Методика использования электронных тахеометров при производстве землеустроительных работ и межевании земель

Значение межевания земель в системе землеустроительных работ. Характеристика предназначения кадастровых карт и планов. Понятие геодезических измерительных средств. Технические свойства электрических тахеометров и оценка их практического применения.

Рубрика Геология, гидрология и геодезия
Вид дипломная работа
Язык русский
Дата добавления 13.09.2013
Размер файла 5,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Таким образом, государственный земельный кадастр является геоинформационной системой, обеспечивая сбор, хранение и выдачу земельной информации потребителям.

Исходя из вышеперечисленного:

1. В перечне землеустроительных работ земельный кадастр и в частности межевание земель занимают важное место. Земельный кадастр - это государственная система необходимых сведений и документов о правовом режиме земель, их распределении по собственникам земли, землевладельцам, землепользователям и арендаторам, категориям земель, о качественной характеристике и народнохозяйственной ценности земель. Межевание земель представляет собой комплекс работ по установлению, восстановлению и закреплению на местности границ земельного участка, определению его местоположения и площади.

2. Геодезические работы являются важной и неотъемлемой частью комплекса работ по изысканиям, проектированию, строительству и эксплуатации инженерных объектов, гидромелиоративных систем, объектов лесного хозяйства и др. Эти работы во многом определяют как стоимость и качество строительства, так и условия последующей эксплуатации этих объектов.

3. В зависимости от назначения кадастра кадастровые съёмки производят в тех же масштабах, теми же способами и с той же точностью, что и топографические. Базовым является масштаб 1:500, наиболее широко используемым 1:2000, обзорно-справочным 1:10000 и мельче.

На кадастровых картах и планах дополнительно изображают границы земельных участков, владений, сельскохозяйственных и других земельных угодий, кадастровые номера и наименования земельных участков, дают экспликацию (описание категорий использования земель и других кадастровых сведений). Кадастровые карты и планы могут не содержать информацию о рельефе местности.

3. Для определения координат пунктов ОМС (ОМЗ) и межевых знаков используют:

- спутниковые геодезические определения;

- традиционные методы геодезии и фотограмметрические методы.

Для производства измерений применяют:

- спутниковые геодезические приёмники;

- электронные тахеометры;

- световые дальномеры;

- теодолиты;

- фотограмметрические (работы) приборы.

В данной главе проведен анализ требований и методик выполнения основных видов землеустроительных работ, раскрыты основные принципы проведения земельного кадастра, содержание межевания земель, опираясь на которые перейдем к исследованию методики работ на электронных тахеометрах при их производстве на примере тахеометра Topcon GPT 3000 N производства Японии.

2. Методика использования электронных тахеометров при производстве землеустроительных работ и межевании земель

2.1 Анализ современных средств и методов электронной тахеометрии

В геодезической практике последних лет, в качестве геодезических измерительных средств, широкое применение нашли электронные тахеометры, предназначенные для автоматизированной тахеометрической съемки и производства инженерно - геодезических работ.

Электронный тахеометр (ЭТ) - это соединение угломерной и дальномерной частей, блока контроля и управления процессом измерений (как правило, на основе микро ЭВМ), индикаторного устройства, блока питания. Основу угломерной части тахеометров с электронным считыванием составляют датчики накопительного или позиционного типа.

Интенсивное развитие электронных тахеометров, отличающихся высокой степенью автоматизации угловых и линейных измерений, привело к разработке систем и комплексов, включающих в качестве составных частей или блоков указанные приборы и повышающих уровень автоматизации не отдельных процессов, а топографической съемки в целом. При этом значительная автоматизация линейно-угловых измерений и топографических съемок обеспечивается в настоящее время использованием при проведении этих работ электронных тахеометров.

Областями применения электронных тахеометров являются: проведение топографо-геодезических работ, выполняемых в полевых условиях, на строительных площадках, при производстве гидромелиоративных работ, крупное машиностроение, судостроение, инженерные и инженерно-геодезические изыскания, геологические изыскания, военное дело и многое другое. При выполнении работ с применением электронных тахеометров решаются такие практические задачи, как вынос проектных точек в натуру, измерение мостовых пролетов, разбивка по полярным координатам, определение высот недоступных точек, определение продольных и поперечных отклонений точек от заданных осей, создание и обновление топографических карт и планов и т. д.

В совершенствовании электронных тахеометров можно отметить следующие основные этапы:

70-е годы XX века - создание тахеометров первого поколения, как приборов для угловых и линейных измерений в полярной системе координат, оснащенных микропроцессором.

80-е годы - создание тахеометров с коррекцией результатов измерений для уменьшения влияния случайных и систематических ошибок, а также влияния внешних условий;

90-е годы и последующие - создание электронных тахеометров с устройством автоматического наведения на точки визирования (могут задаваться лазерным лучом) на основе ПЗС - матрицы (видео тахеометр), с измерениями дальности без применения специальных оптических отражателей, с ошибками в диапазоне 2-20 мм., на расстояниях до 150 м, с возможностью свободного выбора точек стояния прибора и объединения двух тахеометров в измерительную систему, связанных комплексом на базе ЭВМ. Использование вычислительных устройств позволило упростить конструкцию тахеометров, снизить требования к оптико-механическим узлам, существенно упростить порядок проведения измерений.

Современные электронные тахеометры отличаются полной автоматизацией измерений и вычислений, возможностью составлять и обновлять цифровые карты и планы, компактностью, малой потребляемой мощностью. Встроенная миниЭВМ позволяет повысить производительность измерительного процесса, его точность, обеспечить безошибочность выполнения работ, обрабатывать результаты измерений. Подключение регистрирующего устройства или наличие встроенных ЭВМ обеспечивают автоматизацию всех процессов:

- отсчитывание расстояний;

- предварительная обработка информации до получения координат точек или других величин;

- выдача результатов на дисплей и в накопитель, передача их по радиоканалу в назначенные места;

- учет остаточного наклона вертикальной оси прибора и ошибки эксцентриситета лимба при одностороннем отсчитывании;

- введение поправок за метеоусловия;

- обработка информации для получения координат точек;

- обработка информации для получения цифровой карты или плана участка местности.

В конструкции одних электронных тахеометров учитываются измерения углов (направлений) при двух положениях круга, в других измеряются углы при одном положении круга - при этом система встроенных датчиков компенсируют возникшие при этом погрешности. Зрительная труба тахеометров моноблочного типа конструктивно совмещена с приемопередающей системой дальномерной части. Наличие встроенных в приборы электронных уровней позволяет автоматически учитывать наклон вертикальной оси вращения.

Создание современных ЭТ является результатом развития геодезического приборостроения последних десятилетий, когда были созданы оптико-механические тахеометры, кодовые теодолиты и электронные дальномеры. ЭТ представляют собой смонтированные в единую или модульную конструкцию теодолит и микропроцессор или микро ЭВМ.

Практически все ведущие зарубежные фирмы традиционно специализирующиеся на разработке и выпуске оптико-механических и оптико-электронных геодезических приборов, представляют на мировой рынок ЭТ различной конструкции и назначения. Среди этих фирм следует отметить фирмы: Carl Zeis (Германия), Leica AG (Швейцария), Topcon (Япония) и др., имеющие свои торговые представительства в России. В нашей стране разработка и выпуск ЭТ осуществляется в ЦНИИГАиК, на экспериментальном оптико-механическом заводе (ЭОМЗ) и Уральском оптико-механическом заводе (УОМЗ). Современные ЭТ условно можно разделить на простейшие, универсальные и роботизированные.

Простейшие ЭТ - приборы с минимальной автоматизацией и огромным программным обеспечением. Такие тахеометры обеспечивают точность измерения углов 5-10?, линий (3+5*10-6 D) мм.

Универсальные ЭТ - приборы с расширенными возможностями. Они оснащены большим числом встроенных программ. Обеспечивается точность измерения углов 1-5?, линий (2+3*10-6 D) мм.

Роботизированные ЭТ - тахеометры с сервомоторами, обладающие всеми возможностями предыдущей группы. Наличие сервомоторов, встроенных радио коммуникационных устройств, а также систем автоматического слежения за отражателями позволяет отнести эти приборы к категории тахеометров-роботов.

В приложении № 1 представлены основные технические характеристики современных электронных тахеометров.

Отметим некоторые конструктивные и технологические особенности ряда ЭТ, повышающие возможности их использования на производстве (в скобках даны номера приборов из таблицы приложения № 1, обладающие указанными признаками).

К этим особенностям относятся:

- широкий температурный диапазон (1, 2, 27);

- влагозащитное исполнение корпуса (16, 22, 23);

- широкий выбор аксессуаров - отражатели, вехи, штативы и др. (12-15);

- без отражательный дальномер (5, 11-15);

- интерфейс RЗ232 для связи с ПЭВМ (6-10,1-20,27);

- режим слежения за движущейся визирной целью (5,6,8-15);

- режим самонаведения на визирную цель (6,8-15);

- мощное встроенное программное обеспечение (4,6-10,17-20,27,28);

- встроенные стандартные технологии (6,10,17-20,27).

С учетом технологического развития электронные тахеометры можно классифицировать по предназначению для выполнения геодезических задач по категориям:

1. Приборы, предназначенные для классической триангуляции с длинами сторон более 250 метров, характеризующиеся относительно высокой угловой точность (не ниже 3?);

2. Приборы, предназначенные для быстрого исполнения съемок и разбивок без использования отражателей. Основное требование к этой группе приборов - время измерения не более 0,5 сек. в режиме слежения, угловая точность - не ниже (10?), точность измерения расстояний - не менее 1 см на 250 м;

3. Приборы 1-й или 2-й категории, но в варианте обслуживания одним исполнителем (обеспеченные функцией автоматического обнаружения цели и слежения за ней).

Некоторые из этих приборов специально рассчитаны на функцию высокоточного мониторинга в автономном режиме.

Электронные тахеометры эффективно используются при выполнении следующих видов топографических работ:

- создание геодезических сетей (съемочного обоснования) многоцелевого назначения;

- выполнение топографических и кадастровых съемок;

- производство межевания земель и других землеустроительных работ;

- проведение различных инженерно-геодезических изысканий;

В общем случае технологическая схема определенного вида работ с использованием на практике электронного тахометра включает следующие элементы:

- составление технического и рабочего проектов;

- рекогносцировка и обследование объекта работ;

- закладка центров определяемых пунктов;

- полевые измерения;

- обработка результатов измерений.

2.2 Исследование методики работ на электронном тахеометре Topcon GPT 3000 N при производстве земельного кадастра и межевании земель

GPT 3000 N при производстве земельного кадастра и межевании земель. В настоящее время средства и методики геодезических измерений приобретают всё большую актуальность при выполнении различного вида землеустроительных работ и самой актуальной проблемой для них стоит повышение скорости измерений, снижение трудоёмкости, материальных, временных и людских затрат ресурсов.

Как отмечалось ранее, электронные тахеометры являются универсальными геодезическими приборами. Они предназначены для измерения углов и расстояний. В результате измерений тахеометром автоматически вводятся поправки за метеоусловия (причем определенные тахеометры сами определяют температуру и давление), за приведение длин линий к плоскости и др. Тахеометры обеспечивают индикацию горизонтальных и вертикальных углов, дирекционных углов, наклонных расстояний, горизонтальных положений, приращений координат и других величин. Время на выполнение комплекса измерений составляет несколько секунд. Большинство тахеометров имеют собственную память, встроенный микропроцессор и библиотеку программ для выполнения геодезических работ. Ряд современных тахеометров позволяет с помощью специального отражателя выполнять измерения до невидимых точек (например, через листву), а также работать с микро призменными наклейками.

Все перечисленные достоинства тахеометров позволяют значительно повысить эффективность выполнения геодезических работ по сравнению с комплектом традиционных геодезических приборов: оптического теодолита и квантового дальномера. Сравним эти средства геодезических измерений по различным критериям на примере электронного тахеометра Topcon GPT 3000N (Япония) - с одной стороны и теодолита 2Т2 в комплекте со световым дальномером 2СТ-10 отечественного производства - с другой.

Теодолит - геодезический прибор, предназначенный для измерения горизонтальных и вертикальных углов, расстояний и углов ориентирования. Классифицируются по признакам: точности, конструктивным особенностям и назначению. По точности измерения углов теодолиты подразделяются на высокоточные, со средней квадратической ошибкой измерения угла одним приёмом до 1Ѕ, точные 2-5Ѕ и технические 15-60Ѕ.

Световой дальномер - оптический прибор для определения расстояний при помощи светового луча. Принцип действия светового дальномера заключается в том, что от источника света через модулятор электромагнитные волны передаются на отражатель, установленный в точке, до которого измеряют расстояние. От отражателя электромагнитные волны возвращаются к приёмному устройству, совмещённому с передающим. Приёмное устройство передаёт полученные сигналы через усилитель и демодулятор на устройство обработки сигнала, откуда идёт на табло индикатора, где и высвечиваются результаты измерений в конечном виде, либо в промежуточных значениях.

Электронный тахеометр - многофункциональный геодезический прибор, представляющий собой комбинацию кодового теодолита, встроенного светового дальномера и специализированного мини-компьютера, обеспечивающие запись результатов измерений во внутренние или внешние блоки памяти. К настоящему времени в развитых зарубежных странах и в России разработано и производится большое число типов электронных тахеометров, различающихся конструктивными особенностями, точностью и назначением. Современные электронные тахеометры, как правило, позволяют решать следующие инженерные задачи:

- тахеометрическая съемка;

- определение недоступных расстояний;

- определение высот недоступных объектов;

- определение дирекционных углов;

- обратная засечка;

- определение трёхмерных координат реечных точек;

- вынос в натуру трёхмерных координат точек;

- измерения со смещением по углу и т. д.

Среди перечня инженерно-геодезических задач тахеометрическая съёмка - основной вид съёмки для создания планово-небольших не застроенных и малозастроенных участков, а также узких полос местности вдоль линий будущих дорог, трубопроводов и других коммуникаций. С появлением тахеометров-автоматов, этот способ съёмки стал основным и для значительных по площади территорий, особенно когда необходимо получить цифровую модель местности. При тахеометрической съёмке ситуацию и рельеф снимают одновременно, но в отличие от мензульной съёмки план составляют в камеральных условиях по результатам полевых измерений.

Съёмку производят с исходных точек-пунктов любых опорных и съёмочных геодезических сетей. Съёмочная сеть может быть создана в виде теодолитно-нивелирных ходов, когда отметки точек теодолитного хода определяют геометрическим нивелированием. В большинстве случаев для съёмки прокладывают тахеометрические ходы, отличающиеся тем, что все элементы хода определяют тахеометром-автоматом, одновременно с тахеометрическим ходом производят съёмку.

С появлением тахеометров стала возможна частичная или полная автоматизация тахеометрической съёмки. При съёмке тахеометр устанавливается на съёмочных точках, а на пикетных точках - специальные вешки с отражателями, входящими в комплект тахеометра. При наведении на отражатели вешки в автоматическом режиме определяются горизонтальные и вертикальные углы, а также расстояние до смежных съёмочных и пикетных точек. С помощью микро ЭВМ тахеометра производят обработку результатов измерений и в итоге получают приращения ?х и ?у координат и превышения h на смежные съёмочные и пикетные точки. При этом автоматически учитываются все поправки в измеренные расстояния и за наклон вертикальной оси прибора в измеряемые углы. Результаты измерений могут быть введены в специальное запоминающее устройство или переписаны на магнитную кассету. В дальнейшем оттуда информация поступает в ЭВМ, которая по специальной программе производит окончательную обработку результатов измерений, включающую в себя вычисление координат съёмочных и пикетных точек, уравнивание съёмочного хода и другие вычисления, необходимые для графического построения топографического плана или цифровой модели местности. Существуют также компьютерные тахеометры - современные электронные тахеометры, обеспечивающие прямой обмен информации с полевыми и базовыми ЭВМ, снабжённые сервоприводами, дистанционным компьютерным управлением, системами автоматического слежения за целью и набором универсальных полевых геодезических программ. Внешний вид теодолита 2Т2, светового дальномера 2СТ-10 и тахеометра TOPCON GPT-3000 N представлен на рис. 1-3.

Рис. 1. - Внешний вид теодолита 2Т2:

Рис. 2. - Внешний вид светового дальномера 2СТ-10:

Рис. 3. - Внешний вид тахеометра TOPCON GPT-3000 N:

Таблица 2. - Технические характеристики теодолита 2Т2:

Наименование технической характеристики

Значение тех.характеристики

Зрительная труба

1.

Увеличение

27,5Ч

2.

Поле зрения

1? 30 м

3.

Фокусное расстояние объектива

1,4 мм

4.

Пределы фокусирования

от 2 м до ?

5.

Подсветка сетки нитей

есть

Круг-искатель

6.

Цена деления

10?

7.

Точность установки горизонтального круга

1?- 1,5?

8.

Масса теодолита

4,8 кг

9.

Высота теодолита с надетой ручкой

335 мм

10.

Средняя квадратическая ошибка измерения углов

Таблица 3. - Технические характеристики дальномера 2СТ-10:

Наименование технической характеристики

Значение тех. характеристики

1.

Средняя квадратическая ошибка измерения расстояний

не более (5+3*10-6) мм

2.

Диапазон измерения расстояний

от 2 до 10000 м

3.

Предельные углы наклона

± 25?

4.

Потребляемая мощность

не более 10 Вт

5.

Время измерения

не более 15 с

6.

Масса приёмо-передающего блока

4,5 кг.

7.

Полная масса комплекта

100 кг.

Таблица 4. - Технические характеристики тахеометра:

Наименование технической характеристики

Значение тех. характеристики

Зрительная труба

1.

Увеличение

30 Ч

2.

Поле зрения

1? 30м

3.

Разрешающая способность

2,8Ѕ

4.

Пределы фокусирования

от 1.3 м до ?

5.

Подсветка сетки нитей

есть

Измерение расстояний

6.

Точность измерений от 1,5 м до 25 м без отражателя

± 10 мм

7.

Точность измерений свыше 25 м без отражателя

± 5 мм

8.

Точность измерений по одной призме

± 2 мм+2ppm

9.

Дискретность отсчетов - точный режим

1мм/0.2мм

10.

Дискретность отсчетов - грубый режим

10мм/1мм

11.

Дискретность отсчетов - режим слежения

10 мм

Интервал измерений

12.

Режим точных измерений: 1 мм

1,2 сек

13.

Режим грубых измерений: 10 мм

0,7 сек

14.

Режим слежения 10 мм

0,3 сек

15.

Размеры (ВхШхД)

336х184х172 мм

16.

Вес прибора

5,1 кг

17.

Максимальное время работы при +20?С

4,2 часа

18.

Средняя квадратическая ошибка измерения углов

2Ѕ - 7Ѕ

Анализ представленных технических характеристик геодезических приборов показывает, что при сравнительно схожих показателях точности измерений угломерной и дальномерной частей тахеометра с угломерной частью теодолита и дальномерной частью светового дальномера, тахеометр значительно легче, но главное преимущество тахеометра заключается в высокой производительности измерений с автоматизированной выдачей их конечных результатов. Проведенные исследования показали, что сеанс измерений, состоящий из измерения горизонтального угла при двух положениях вертикального круга и расстояния до двух точек с помощью тахеометра выполняется в 4-5 раз быстрее комплекта, состоящего из теодолита со световым дальномером. Это обстоятельство является решающим фактором, позволяющим повысить производительность выполнения геодезических работ.

Сравнительный анализ по критерию стоимости в настоящее время провести не представляется возможным, поскольку начальная стоимость теодолита и светового дальномера, как приборов конца 1980-х годов, указана еще в рублях СССР, а реальная рыночная стоимость с учетом амортизации не дает представления о начальной их стоимости в рублях РФ. Стоимость же тахеометра TOPCON GPT-3000 N на сегодняшний день составляет порядка 250 000 рублей.

Тахеометр серии GPT-3000N зарекомендовал себя высокой степенью защиты от воздействия внешних условий и абсолютной надежностью работы. Высокая степень защиты от воды и пыли (IP66) гарантирует надежную работу в суровых погодных условиях, что делает его первым в мире «всепогодным импульсным тахеометром».

Он оснащен буквенно-цифровой клавиатурой, клавиши которой широко разнесены друг от друга, что максимально снижает вероятность нажатия соседней клавиши даже при работе в перчатках.

Его главной отличительной особенностью является увеличенная дальность и точность без отражательных измерений. Мульти импульсный дальномер тахеометров GPT-3000N обеспечивает измерение расстояний в без отражательном режиме до 250 метров, что позволяет не только выполнить измерение на точку, но и, при необходимости, сделать это на безопасном удалении от неё.

Без отражательные тахеометры являются идеальными инструментами для измерения точек, на которых размещение отражателя невозможно или связано с риском для исполнителя. Способность измерения больших расстояний без призм дает возможность использовать тахеометры TOPCON серии GPT для решения широкого спектра геодезических задач:

- измерения высотных зданий и конструкций;

- лесных съемок;

- съемок карьеров, подземных выработок;

- кадастровых съемок;

- выноса в натуру, и т. д.

Внутренняя память прибора способна хранить измерения 24 000 точек, благодаря чему не приходиться беспокоиться о возможной нехватке памяти во время работы. Тахеометр имеет на своем борту универсальный набор съемочных, разбивочных и прикладных программ (рис.4). Весь комплекс прикладных программ русифицирован, что позволяет исполнителю свободно решать широкий спектр инженерно-геодезических задач:

- топографическая и кадастровая съемки методом тахеометрии;

- вынос в натуру;

- обратная засечка;

- измерение высоты недоступной точки;

- измерение неприступного расстояния;

- определение отметки станции;

- вычисление площадей;

- дорожные работы и др.

Рис. 4. - Клавиатура и дисплей тахеометра TOPCON GPT-3000 N:

В работе предлагается методика применения электронного тахеометра Topcon GPT 3000 N при производстве кадастра и межевания земель. В общем случае данная методика включают следующие технологические элементы:

1. На этапе подготовительных работ в соответствии с руководством по эксплуатации проводится комплекс поверок электронного тахеометра (ЭТ), при необходимости выполняются юстировки, проверяется комплектность прибора, состояние призменных систем.

2. На этапе рекогносцировки и полевого обследования объекта работ проводится оценка состояния пунктов государственной геодезической сети (ГГС) и опорной межевой сети (ОМС) (опорных межевых знаков (ОМЗ)) с точки зрения возможности их использования в качестве исходных пунктов, точек планового обоснования и т. д., условий наблюдения на пунктах с использованием ЭТ;

3. На этапе составления технического проекта (задания) на производство кадастровой съемки, межевания земель должны максимально учитываться технологические и программные возможности тахеометра TOPCON GPT-3000 N (режим «Съёмка», «Определение координат», «Разбивка», прикладные задачи, без отражательный режим измерения расстояний и др.) для выбора наиболее выгодной технологии работ и размещения пунктов опорной межевой сети;

4. На этапе развития сетей планового обоснования с помощью ЭТ производится сгущение геодезической плановой основы до плотности, обеспечивающей определение с неё положения всех межевых знаков и объектов, подлежащих съемке.

Сгущение геодезической плановой основы может производиться от пунктов ГГС и сетей сгущения 1 и 2 разрядов различными способами: положением теодолитных ходов, построением триангуляционных сетей, обратными и комбинированными засечками.

На практике основным способом сгущения плановой основы является способ положения разомкнутых теодолитных ходов или систем теодолитных ходов с узловыми точками.

Теодолитные ходы должны опираться на 2 исходных пункта с привязкой не менее чем к 1 исходному пункту. Угловая невязка в теодолитных ходах не должна превышать:

Относительная линейная невязка теодолитных ходов не должна быть более 1:2000 (при длине хода более 250 м), предельная абсолютная невязка - 0.3 м, а при длине хода менее 250 м. необходимо руководствоваться предельной абсолютной невязкой, равной половине точности определения положения межевого знака, то есть 10 см.

Количество сторон в разомкнутых теодолитных ходах должно быть не более 20, а количество сторон в системах теодолитных ходов с узловыми точками:

- между исходными пунктами и узловой точкой - 13;

- между узловыми точками - 10.

Наименьшая сторона теодолитного хода - 20 м. В отдельных случаях (при работах в районах сплошной плотной застройки) по решению начальника районного Комитета по ЗР и З допускается уменьшение длины стороны хода ниже указанного предела.

Развитие сетей пунктов планового обоснования методом положения теодолитных ходов желательно производить по трех штативной системе.

При измерении длин линий ЭТ максимальная длина стороны хода не ограничивается, но следует избегать перехода от наименьших сторон к предельным, при этом измерение линий производится одним приемом с трехкратным взятием отчета. В обработку берется среднее из них.

Угловые измерения при развитии сетей пунктов планового обоснования выполняются ЭТ - двумя полу приемами, круговыми приемами или измерением отдельного угла.

Точки сгущения планового обоснования при необходимости закрепляются на местности (дюбель в асфальте, металлический штырь в грунте и т. д.) В полевых журналах в этом случае составляется подробный абрис с указанием линейных промеров от местных предметов (ориентиров) до точки закрепления на местности межевыми знаками границ земельного участка. Закрепление пунктов ОМС (ОМЗ) и межевых знаков производят в соответствии с требованиями, приведенными в п. 1.2.1.

5. На этапе кадастровой съемки с помощью электронного тахеометра TOPCON GPT-3000 N в режиме «Съёмка» производится определение положения межевых знаков границ землепользования и объектов местности, отображаемых на кадастровом плане.

6. На этапе выполнения геодезических работ по выносу в натуру границ землепользования работа ЭТ проводится в режиме «Разбивка».

7. На этапе обработки результатов полевых измерений информация из файла для хранения результатов съемки (работы) импортируется через интерфейсный кабель на персональный компьютер (ноутбук). В дальнейшем материалы съемки подвергаются текущему контролю, кадастровый план - корректировке и исправлению в специальном программном комплексе (Credo, Топаз, AutoCad). В нем же происходит вычерчивание кадастрового плана, определяются площади земельных участков, оформляются отчетные схемы, чертежи границ земельных участков, карточки привязки ОМС и другие документы, входящие в межевое дело (топографический регистр).

8. После окончательного выноса и закрепления в натуре границ земельного участка, контроля и приёмки результатов кадастра (межевания земель) производителем работ, приемка работ производится районным отделом (комитетом) по земельным ресурсам и землеустройству. На этом этапе с помощью ЭТ могут выборочно определяться координаты межевых знаков и контурных точек от точек планового обоснования и ОМЗ.

Исходя из вышеизложенного:

1. На современном этапе развития научно-технического прогресса происходит фундаментальное изменение технологии и методов выполнения земельного кадастра и межевания земель, что связано в первую очередь с качественным изменением состава парка используемого геодезического оборудования.

Интенсивное развитие электронных тахеометров, отличающихся высокой степенью автоматизации угловых и линейных измерений, привело к разработке систем и комплексов, включающих в качестве составных частей или блоков указанные приборы и повышающих уровень автоматизации не отдельных процессов, а топографической съемки в целом.

2. Анализ представленных технических характеристик тахеометра TOPCON GPT 3000 N и традиционных геодезических приборов: оптического теодолита и квантового дальномера показывает, что при сравнительно схожих показателях точности измерений тахеометр значительно легче, но главное преимущество тахеометра заключается в высокой производительности измерений с автоматизированной выдачей их конечных результатов. Проведенные исследования показали, что сеанс измерений, состоящий из измерения горизонтального угла при двух положениях вертикального круга и расстояния до двух точек с помощью тахеометра выполняется в 4-5 раз быстрее комплекта, состоящего из теодолита со световым дальномером. Это обстоятельство является решающим фактором, позволяющим повысить производительность выполнения геодезических работ.

3. Способность измерения больших расстояний без призм (до 250 м) дает возможность использовать тахеометр TOPCON серии GPT 3000 N для решения широкого спектра инженерных задач: измерение высотных зданий и конструкций, лесные съемки, съемки карьеров и подземных выработок и т. д.

4. Предлагаемая методика применения электронного тахеометра Topcon GPT 3000 N при производстве кадастра и межевания земель позволит при сохранении требуемого уровня точности значительно повысить эффективность выполнения землеустроительных работ по критерию затрат времени.

3. Экспериментальные исследования методики использования электронных тахеометров при производстве землеустроительных работ

3.1 Цель и организация экспериментальных исследований

Экспериментальные исследования проводились с целью практической проверки выдвинутых в работе основных теоретических положений методики работ на электронном тахеометре Topcon GPT 3000 N при производстве земельного кадастра и межевании земель, а также оценки эффективности применения данной методики.

Решение задач исследований осуществлено путем сравнения экспериментальных данных, полученных в результате выполнения одного комплекса геодезических работ по предлагаемой методике с использованием электронного тахеометра Topcon GPT 3000 N и по традиционной методике с использованием комплекта геодезических приборов, состоящего из теодолита 2Т2 и светового дальномера 2СТ-10.

Оценка эффективности применения предлагаемой методики проводилась по критерию затрат времени (производительности геодезических работ), так как по критериям точности и стоимости эксплуатации приборов эффективность обеих методик сопоставима. Затраты времени определялись путем хронометража временных затрат на всех этапах выполнения геодезических работ.

3.2 Сущность экспериментальной проверки методики работ на электронном тахеометре Topcon GPT 3000 N

Для проверки методики работ на электронном тахеометре Topcon GPT 3000 N проведён эксперимент, в ходе которого произведена кадастровая съемка садового участка в Приозерском районе Ленинградской области с использованием данного прибора. Затем по тем же точкам планового обоснования вновь был проложен теодолитный ход и произведена съемка с точки хода № 1 с использованием теодолита 2Т2 и светового дальномера 2СТ-10, причем пикетные точки в обоих случаях совпадали. В качестве исходных пунктов принимались пункты сгущения 1 и 2 разрядов. Схема выполненных геодезических работ, результаты измерений теодолитом 2Т2, световым дальномером 2СТ-10 и тахеометром Topcon GPT 3000 N представлены ниже. Учитывая, что съемка производилась одной бригадой геодезистов-исполнителей, основным критерием эффективности являются затраты времени на выполнение работ. Характеристики временных затрат на выполнение одного объема геодезических работ (кадастровой съемки) по этапам технологии двумя методиками представлены в таблице 5.

Таблица 5. - Характеристики временных затрат на производство кадастровой съемки:

№ п./п

Этап технологии

Затраты времени (в мин.)

при использовании тахеометра Topcon GPT 3000 N

при использовании теодолита 2Т2 и светового дальномера 2СТ-10

1

Подготовительные работы

10

17

2

Производство кадастровой съемки

113

235

3

Обработка и оформление результатов полевых измерений

37

146

ИТОГО:

160

398

Как видно из приведенных данных, затраты времени при применении методики работ на электронном тахеометре Topcon GPT 3000 N при производстве земельного кадастра снижаются почти в 2,5 раза по сравнению с традиционной технологией съемки с использованием теодолита и дальномера. Это доказывает существенное повышение эффективности геодезических работ при применении электронных тахеометров при межевании земель и землеустроительных работах.

Таблица 6. - Обработанные результаты измерений теодолитом 2Т2 и световым дальномером 2СТ-10:

Стр.-1

Измеренный угол

Средний угол

Расстояние

№ точки

точки визир.

1 приём

2 приём

среднее

°

'

"

°

'

"

°

'

"

°

'

"

°

'

"

м

мм

мм

9807

3288

КЛ

0

00

00

351

18

50

90

30

00

81

48

50

074

Тх-1

КП

180

00

00

171

18

51

270

30

00

261

48

52

070

00

50

00

51

351

18

50

210

072

072

3288

КЛ

0

00

00

4

51

10

868

21

КП

180

00

00

184

51

12

869

00

11

4

51

11

205

870

869

Тх-1

9807

КЛ

0

00

00

316

08

15

281

22

КП

180

00

00

136

08

16

283

00

16

316

08

16

47

285

283

9807

КЛ

0

00

00

309

37

42

910

23

КП

180

00

00

129

37

41

908

00

42

309

37

42

38

912

910

9807

КЛ

0

00

00

299

30

40

903

24

КП

180

00

00

119

30

42

902

00

41

299

30

41

44

901

902

9807

КЛ

0

00

00

299

18

23

647

25

КП

180

00

00

119

18

25

648

00

24

299

18

24

55

649

648

Таблица 7. - Обработанные результаты измерений теодолитом 2Т2 и световым дальномером 2СТ-10:

Стр.-2

Измеренный угол

Средний угол

Расстояние

№ точки стояния

№ точки

1 приём

2 приём

среднее

°

'

"

°

'

"

°

'

"

°

'

"

°

'

"

м

мм

мм

Тх-1

9807

КЛ

0

00

00

290

59

48

121

26

КП

180

00

00

110

59

46

120

00

47

290

59

47

50

122

121

9807

КЛ

0

00

00

287

29

28

830

27

КП

180

00

00

107

29

27

831

00

28

287

29

28

55

832

831

9807

КЛ

0

00

00

285

27

26

130

28

КП

180

00

00

105

27

27

131

00

26

285

27

26

42

132

131

9807

КЛ

0

00

00

275

35

07

512

29

КП

180

00

00

95

35

07

513

00

07

275

35

07

39

514

513

9807

КЛ

0

00

00

273

04

52

902

30

КП

180

00

00

93

04

54

904

00

53

273

04

53

46

903

903

9807

КЛ

0

00

00

300

50

20

283

31

КП

180

00

00

120

50

22

285

00

21

300

50

21

37

284

284

Тх-1

9807

КЛ

0

00

00

298

27

01

810

32

КП

180

00

00

118

27

02

809

00

02

298

27

03

35

810

810

Таблица 8. - Обработанные результаты измерений теодолитом 2Т2 и световым дальномером 2СТ-10:

Стр.- 4

Измеренный угол

Средний угол

Расстояние

№ точки стояния

точки визир.

1 приём

2 приём

среднее

°

'

"

°

'

"

°

'

"

°

'

"

°

'

"

м

мм

мм

Тх-1

9807

КЛ

0

00

00

253

35

03

082

38

КП

180

00

00

73

35

02

081

00

02

253

35

02

47

083

082

9807

КЛ

0

00

00

254

27

22

377

39

КП

180

00

00

74

27

20

376

00

21

254

27

22

49

377

377

9807

КЛ

0

00

00

329

54

03

90

30

00

60

24

02

575

Тх-2

КП

180

00

00

149

54

01

270

30

00

240

24

04

573

00

02

00

03

329

54

02

277

574

574

Тх-2

Тх-1

КЛ

0

00

00

140

11

19

90

30

00

230

11

19

579

2805

КП

180

00

00

320

11

18

270

30

00

50

11

20

577

00

18

00

20

140

11

19

46

578

578

2805

Тх-2

КЛ

0

00

00

354

03

04

90

30

00

84

33

04

572

9807

КП

180

00

00

174

03

02

270

30

00

264

33

05

570

00

03

00

04

354

03

04

188

571

571

Следует отметить, что при работе с тахеометром обработка результатов измерений, сохранившихся в миниЭВМ прибора, после их импорта на ноутбук, в дальнейшем обрабатывалась в полевых условиях в специальном программном комплексе Credo, а обработка результатов измерений с помощью теодолита и светового дальномера - в обычных журналах измерений с последующей обработкой по специальной программе при ручном вводе обработанных результатов съемки.

Исходя из вышеперечисленного:

1. Сущность экспериментальных исследований заключалась в сравнении данных, полученных в результате выполнения одного комплекса геодезических работ по предлагаемой методике с использованием электронного тахеометра Topcon GPT 3000 N и по традиционной методике с использованием комплекта геодезических приборов, состоящего из теодолита 2Т2 и светового дальномера 2СТ-10.

2. Оценка эффективности применения предлагаемой методики проводилась по критерию затрат времени (производительности геодезических работ) путем хронометража временных затрат на всех этапах выполнения геодезических работ.

3. Затраты времени при применении методики работ на электронном тахеометре Topcon GPT 3000 N при производстве земельного кадастра снижаются почти в 2,5 раза по сравнению с традиционной технологией съемки с использованием теодолита и дальномера.

4. Доказано существенное повышение эффективности геодезических работ при применении электронных тахеометров при межевании земель и землеустроительных работах.

Заключение

Электронные тахеометры все более интенсивно используются при выполнении топографических и кадастровых съёмок, межевании земель, инженерных изысканиях и других геодезических работах. Развитие электронных тахеометров с каждым годом наглядно демонстрирует растущую потребность в информации о пространственном положении различных объектов.

Обеспечение геодезическими данными при проведении межевания земель и землеустроительных работах производилось сложно и отнимало много времени на измерения.

Теперь, при быстром развитии науки на замену старым методикам и приборам пришли тахеометры. Проведённый в работе анализ получения данных, качество обработки результатов наблюдений демонстрирует существенные преимущества электронных тахеометров.

Результаты проведённого эксперимента не только детально раскрывают методику работ на электронном тахеометре (Topcon GPT 3000 N) при производстве землеустроительных работ и межевании земель, но и наглядно доказывают существенное повышение эффективности выполнения геодезических работ с его помощью прежде всего по критерию снижения затрат времени и повышению производительности труда. Весь процесс выполнения геодезических работ с помощью тахеометра становиться менее трудоёмким и требующим привлечение значительно меньших материальных, временных и людских ресурсов.

Производительность выполнения геодезических работ с использованием тахеометров Topcon GPT-3000 N в 2-3 раза выше, чем с использованием традиционных средств измерений.

Таким образом, цель дипломной работы, заключающаяся в исследовании методики работ на электронном тахеометре (Topcon GPT 3000 N) при производстве землеустроительных работ и межевании земель, а также оценке его преимуществ перед комплексом традиционных измерительных средств геодезии (теодолитом 2Т2 и светодальномером 2СТ-10) достигнута.

Список литературы

1. Земельный Кодекс РФ, № 136-ФЗ от 25.10.2001 г.

2. Инструкция по межеванию земель. - М.: КРФ по ЗР и З, 1996. - 30 с.

3. Федеральный Закон «О государственном земельном кадастре» от 2.01.2000 г.

4. Основные положения об опорной межевой сети.- М.: Росземкадастр. 2002. - 16 с.

5. Требования к кадастровому делению, утверждённые приказом Росземкадастра от 15.06.2001 г. №117.

6. Григоренко А.Г., Киселёв М.И. Инженерная геодезия. - М.: Высшая школа, 1983 г.

7. Киселёв М.И., Михелёв Д.Ш. Основы геодезии. - М.: Высшая школа, 2003 г.

8. Клюшин Е.Б., Михелёв Д.Ш., Киселёв М.И., Фельдман В.Д. Инженерная геодезия. - М.: Высшая школа, 2000 г.

9. Курошев Г.Д. Геодезия и география. - СПб.: Издательство Санкт-Петербургского Университета, 1999 г.

10. Левчук Г.П., Новак В.Е., Лебцев Н.Н. Прикладная геодезия. Геодезические работы при изысканиях и строительстве инженерных сооружений. - М.: Недра, 1983 г.

11. Левчук Г.П. Прикладная геодезия. Основные методы и принципы инженерно-геодезических работ. - М.: Недра, 1981 г.

Приложение 1

Приложение 2

Приложение 3

Приложение 4

Приложение 5

землеустроительный геодезический тахеометр

Размещено на Allbest.ru


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.