Физические свойства воды, водяного пара, льда и снега

Плотность, вязкость, поверхностное натяжение, смачивание, тепловые характеристики как физические свойства воды. Характерные значения температуры воды. Физические свойства водяного пара в атмосфере. Классификация льдов и условия их возникновения.

Рубрика Геология, гидрология и геодезия
Вид лекция
Язык русский
Дата добавления 27.08.2013
Размер файла 142,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Влажность снега -- количество воды, которое снежный покров содержит в данный момент. Она является очень важной его физической характеристикой и определяется калориметрическим способом.

3. Тепловые свойства снега. Определение тепловых характеристик снега и прежде всего коэффициентов тепло- и температуропроводности (л и a), удельной теплоемкости (c) представляет очень большие трудности. Вместе с тем эти характеристики играют исключительную роль в природе. Сложность определения тепловых характеристик обусловлена сложностью строения снежного покрова. Тепловые характеристики снега определяются или в лабораториях, или в полевых условиях.

Одно из первых определений тепловых характеристик снега, не потерявших значения до настоящего времени, было выполнено Г.П. Абельсом в 1893 г. в Свердловске. Абельс определил коэффициенты тепло- и температуропроводности снега на площадке обсерватории по ежечасным наблюдениям за температурой снега, выполненным на глубинах 5 и 10 см. При этом он считал, что суточный ход температуры на поверхности снега выражается простой синусоидой. Полученные зависимости для л и a имеют вид:

л = 2,85 · 10-6с2; а = 4,85 · 10-6с, (2.46)

где с -- плотность снега.

Формулы Абельса дают удовлетворительные результаты при с < 350 кг/м3. Для случая когда с > 350 кг/м3, эти коэффициенты были определены А.С. Кондратьевой в лабораторных условиях:

л = 3,56 · 10-6с2; а = 6,05 · 10-6с. (2.47)

Удельная теплоемкость сухого снега принимается равной удельной теплоемкости льда и определяется по формуле (2.39).

Коэффициент отражения солнечной радиации снегом значительно выше, чем у льда и, тем более, у воды.

Коэффициент поглощения солнечной радиации снегом также высокий; поглощается она самым верхним слоем снега и поэтому не доходит до его подстилающей поверхности.

4. Электрические, радиоактивные и акустические свойства снега в последнее время приобретают все большее значение, но они пока изучены недостаточно.

Сухой снег, прежде всего, характеризуется малой электрической проводимостью, что позволяет располагать на его поверхности даже не изолированные провода. Выполненные исследования для сухого снега плотностью порядка 100 -- 500 кг/м3 при температуре от -2 до -16 °С показали, что удельное электрическое сопротивление сэ довольно высокое (2,8·105 -- 2,6·107 Ом · м) и близко к удельному сопротивлению сухого льда. Напротив, влажный снег обладает малым электрическим сопротивлением, падающим до 10 Ом·м.

Сухой снежный покров является диэлектриком. Диэлектрическая проницаемость снежного покрова е зависит от частоты электромагнитных волн, их длины и от состояния снега (температуры, плотности, структуры, влажности). Диэлектрическая проницаемость снега значительно меньше, чем льда (еол = 73... 95, е?л =3... 8), и увеличивается с возрастанием его плотности и влажности.

Акустические свойства снега проявляются, например, в скрипе под лыжами, полозьями саней, под ногами пешеходов и в других случаях. Скрип снега зависит от его плотности, давления на него и от его температуры. Замечено, что скрип слышен при температуре от -2 до -20°С; ниже этой температуры скрип не слышен. Связь скрипа с температурой можно объяснить тем, что с понижением температуры увеличивается прочность снежных кристаллов и поэтому излом их под давлением сопровождается звуком. При температуре ниже -20°С снежинки достаточно прочны и очень мало ломаются под давлением.

Скорость звука в снеге измерялась различными способами. Установлено, что она зависит от плотности снега. Например, при с=125 кг/м3 получена скорость х=227 м/с, а при с=280 кг/м3 х=207 м/с. Таким образом, скорость распространения звука в снеге при одной и той же структуре обратно пропорциональна плотности снега. Замечена также незначительная связь скорости распространения звука от температуры снега. При t = 0°С и t = -23°С скорость распространения звука соответственно составляет 247 и 230 м/с. При одинаковой плотности коэффициент отражения увеличивается с увеличением частоты.

5. Механические свойства снега имеют большое значение при использовании его в качестве строительного материала, при транспортировке по нему грузов, а также при изучении снежных лавин.

Предельное сопротивление снега сдвигу определяется силами сцепления между его зернами и силами внутреннего трения, которые, в свою очередь, зависят от плотности, строения и температуры снега, а также от условий его нагружения и деформирования. Оно определяется по формуле

Pф = C + fP, (2.48)

где C -- сила сцепления; f -- коэффициент внутреннего трения; P -- сила нормального давления на поверхности среза.

Сила сцепления снега определяется в природных условиях по усилию, которое необходимо приложить к образцу для среза его по горизонтальной плоскости. Исследования показали сравнительно незначительное увеличение силы сцепления свежего снега до (0,01... 0,02)·105 Па в зависимости от его плотности. При дальнейшем увеличении плотности от 300 до 500 кг/м3 сила сцепления возрастает более значительно и находится в пределах (0,05... 0,5)·105 Па.

Трение скольжения по снегу характеризуется коэффициентом кинетического трения fк. Он определяется при движении тела и значительно меньше коэффициента трения покоя f. Этот коэффициент зависит от температуры, структуры и плотности снега, размеров скользящего тела и передаваемой на снег нагрузки, скорости скольжения, а также от вида материала и характера обработки скользящей поверхности.

Установлено, что зависимость трения скольжения по снегу различных тел от температуры снега неоднозначна. Наилучшие условия для движения лыж и саней наблюдаются при температуре от -3 до -10°С. С увеличением плотности снега и скорости движения коэффициент трения скольжения уменьшается. Для деревянных полозьев он порядка 0,02 (по П.П. Кузьмину), стальных -- 0,07 (по К.Ф. Войтковскому), тефлоновых -- 0,05. При температуре снега, близкой к 0°С, наблюдается другое явление -- его прилипание к полозьям приспособлений.

Сопротивление снега растяжению исследовалось по разрыву образца от собственного веса путем пропиливания заранее намеченной шейки. Свежевыпавший снег оказывает небольшое, практически равное нулю сопротивление разрыву, а в уплотнившемся снеге сопротивление разрыву возрастает с увеличением плотности и достигает значения 0,027·105Па. Сопротивление разрыву влажного снега меньше, чем сухого. В целом сопротивление снега разрыву зависит от его температуры, плотности и структуры.

Сжатие снега под действием нагрузки является одной из его характеристик. В опытах установлено, что слежавшийся сухой снег разрушается при нагрузке около 1,5·105Па. Прочность снега значительно увеличивается после добавления воды и замерзания ее. После замерзания добавленной воды в количестве 10% (по массе) разрушающая нагрузка увеличилась до 3,2·105Па. Предел прочности на сжатие слежавшегося уплотненного снега при t = -10°С составлял (5... 8)·105Па. Обледенелый снег выдерживает значительно большие нагрузки (10... 15)·105Па. Несомненно, что прочность снега на сжатие зависит от его плотности, но надежных данных по этому вопросу нет.

Твердость -- это свойство вещества сопротивляться внедрению в него другого тела, теоретически не деформируемого. Она характеризует прочность снега и, в частности, несущую способность снежного покрова. Мерой твердости является размер следа (царапина, углубление), оставляемого на исследуемом материале абсолютно (условно) твердым телом, внедряемым под определенной нагрузкой.

По техническим условиям, в зимних снеговых дорогах плотность и твердость снега, как минимум, должны быть равны 600 кг/м3 и 106Па.

Вязкость снега играет большую роль в процессах формирования снежных обвалов. Свежий снег обладает большей пластичностью и меньшей вязкостью по сравнению с плотным снегом и тем более с льдом. Укрупнение зерен снега -- фирнизация -- ведет к уменьшению его пластических свойств.

По данным Иосида и Хузиока (Япония), вязкость снега, как функция плотности снега, при температуре от -1 до -3°С и от -5 до -13°С соответственно может быть определена по эмпирическим формулам:

з1 = 9,81 · 107/(0,10 - 0,19с) и з2 = 9,81 · 107/(0,037 - 0,09с) (2.49)

По данным этих же исследователей, модуль упругости снега E (Па) в тех же диапазонах температуры может быть определен соответственно по формулам:

E1 = (0,0167с - 1,86) 106 и E2 = (0,059с - 10,8) 106 (2.48)

1.5 Физико-механические процессы, протекающие в снежном покрове

Снежный покров в течение всего периода своего существования подвергается воздействию различных физических и механических факторов, приводящих к непрерывному изменению его структуры, состава и объема. Эти факторы и оказываемые ими воздействия еще далеко недостаточно изучены.

К физическим факторам и процессам можно отнести режеляцию, рекристаллизацию, возгонку и сублимацию, гелио- и геотепловые воздействия. К механическим факторам относятся сила тяжести и ветер.

Режеляция (повторное смерзание) заключается в плавлении и повторном смерзании ледяных кристаллов, образующих снежинки, под влиянием удельного давления. Режеляция снега протекает с заметной интенсивностью лишь при температуре, близкой к 0°С, т. е. при температуре, при которой не требуется большого удельного давления, чтобы вызвать плавление льда.

Рекристаллизация представляет собой физический процесс, при котором атомы молекул перескакивают с кристаллической решетки одного кристалла на решетку другого кристалла и обусловливают срастание отдельных кристаллов (снежинок).

В твердых телах существует некоторое количество атомов и молекул, кинетическая энергия которых достаточна для перехода в газообразное состояние. Процесс перехода вещества из твердой фазы в газообразную, минуя жидкую, называют возгонкой, а процесс кристаллизации вещества из пара -- сублимацией. С признаком возгонки какого-либо твердого тела мы встречаемся при ощущении его запаха в окружающем воздухе.

Так как в снежном покрове имеется большое количество межкристаллических пор с поверхностями кристаллов очень малого радиуса и разных направлений кривизны, то в его толще распределение парциального давления водяного пара будет очень неравномерно. Водяной пар, образовавшийся на острых ребрах кристалликов, будет стекать во впадины и, насыщая здесь воздух, перейдет в воду и замерзнет. Вследствие этого возникает процесс округления кристалликов льда и увеличения их объема, т. е. происходит так называемая фирнизация снега. Процесс этот наблюдается при изотермии и активизируется при наличии температурной стратификации. В снежном покрове имеет место значительный температурный перепад, так как его поверхность охлаждается намного ниже нуля по сравнению с приземным слоем. В связи с этим создается дополнительная разность парциального давления водяного пара в снежном покрове с градиентом, направленным снизу вверх, что еще более усиливает миграцию водяного пара и фирнизацию снега.

Повторное таяние кристаллов льда и замерзание воды также способствуют фирнизации снега. Таяние кристаллов начинается с их выступающих частей -- углов, лучей, ребер. Поэтому частично оттаявший кристалл приобретает округлую форму в виде зерна. При повторном таянии кристаллические зерна увеличиваются в размерах за счет попадания на них капелек воды с соседних кристалликов и т. д. При этом в снежном покрове увеличиваются поры и на их стенках осаждается иней, обусловленный сублимацией. Процесс ускоряется за счет гравитационной воды, проникающей сверху в результате таяния самого верхнего слоя снежного покрова.

Размещено на Allbest.ru


Подобные документы

  • Физические свойства и химическая формула воды. Рассмотрение агрегатных состояний воды (лёд, пар, жидкость). Изотопные модификации и химические взаимодействия молекул. Примеры реакций с активными металлами, с солями, с карбидами, нитридами, фосфидами.

    презентация [958,8 K], добавлен 28.05.2015

  • Виды воды в горных породах, происхождение подземных вод, их физические свойства и химический состав. Классификация подземных вод по условиям образования, газовый и бактериальный состав. Оценка качества технической воды, определение ее пригодности.

    презентация [92,8 K], добавлен 06.02.2011

  • Условия залегания и свойства газа, нефти и воды в пластовых условиях. Физические свойства нефти. Главные свойства нефти в данных условиях, принципы и этапы отбора проб. Нефтенасыщенность пласта, характер и направления движения нефти внутри него.

    курсовая работа [1000,9 K], добавлен 19.06.2011

  • Минеральные воды, их происхождение, физические свойства и химический состав. Геоэкологическая обстановка восточной части Вологодской области, типы почв, рельеф и климат. Процентное содержание различных типов минеральных вод районов, уровень минерализации.

    дипломная работа [6,4 M], добавлен 27.10.2017

  • Общая характеристика и геолого-геофизическая изученность района: тектоника, гидрология, нефтегназоносность. Физические свойства горных пород, сейсмогеологические условия. Комплекс полевой аппаратуры Sercel-428XL. Методы приема сейсмических колебаний.

    отчет по практике [54,1 K], добавлен 10.06.2014

  • Построение и свойства кривой расходов воды. Выбор способа вычисления ежедневных расходов воды на основе анализа материалов наблюдений особенностей режима реки. Способы экстраполяция и интерполяции. Гидрологический анализ сведений о стоке воды и наносов.

    практическая работа [28,9 K], добавлен 16.09.2009

  • Процессы, протекающие в горных породах под действием электрического поля. Классификация минералов по электропроводности. Физические свойства бурых углей и антрацитов. Метаморфическое преобразование керогена. Петрофизическая модель месторождения.

    курсовая работа [2,3 M], добавлен 04.08.2014

  • Вода в жидком, твердом и газообразном состоянии и ее распределение на Земле. Уникальные свойства воды. Прочность водородных связей. Круговорот воды в природе. Географическое распределение осадков. Атмосферные осадки как основной источник пресной воды.

    реферат [365,1 K], добавлен 11.12.2011

  • Вода как одно из самых распространенных веществ на Земле. Классификация и категории воды в горных породах, ее разновидности и отличительные особенности, значение в природе. Анализ и оценка влияния химического состава воды на свойства горных пород.

    контрольная работа [17,2 K], добавлен 14.05.2012

  • Вывод уравнения для аналитического описания эпюры температуры воды. Изучение неоднородности температуры воды по глубине рек. Анализ распределения температуры воды по ширине рек. Оценка эффективности использования уравнения теплового баланса реки.

    дипломная работа [4,1 M], добавлен 22.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.