 мм. Затем выбирают вторую станцию на расстоянии предела фокусирования (2...3 м) от одной из реек и берут по ней отсчет.

Используя этот отсчет и превышение, полученное на первой станции вычисляют отсчет по дальней рейке. Если вычисленный отсчет отличается от наблюдаемого более чем на 3 мм, то:

- для нивелира с цилиндрическим уровнем - устанавливают вычисленный отсчет на рейке элевационным винтом, а исправительными винтами цилиндрического уровня (двумя вертикальными, предварительно ослабив один горизонтальный) приводят пузырек на середину;

- для нивелира с компенсатором - наклон визирного луча устраняют перемещением диафрагмы с сеткой ее вертикальным юстировочным винтом, устанавливают среднюю нить на вычисленный отсчет по рейке, который соответствует горизонтальному положению визирного луча.

30. Линейные измерения. Средства измерений и их точность

Линейные измерения на местности производят непосредственным или косвенным методами. Для непосредственного измерения расстояний используют землемерные ленты, измерительные рулетки или инварные проволоки, которые последовательно укладывают в створе измеряемой линии. При вычислении длины линии учитывают поправки, связанные с компарированием мерного прибора, его температурой и углом наклона линии к горизонту. С помощью стальных лент и рулеток длины линий измеряют с относительной погрешностью 1:1000 - 1:5000 в зависимости от методики и условий измерений.

При косвенном методе измерений используют оптические или электронные дальномеры, позволяющие получать расстояния по измеренным углам, базисам, времени и другим параметрам. Принцип работы оптических дальномеров основан на решении прямоугольного треугольника (рис. 36), в котором по малому (параллактическому) углу и противолежащему катету b (базису) вычисляют длину другого катета D = b . ctg. Для удобства измерений одну из величин (b или ) принимают постоянной, а другую измеряют. Поэтому оптические дальномеры бывают с постоянным углом и переменным базисом (например, нитяный дальномер) и постоянным базисом и переменным углом. Точность измерения расстояний оптическими дальномерами характеризуется относительной погрешностью от 1:200 до 1:2000.

Рис.36 Параллактический треугольник

Электронные дальномеры, к которым относят светодальномеры, лазеные рулетки, электронные дальномерные насадки, измеряют расстояния с использованием электромагнитных волн. Погрешность измерения составляет от 3 мм до (10 мм + 5 мм/км).

31. Источники погрешностей при измерении расстояний лентой и способы уменьшения их влияния

Измерение расстояний лентой выполняется двумя мерщиками. Передний берет 5 шпилек, задний совмещает конец ленты в начальной точке, убедившись в том, что подписи метровых делений возрастают от заднего конца ленты к переднему. Затем задний мерщик направляет переднего, который, встряхивая и натягивая ленту, помещает ее в створ линии, обозначенный вехами, закрепляет передний конец натянутой ленты шпилькой, поставленной вертикально. Для исключения сдвижки ленты и удобства ее ориентации задний конец ленты прижимают ногой к земле.

Перед перемещением (протягиванием) ленты вперед на ее длину сначала задний мерщик вынимает свою шпильку, а затем передний снимает ленту со своей шпильки, которая остается в земле и от которой измерение продолжается.

На точность измерения линий влияют следующие погрешности и условия измерений:

1. Укладка ленты не в створе измеряемой линии вызывает одностороннюю систематическую погрешность, которая может быть уменьшена установкой вешек через каждые 80 - 120 м;

2. Прогиб ленты, для устранения которого ленту встряхивают и натягивают с силой 98 Н;

3. Погрешности в длине самой ленты, определяемые при компарировании (сравнении с эталоном) и учитываемые при измерении;

4. Углы наклона линии к горизонту превышающие 2, которые учитываются при вычислении горизонтального проложения (d = Dcos) и должны быть измерены эклиметром;

5. Разность температур при измерении t и компарировании tк превышает 8, и поэтому в длину линии D вводят поправку за температуру

Dt= (t - tк)D,

где - коэффициент линейного расширения материала мерного прибора (для стали = 12.5 . 10-6);

Кроме перечисленных систематических, на точность линейных измерений влияют и случайные погрешности, связанные с отсчитыванием по шкале ленты, фиксацией концов ленты, ее сдвижка при натяжении, неровностями поверхности вдоль измеряемой линии и другие факторы.

К грубым погрешностям на учебной геодезической практике следует отнести следующие:

а) при вычислении длины линии D = nl+r, неправильно определено число целых отложений ленты длиной l в измеряемой линии. Число отложений n должно соответствовать количеству шпилек у заднего мерщика. Неправильно измерен остаток r - расстояние от заднего нулевого штриха до центра знака конечной точки;

б) не выполнен контроль измеренного расстояния D, который предусматривает повторное измерение линии в обратном направлении. Расхождение D прямого и обратного результатов допускается не более (1:2000). D.

32. Общие сведения о топографических съемках местности

Топосъемка - это комплекс работ, выполняемых с целью получения топографического плана, карты или цифровой модели местности (ЦММ). Планы и карты создаются в основном методами аэрофотосъемки, но на небольших участках их получают наземными съемками, которые различают по видам используемых основных приборов:

1) теодолитная - теодолит и лента;

2) мензульная - мензула и кипрегель;

3) тахеометрическая - тахеометр;

4) нивелирование по квадратам - нивелир;

5) фототопографическая съемка - фототеодолит.

Для различных видов строительства и в зависимости от стадии проектирования (техническое проектирование и рабочие чертежи) выбирают масштаб съемки. От масштаба зависит точность планов и карт. Так, максимальная точность масштаба 1:1000 характеризуется величиной t=0.1.1000 = 0.10 м. В соответствии с действующими нормативными документами (СНБ 1.02.01-96. Инженерные изыскания для строительства) средняя погрешность в изображении на планах предметов с четкими очертаниями не должна превышать 0.5 мм относительно ближайших точек съемочного обоснования, погрешность в изображении рельефа - 1/3 высоты сечения рельефа горизонталями.

Топосъемка производится относительно пунктов съемочного обоснования, созданного теодолитно-нивелирными ходами, и состоит из полевых и камеральных работ.

Полевые работы включают:

- рекогносцировку - предварительный осмотр местности;

- закрепление точек съемочного обоснования и привязка их к местным предметам линейными промерами;

- измерение горизонтальных углов и длин сторон;

- съемку элементов ситуации и рельефа местности.

К камеральным работам относят:

- вычисление координат и высот пунктов теодолитно-нивелирных ходов;

- нанесение на план этих пунктов;

- построение на плане элементов ситуации и характерных высотных точек с полевых журналов и абрисов;

- проведение горизонталей и вычерчивание плана в соответствии с условными топографическими знаками.

33. Теодолитная съемка, способы съемки ситуации.

Целью теодолитной (горизонтальной) съемки является составление контурного плана местности. Съемка элементов ситуации на местности производится относительно пунктов и сторон теодолитного хода съемочного обоснования. На рис. показан абрис теодолитной съемки по линии 1-2 теодолитного хода. Арабскими цифрами в кружках указаны точки, положение которых получено следующими способами съемки ситуации:

Рис.32 Способы съемки ситуации

При съемке способом прямоугольных координат, положение точки 1 определено координатами Х = 72.4 м, У = 9.8 м от линии теодолитного хода 1-2. Приложив нулевой штрих рулетки к углу дома (точка 1), на ленту расположенную на линии 1-2 теодолитного хода опускают перпендикуляр и отсчитывают его длину по рулетке (9.8 м), по ленте - расстояние от пункта 1 съемочного обоснования до основания перпендикуляра (72.4 м). Перпендикуляры длиной до 4...8 в зависимости от масштаба съемки восстанавливаются визуально, а при использовании эккера могут быть увеличены примерно в пять раз. Эккер - прибор для построения на местности прямых углов.

Способом линейных засечек определено положение второго угла дома (точки 2). Для этого на местности измерено расстояния 10.6 и 9.8 м от опорных точек на линии с абсцисами соответственно 54.1 и 64.0. Угол дома на плане окажется в точке пересечения дуг с радиусами измеренных расстояний.

Способом угловой засечки на плане может быть получена точка 3. Для этого измерены теодолитом углы 33 35' и 65 05'.

Способ полярных координат предусматривает измерение на местности (точка 4) полярного угла (70 00') и его стороны (35.3 м).

Способ створа (вертикальная плоскость через две точки) использован при съемке точки пересечения ручьем линии теодолитного хода (точка 5). Расстояние (10.5 м) измерено по створу от пункта 1.

Способ обмера элементов ситуации применяют для контроля полевых измерений и графических построений на плане.

34. Тахеометрическая съемка, используемые приборы и формулы

Сущность тахеометрической съемки заключается в том, что плановое положение характерных (реечных) точек местности определяется полярным способом от линии теодолитного хода, а их высотное положение определяется одним из двух методов: геометрическим или тригонометрическим нивелированием. Расстояние от прибора до реек зависит от масштаба составляемого топоплана и для масштаба 1:1000 - допускается до 150 м, а между соседними реечными точками менее 35 м.

Результаты съемки наносятся на план при помощи транспортира с погрешностью превышающей 8 минут, а полярные расстояния до реечных точек определяются на местности по нитяному дальномеру со средней относительной погрешностью D/D = 1/200. Для сравнения отметим, что относительные погрешности измерений расстояний землемерной лентой или 20-метровой рулеткой составляют порядка 1/2000, шагами - 1/20. При определении расстояний одну из дальномерных нитей совмещают с началом дециметрового деления на рейке (обычно с 1000 мм), а по второй дальномерной нити берут отсчет. Разность отсчетов на рейке по верхней и нижней дальномерным нитям умноженная на коэффициент дальномера, равный 100, и будет соответствовать

Рис.33.1.Определение расстояния по нитяному дальномеру

При тахеометрической съемке высоты реечных точек в зависимости от условий местности получают при горизонтальном визировании (геометрическое нивелирование способом "вперед") или наклоном (тригонометрическое нивелирование). Используемые при этом формулы могут быть получены из рис.33.2.

При геометрическом нивелировании способом "вперед" сначала определяют горизонт прибора

ГП = Нст+I.

Затем устанавливают на вертикальном круге теодолита отсчет равный МО. Высоты реечных точек вычисляют по формуле

Нi= ГП - аi,

где аi - отсчеты по рейке при горизонтальном визировании.

При тригонометрическом нивелировании реечных точек при КЛ наводят среднюю нить сетки на отсчет Vj (для упрощения последующих вычислений по возможности отсчет Vj должен быть равен высоте прибора I), снимают отсчет Л по ВК и вычисляют угол наклона

= Л - МО.

Наклонное расстояние D от прибора до реечной точки определяют по штриховому (нитяному) дальномеру. Так как вертикально (отвесно) установленная рейка не перпендикулярна визирному лучу на величину угла наклона , то

D = D' cos, d = D' cos2,

где D' - расстояние, определяемое по штриховому дальномеру и отвесно установленной рейке.

Рис.33.2.Схема геометрического и тригонометрического нивелирования

Тогда из прямоугольного треугольника, у которого определены D и , так называемое "неполное" превышение

h'= D sin = D' cos sin = (1/2)D' sin2

или

h'= d tg = D' cos2 sin/cos = (1/2)D'sin2.

На равнинной местности при углах наклона < 5 "неполное" превышения можно вычислять по приближенной формуле:

h'= D' sin.

Высоты реечных точек, определяемых тригонометрическим нивелированием, вычисляются по формуле:

Hj= Hст+ h' + I - Vj.

Если высота наведения Vj равна высоте прибора I, то формула вычисления высот упрощается

Hj= Hст+ h'.

35. Порядок работы на станции при тахеометрической съемке. Вычислительная и графическая обработка результатов съемки

Полевые работы при тахеометрической съемке на станции включают следующие действия:

- установку прибора над точкой с известными координатами и приведение его в рабочее положение (допускается выполнять центрирование с погрешностью до 3 см, т.е. на порядок грубее, чем при измерении горизонтальных углов);

- определение место нуля вертикального круга (п.28);

- составление абриса на станции с указание на нем положения реечных точек;

- измерение высоты прибора с погрешностью 1-2 см;

- ориентирование нуля лимба горизонтального круга на соседнюю точку съемочного обоснования, координаты которой известны;

- наблюдение реечных точек при КЛ: определение расстояния от прибора до рейки по дальномеру, снятие отсчетов по горизонтальному и вертикальному кругам при наведении средней горизонтальной нити на определенный отсчет, например Vj = I;

- вычисление углов наклона, неполных превышений и высот реечных точек по формулам

= Л - М 0,

h'= 0.5 D' sin2,

Hj= Hст+ h' + I - Vj.

Если рельеф местности позволяет брать отсчет по рейке горизонтальным лучом визирования (в этом случае отсчет по ВК должен быть равен М 0), то высоты реечных точек

Нi= ГП - аi,

где ГП - горизонт прибора

ГП = Нст+ I;

аi - отсчет по рейке горизонтальным лучом визирования.

Результаты измерений и вычислений записывают в журнал тахеометрической съемки.

При камеральной обработке проверяют журналы тахеометрической съемки и исправляют ошибки вычислений. Затем с помощью тахеографа наносят на план пикетные (реечные) точки по значениям полярных углов и расстояний. Около пикетных точек выписывают их номера и высоты. В соответствии с абрисами рисуют на плане контуры угодий, элементы ситуации и обозначают их условными знаками. Для отображения рельефа проводят горизонтали.

Лабораторная работа в аудитории

Станция N2. Ориентирование нуля горизонтального круга на север.

Высота прибора, I = 1.54 м. Дата: 12.11.97.

Высота точки, H = 216.16 м. Наблюдения при КЛ.

Горизонт прибора, ГП = 217.70 м. Теодолит 2Т 30П 07346.

Место нуля ВК:

МО = (КЛ + КП)/2 = (7 24' - 7 26')/2 = - 0 01'.

Таблица 34 Журнал тахеометрической съемки

№ точки

Расстояния

Отсчеты по

Угол наклона

Высота наведения Vj, м

Неполное превышние

I-V

Полное превышение hj

Высота Н

по дальномеру

исправ. за наклон

ГК

рейке аi, м

ВК

Сев

000

1. Метод геометрического нивелирования

А

26,6

14705

0,99

МО

216,71

В

25,0

18810

0,47

МО

217,23

С

20,1

22525

0,48

МО

217,22

2. Метод тригонометрического нивелирования

А

26,6

14705

113

114

1,54

0,57

0

0,57

216,73

В

25,0

18810

222

223

1,54

1,04

0

1,04

217,20

С

20,1

22525

301

302

1,54

1,06

0

1,06

217,22

Сев

000

36. Нивелирование поверхности участка по квадратам

Представляет собой наиболее простой вид топосъемки. Используется на открытой местности со слабо выраженным рельефом. Получаемый нивелированием по квадратам топографический план наиболее удобны для определения объемов земляных масс при проектировании искусственного рельефа местности.

Построение сетки квадратов на местности выполняется теодолитом и лентой. Стороны квадратов в зависимости от масштаба съемки и рельефа местности принимают равными 10, 20, 40 и более метров. Рассмотрим вариант разбивки шести квадратов со сторонами 40 м. За начальное направление выбирают наиболее длинную линию А14. В створе этой линии забивают через 40 м колышки соответствующие точкам А1, А2, А3, А4. В угловых точках А1 и А4 строят прямые углы и откладывают отрезки А11 и А44, фиксируют колышками угловые точки В1 и В4. Для контроля измеряют сторону В14 и, если ее длина не отличается от проектной более чем на 1:2000 (<5см на 100 м), то выполняют разбивку точек Б1, Б4 и, вешением в соответствующих створах, - точек Б2 и Б3. Колышки забивают вровень с поверхностью земли рядом забивают колышки-"сторожки", на которых подписывают их обозначения.

Плановое положение элементов ситуаций определяют линейными промерами от вершин и сторон квадратов способами прямоугольных координат, линейных засечек и створов. Высоты вершин квадратов получают из геометрического нивелирования

Нi = ГП- bi,

где ГП - горизонт прибора

ГП = Нрп + bрп;

bi - отсчет по рейке горизонтальным лучом визирования.

В журнале-схеме записывают отсчеты по черной и красной сторонам рейки, поставленной на землю, поочередно у каждой вершины квадратов. Контроль правильности отсчетов выполняют по разности нулей (РО), которая не должна отличаться от стандартного значения РО равного 4683 или 4783 мм не более 3 мм. Высоты целесообразно выражать в метрах с округлением до 0.01 м. Привязка сетки квадратов к пунктам геодезической сети с целью построения топоплана в принятой системе координат выполняется прокладкой теодолитно-нивелирного хода. В учебном задании таким ходом является обратный ход от пункта 513 до пункта 512 через точки 3 и В 1. Высотная привязка точки В 1 выполнена замкнутым нивелирным ходом от пункта 512 до точки В 1 и обратно без дополнительного контроля высот, что обычно не рекомендуется нормативными документами.

Рис.35.Схема нивелирования по квадратам

37. Способы интерполирования горизонталей и особенности их проведения

Интерполяция (лат.) - вставка внутрь. Под интерполяцией в математике понимают всякий способ, с помощью которого можно по таблице найти промежуточные результаты, которых нет непосредственно в таблице.

При рисовке горизонталей на планах используют следующие способы интерполяции:

1."На глаз" (визуально). Предположим, что на плане имеются три соседние точки с подписанными высотами 201.35, 203.30, 200.75. Необходимо провести горизонтали с высотой сечения рельефа 1.0 м, т.е. найти визуально плановое положение линий с высотами 201, 202 и 203 м.

Рис.18а. Интерполирование и проведение горизонталей "на глаз"

2. Аналитический, который предусматривает определять расстояние до горизонталей из прямо пропорциональной зависимости между превышением и горизонтальным проложением между точками с подписанными на плане высотами. Из рис.18б видно, что расстояния от точки А до горизонталей с высотами 202 и 203

d1 = h1. dab/hab, d2 = h2. dab/hab,

где h1 и h2 - превышения между горизонталями с отметками 202 и 203 и точкой А с отметкой 201.35 (0.65 и 1.65 м);

dab - расстояние, измеряемое на плане между пикетными точками;

hab - превышение между точками А и В (203.30 - 201.35 = 1.95 м).

Рис.18б. Аналитический способ интерполяции горизонталей

3. Графический способ предусматривает использование палетки, представляющей собой прозрачный лист бумаги или пластика с нанесенным рядом параллельных линий (горизонталей) через 5...10 мм друг от друга. Подписав на палетке отметки горизонталей, которые необходимо провести, и, поворачивая палетку на плане, совмещают точки с отметками с горизонталями на палетке, продавливают карандашом их на план (рис. 18в).

Рис.18в. Графический способ интерполяции горизонталей

Свойства горизонталей и особенности их проведения:

1. Горизонталь - линия равных высот т.е. все ее точки имеют одинаковую высоту;

2. Горизонталь должна быть непрерывной плавной линией;

3. Горизонтали не могут раздваиваться и пересекаться;

4. Расстояние между горизонталями (заложение) характеризуют крутизну ската. Чем меньше расстояние, тем круче скат;

5. Водораздельные и водосборные линии горизонтали пересекают под прямым углом;

6. В случаях, когда заложение превышает 25мм, проводят дополнительные горизонтали (полугоризонтали) в виде штриховой линии (длина штриха 5-6 мм, расстояние между штрихами 1-2 мм);

7. При окончательном оформлении плана выполняют некоторое сглаживание горизонталей в соответствии с общим характером рельефа, при этом предельная погрешность изображения рельефа горизонталями не должна превышать 1/3 основного сечения.

38. Инженерно-геодезические изыскания сооружений линейного типа. Разбивка пикетажа и поперечников. Пикетажная книжка

Практически любому строительству предшествуют изыскания - комплекс экономических, геодезических, геологических, гидрогеологических и других исследований участка предполагаемого строительства с целью получения данных, необходимых для решения задач проектирования, строительства и эксплуатации различных объектов. В результате инженерно-геодезических изысканий составляют топопланы и профили, создают на местности основу для выноса и разбивки проекта в натуре.

При геодезических изысканиях линейных сооружении (дорог, каналов, линий электропередач и т.д.) выполняют трассирование. Под трассой понимают ось линейного сооружения, обозначенная на плане плане, карте или закрепленная на местности. Трассирование бывает камеральным - проектирование трассы выполняется на планах или картах и полевым - положение трассы уточняется и закрепляется на местности.

При полевом трассировании на местности определяют и закрепляют специальными знаками главные точки трассы: начала и конца, вершин углов поворота. Затем по трассе прокладывают теодолитный или полигонометрический ход, разбивают пикетаж с обозначением плюсовых точек и по-

перечников. Пикеты закрепляют через сто метров (для дорог) кольями, забиваемыми вровень с землей. Рядом устанавливают сторожек, на котором подписывают номер пикета.

Рис.37а. Разбивка пикетажа и поперечника

Вместе с разбивкой пикетажа заполняют пикетажный журнал блакнотного типа, в котором показывают схематично ось трассы и элементы ситуации (абрис). При этом съемка ситуации влево и вправо от оси трассы на расстоянии 20 м выполняется способами перпендикуляров и линейных засечек, - от 20 до 50 м - выполняют глазомерную съемку.

Технология выполнения разбивочных работ на трассе следующая.

Закрепляют на местности пикет 0, устанавливают теодолит, определяют дирекционный угол (магнитный азимут) начального направления. С помощью ленты разбивают пикетаж по предварительно проведенному направлению. Для характеристики рельефа местности в поперечном направлении разбивают профили влево и вправо на 50 м от оси трассы. Вместе с разбивкой пикетажа ведут пикетажный журнал. Влево и вправо на расстоянии 20 м способами перпендикуляров и линейных засечек выполняют съемку ситуаций, от 20-50 м - глазомерная съемка.

Рис.37б. Фрагмент заполнения пикетажной книжки

39. Расчет основных элементов круговой кривой

При разбивке пикетажа в вершинах углов поворота трассы измеряют горизонтальные углы 1, 2 и вычисляют углы поворота (отклонения от прямой) трассы Qлев, Qправ

Имея углы поворота трассы и, принимая радиусы круговой кривой R согласно технических условий проектируемой дороги, вычисляют следующие основные элементы круговой кривой: тангенс (Т), биссектрису (Б), кривую (К) и домер (Д)

Рис.38.2. Элементы круговой кривой

Для вставки кривой в пикетаж определяют пикетажные наименования начала и конца круговой кривой по формулам

НК = ВУ - Т, КК = НК + К.

Результаты вычислений контролируют повторным вычисление КК

КК = ВУ + Т - Д.

Пример. Пусть R = 200 м, Q = 90 00', ВУ ПК 11+30. Необходимо определить пикетажное наименование НК и КК.

По формулам, полученным из рис. 38.2, имеем: Т = 200 . tg 45 = 200.00 м, К = 3.1416. 200. 90/180 =314.16 м, Д = 2. 200.00 - 314.16 = 85.84 м. Б = 200(1/cos45 - 1) = 82.84 м.

Вычислим НК и КК:

Разбивка начала и конца круговой кривой на местности сводится к отложению расстояния 30.00 м от ПК 9, и расстояния 44.16 от ПК 12, сдвинутого вперед на величину домера Д = 85.84.

Контрольная работа 3. Определить положение на трассе главных точек круговой кривой (НК и КК), если: R = 200 м, ВУ ПК 11+30, Q = 90 00' - N N' (N - номер зачетной книжки).

Выполнить расчеты для выноса пикетов на кривую (п.46) и детальную разбивку кривой через 20 м.

40. Вынос пикетов на кривую

Чтобы уточнить положение кривой на местности, обычно выполняют разбивку кривой способом прямоугольных координат и обозначают пикетные и плюсовые точки. Для каждой точки определяют расстояние к от начала или конца кривой. Прямоугольные координаты вычисляют в соответствии с рис.39 по следующим формулам:

Рис.39.Вынос пикетов на кривую

где к - расстояние от начала или конца кривой до переносимого пикета.

Из рис.39 кпк 10= 70.00 м, кпк 11 =170.00 м, кпк 12 = 44.16 м, тогда

Епк 10 =(кпк 10.180) /R = (70.00м.180) /3.1416.200м =20.053 .

Епк 11 =(кпк 11.180) /R =(170.00м.180) /3.1416.200м =48.701 .

Епк 12 =(кпк 12.180) /R =(44.16м.180) /3.1416. 200м =12.651 .

Xпк 10=R. sinЕпк 10=200.00. sin20.054 =68.58 м,

Yпк 10 =2R. sin2(Епк 10/2)=400.00. sin 2(20.054/2)=12.13 м,

Xпк 11=R. sinЕпк 11=200.00. sin 48.702 =150.26 м,

Yпк 11=2R. sin2(Епк 11/2)=400.00. sin 2(48.702/2)=68.00 м,

Xпк 12=R. sinЕпк 12=200.00. sin12.651 =43.80 м,

Yпк 12=2R. sin2(Епк 12/2)=400.00. sin 2(12.651/2)=4.86 м.

41. Детальная разбивка круговой кривой

а) Способ прямоугольных координат

При определении прямоугольных координат точек круговой кривой за ось абсцисс принимают линию тангенса, а за начало координат начало или конец кривой. Прямоугольные координаты точек, лежащих на круговой кривой, находят из прямоугольного треугольника

Хn = R. sin(nE), Yn = R - R. cos(nE) = 2R. sin2(nE/2),

где угол Е соответствует длине дуги к, т.е. Е = к. 180 /R.

При к=20 м, R=200 м Е = 20. 180 /3.1416.200 = 5.73, прямоугольные координаты точек на круговой кривой приведены в таблице.

Таблица детальной разбивки круговой кривой

1

2

3

4

5

6

7

8

9

10

к, м

20

40

60

80

100

120

140

160

180

200

X,м

19.97

39.73

59.10

77.88

95.88

112.93

128.84

143.47

156.67

168.29

Y,м

1.00

3.99

8.93

15.79

24.49

34.94

47.04

60.67

75.69

91.95

42. Нивелирование трассы и поперечников

Для определения высот пикетов и промежуточных точек прокладывают нивелирный ход, который привязывают к реперам.

Рис.41 Нивелирование трассы и поперечников

При нивелировании различают следующие точки:

а) связующие - общие точки для двух смежных станций; между этими точками превышения определяют дважды - по черным и по красным сторонам реек (превышение, полученное по черным сторонам реек, не должно отличаться от превышения, полученного по красным сторонам реек не более чем на +4 мм); на одной станции связующая точка является передней, а на следующей станции - задней;

б) промежуточные - характерные точки рельефа, на которых берут один отсчет только по черной стороне рейки;

в) иксовые, которые являются связующими точками и используются при больших перепадах высот, но на профиль их не наносят.

Контроль нивелирования трассы выполняют по невязке (разности между суммой измеренных превышений и их теоретическим значением), которая не должна превышать +30*?L мм, где L - длина хода в километрах.

При этом нивелирование можно выполнять одним из следующих способов:

1. Трассу нивелируют два раза одним прибором в прямом и обратном направлениях. Таким образом, образуют замкнутый нивелирный ход, в котором теоретическая сумма превышений между связующими точками равна нулю.

2. Прокладывают ход между реперами, высоты которых известны из нивелирования более высокого класса. Тогда, теоретическая сумма превышений будет равна разности высот конечного и начального реперов.

43. Вычислительная обработка журнала технического нивелирования

Камеральные работы при обработке результатов технического нивелирования выполняются обычно в следующей последовательности.

1. Проверка записей полевых отсчетов в журнале. Отсчеты должны быть записаны в виде четырехзначных цифр и соответствовать наименованию точки и ее положению на местности. Разность отсчетов по красной и черной сторонам рейки на связующих точках не должна отличаться от стандартной разности пяток рейки (4783 или 4683) не более +3 мм.

2. Вычисление превышений между связующими точками

hч = Зч - Пч,

hк = Зк - Пк.

Контролем работы на станции является hч - hк, +4 мм. Тогда,

hср = (hч + hк)/2

с округлением по Гауссу до целых мм.

Например, 0546.5 округляют до 0546, а 0547.5 округляют до 0547мм.

3. Выполняют постраничный контроль

(З - П) / 2 = hср,

где З и П - суммы задних и передних отсчетов по рейке.

4. Уравнивают превышение в нивелирном журнале:

а) находят невязку

fh = hср - (Нк - Нн);

б) оценивают невязку

fh < fh доп.(30 мм L);

в) вводят поправки

бh =-fh/n;

г) выполняют контроль

бh = -fh и hиспр.= Нк - Нн;

5. Вычисляют высоты связующих точек

Hi+1 = Hi + hиспр.

6. Для тех станций, где имеются промежуточные точки, определяют горизонт прибора, от которого вычисляют отсчет по рейке и получают ее высоту.

Нпр = ГП - ач,

ГП = Нпк 1 + Зч,

ГП = Нпк 2 + Пч.

44. Построение продольного и поперечного профилей. Проектирование на профилях. Расчет вертикальных кривых. Продольный профиль автодороги

Профильная сетка для большей наглядности и читаемости заполняется черным (все, что относится к существующим элементам местности) и красным (все проектируемое на профилях) цветами.

Условия проектирования:

1. MAX уклон i max = 60%%;

2. Объем выемки должен быть примерно равен объему насыпи;

3. Фиксированные по высоте начальная и, по возможности, конечная точки.

Проектирование на профиле

При проектировании проектной линии необходимо руководствоваться заданными предельными уклонами, отметками фиксированных точек, техническими, экономическими и природными условиями проектирования. Проектные отметки точек трассы вычисляют по формуле:

Нкн+id,

где Нк и Нн - конечная и начальная точки прямого отрезка трассы;

i - проектный уклон, округленный до тысячных (целых промиллей);

d - горизонтальное проложение прямого отрезка трассы.

Рис.43 Продольный профиль автодороги

Рабочие отметки - разность между проектными и фактическими отметками. Положительные рабочие отметки записывают над проектной линией. Они соответствуют высоте насыпи. Отрицательные отметки - глубине выемки. Их записывают под проектной линией.

Точки пересечения проектной линии с линией земли называют точкой нулевых работ. Для точек нулевых работ определяют расстояние до ближайших пикетов, а ее положение на профиле отмечается пунктирной ординатой

Х = hн. d /(I hн I + I hв I),

Y = hв. d /(I hн I + I hв I).

Контроль:

X + Y = d.

Пример:

В местах изменения уклона продольного профиля наклонные прямые сопрягаются вертикальными кривыми (ВК) большого радиуса. Расчет основных элементов ВК выполняют по следующим приближенным формулам:

Т = R. i/2 = K/2, K = R. i, Б = Т 2/2R,

где i - сумма встречных уклонов, взятых по модулю.

i = i1 + i2

Вычисление значений записывают над продольным профилем.

Линии тангенсов ВК принимают за оси абсцисс, а вертикальные ординаты точек ВК вычисляют по формуле

y = x2/2R.

Пример: i1=- 0,004, i2=+0,033, R=10 000 м

Решение: Т=10 000 . 0,037/2= 185 м; К=370 м; Б=1852/20 000=1,71 м

Cоставление поперечного профиля

Профили поперечников вычерчиваются в одном масштабе, соответствующем масштабу для вертикальных расстояний продольного профиля. Для учебных целей масштаб поперечного профиля примем 1:200.

Рис.43.3.Поперечный профиль на ПК 10

45. Общие сведения о геодезических измерениях. Единицы измерений углов и длин. Погрешности измерений. Свойства случайных погрешностей

Измерение - процесс сравнения физической величины с единицей меры, другой однородной величиной. В инженерной геодезии за единицы измерений приняты метр, градус, минута, радиан.

Один метр - длина пути, проходящего электромагнитной волной в вакууме за 1/С долю секунды, где С = 299792458.

Один градус - 1/90 часть прямого угла (1 = 60', 1'= 60"). Центральный угол, опирающийся на дугу окружности равную радиусу называется радианом (1 рад.= 57.3 = 3438'= 206265").

Измерения различают равноточные и неравноточные. Равноточные - это результаты измерений однородных величин, выполняемые с помощью приборов одного класса, одним и тем же методом, одним исполнителем при одних и тех же условиях. Все остальные измерения относятся к неравноточным.

Погрешности бывают систематические, грубые, случайные. Грубые -возникают в результате невнимательности (просчеты, неверные записи). Для их устранения измерения повторяют несколько раз.

Систематические - обусловлены неточностью измерительных приборов. Для уменьшения влияния вводят поправки.

Случайные погрешности обусловлены несовершенством приборов, изменением условий измерений, личными ошибками, неточным наведением и другими. Случайные погрешности определяются по формуле

i= li - Х,

где li - результат измерения, Х - истинное значение определяемой величины.

Статистические свойства случайных погрешностей:

1. Свойство ограниченности (при данных условиях измерений случайные погрешности не могут превышать предела i < пред. В качестве предельной погрешности с вероятностью р = 0.9973 принимают утроенное значение стандарта iпред.= 3m;

2. Свойство плотности - малые по абсолютной величине погрешности появляются чаще больших.

3. Свойство компенсации - среднее арифметическое из случайных погрешностей стремится к нулю при неограниченном возрастании числа измерений lim i= 0;

4. Свойство симметрии - одинаковые по абсолютной величине положительные и отрицательные погрешности равновозможны.

График нормального распределения случайных погрешностей.

46. Cредняя квадратическая погрешность (СКП). Формулы Гаусса и Бесселя. Порядок матобработки ряда равноточных измерений. Предельная абсолютная и относительная погрешности

Наилучшим критерием оценки точности измерений принято считать среднюю квадратическую погрешность (СКП) измерения, определяемую по формуле Гаусса:

где i=li-X

(Х - истинное значение измеряемой величины, а li - результат измерения).


Подобные документы

  • Понятие и содержание геодезии как научной дисциплины, предмет и направления ее исследования, структура и основные элементы. Топографические планы и карты. Угловые и линейные измерения на местности, методика их реализации и необходимое оборудование.

    презентация [8,7 M], добавлен 11.10.2013

  • Предмет и задачи геодезии, понятия о форме и размерах Земли. Системы координат, принятые в геодезии. Система плоских прямоугольных координат Гаусса-Крюгера. Изображение рельефа на топографических картах и планах. Решение инженерно-геодезических задач.

    курс лекций [2,8 M], добавлен 13.04.2012

  • Понятие и содержание геодезии как научной дисциплины. Система географических координат. Ориентирование линий в геодезии. Топографические карты и планы. Плановые и высотные геодезические сети. Линейные измерения. Работы, связанные со строительством.

    курс лекций [1,7 M], добавлен 05.02.2014

  • Геодезия как наука о Земле, измерениях, проводимых для определения ее формы и размеров с целью изображения на плоскости. Основные разделы геодезии и их задачи. Характеристика геодезических понятий. Методы и средства определения формы и размеров Земли.

    презентация [61,8 K], добавлен 22.08.2015

  • Понятие о геодезии как о науке, её разделы и задачи. Плоская прямоугольная и полярная системы координат. Абсолютные, условные, относительные высоты точек. Понятие об ориентировании, истинный и магнитный азимуты, геодезические измерения, их виды, единицы.

    шпаргалка [23,7 K], добавлен 23.10.2009

  • Общая характеристика физической поверхности Земли. Понятие уровенной поверхности, земного эллипсоида и геоида в геодезии. Определение положения точки с помощью системы географических координат и высот. Рассмотрение правил использования масштаба.

    презентация [404,6 K], добавлен 25.02.2014

  • Нормативно-правовое регулирование в области инженерной геодезии. Характеристика органов, контролирующих работу топографо-геодезических служб и их полномочия. Лицензирование их деятельности. Тенденции и перспективы развития геодезии и картографии.

    курсовая работа [347,3 K], добавлен 31.05.2014

  • Предмет изучения инженерной геодезии, ее задачи и направления деятельности. Методика работы с геодезическими приборами, сущность и цели их поверок и юстировок. Порядок и правила проверки нивелира и теодолита, выявленные отклонения и пути их устранения.

    курсовая работа [159,8 K], добавлен 12.07.2009

  • Фигура Земли как материального тела. Действие силы тяготения и центробежной силы. Внутреннее строение Земли. Распределение масс в земной коре. Системы координат, высот и их применение в геодезии. Азимуты, румбы, дирекционные углы и зависимости между ними.

    реферат [13,4 M], добавлен 11.10.2013

  • Геодезические приборы для измерения горизонтальных и вертикальных углов. Изучение основных частей, деталей и осей теодолита. Выполнение необходимых геометрических условий. Устройство цилиндрического уровня. Принципы отсчетного устройства теодолита Т30.

    лабораторная работа [749,4 K], добавлен 10.07.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.