Современное состояние освоения морских месторождений

Особенности разработки морских нефтяных и газовых месторождений. Поисково-разведочные работы на шельфе. Морские, самоподъемные и полупогружные плавучие буровые установки, типы коронных колонн. Подводное устьевое оборудование и понятие морского стояка.

Рубрика Геология, гидрология и геодезия
Вид курс лекций
Язык русский
Дата добавления 17.03.2013
Размер файла 1,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

На последнем уровне классификации имеется 10 групп конструкций, каждая из которых обозначается начальными буквами слов английского языка, например RGS -- риджит гревити стил (жесткая гравитационная стальная), RGC (жесткая гравитационная бетонная) и т. д.

Из рассмотренных в работе 40 конструкций глубоководных МСП (глубина моря более 300 м) 76% составляют жесткие, в том числе 45% стальные ферменные со свайным креплением, 26% гравитационные и 5% гравитационно-свайные. Среди упругих МСП 13% плавучие башни, 8% башни с оттяжками и 3% гибкие башни. Отмечено увеличение доли проектов стальных опор в зависимости от глубины моря. При глубинах моря 305-- 365 м стальные опоры составляют 13%, а при глубинах от 365 до 520 м -- 50%. Из выполненных проектов 79% -- стальные опоры, 15% -- бетонные и 6% -- стальбетод.

Наибольшее число проектов 57% разработано для вод глубиной 305--365 м. 30% --для глубин 365--460 м и 13% -- на глубины больше 460 м.

Жесткие МСП

Морские стационарные платформы, закрепляемые сваями МСП пирамидального типа

МСП, закрепляемые сваями, представляют собой гидротехническое металлическое стационарное сооружение, состоящее из опорной части, которая крепится к морскому дну сваями, и верхнего строения, оснащенного комплексом технологического оборудования и вспомогательных средств и устанавливаемого на опорную часть МСП.

Опорная часть может быть выполнена из одного или нескольких блоков в форме пирамиды или прямоугольного параллелепипеда. Стержни решетки блока изготовляют в основном из металлических трубчатых элементов. Количество блоков опор определяется надежностью и безопасностью работы в данном конкретном районе, технико-экономическими обоснованиями и наличием грузоподъемных и транспортных средств на заводе -- изготовителе опорной части МСП.

На рис. 21 а, б, в даны схемы МСП, применяемые на Каспийском море. Ниже приведены краткие технические данные морской стационарной платформы для одновременного бурения скважин двумя буровыми установками на месторождении им. 28 апреля на глубине 100 м. Платформа состоит из двух опорных блоков, установленных на расстоянии 31 м друг от друга, и трехпалубного верхнего строения, которое включает 14 модулей, в том числе: два подвышечных, шесть модулей нижней палубы с эксплуатационным оборудованием 450 т каждый, шесть модулей верхней палубы с буровым оборудованием до 600 т каждый.

На платформе размещен комплекс технологического и вспомога-тельного оборудования, систем, инструмента и материалов, обеспечивающих бурение скважин двумя буровыми установками.

Платформа оснащена блочными жилыми и бытовыми помещениями, вертолетной площадкой, погрузочно-разгрузочными кранами и др.

С платформы предусмотрено бурение 12 скважин.

Опорные блоки крепятся к морскому грунту сваями. На опорные блоки устанавливается верхнее трехпалубное строение с модулями, оснащенными соответствующими технологическим и вспомогательным оборудованием и системами.

Как известно, затраты на обустройство морских нефтегазовых месторождении составляют свыше 50 % всех капиталовложений. Достаточно сказать, что стоимость отдельных нефтегазопромысловых платформ достигает 1--2 млрд долл.

Например, эксплуатирующаяся в настоящее время глубоководная гравитационная платформа для месторождения Тролль в Северном море оценивается в сумму свыше 1 млрд долл. Затраты на прокладку современного глубоководного магистрального трубопровода составляют 2--3 млн долл. за километр. Каждый новый этап в освоении шельфа вызывает к жизни новые технические решения, соответствующие возникающей проблеме. Разработан целый спектр технических средств освоения шельфа, выбор которых определяется совокупностью технологических, геолого-, гидрометеорологических, экономических, политических и других условий.

Рис. 22 Современные глубоководные платформы, используемые для разработки шельфовых нефтегазовых месторождений

Так, например, для выполнения работ по разведке, бурению скважин и добыче нефти и газа используются различные типы технических средств, изображенных на рис.22.

Среди инженерных компаний, успешно работающих в области создания новой техники и морских нефтегазовых сооружений, приоритетные позиции занимают «Браун энд Рут», «Мак-Дермот», «Квернер», «Аккер» и др.

Советский опыт в этой области накоплен организациями Азербайджана, где институт Гипроморнефтегаз спроектировал, а Бакинский завод глубоководных оснований изготовил и установил более десяти металлических платформ на глубинах около 100 м. Институтом ВНИПИШельф разработаны платформы высотой около 30 метров для газовых месторождений Крыма. Морские трубопроводы диаметром до 500 -- 700 мм проложены на Каспийском и Черном морях и на Дальнем Востоке через Татарский пролив.

Гравитационные морские стационарные платформы (ГМСП)

Гравитационные МСП отличаются от металлических свайных МСП как по конструкции, материалу, так и по технологии изготовления, способу их транспортировки и установки в море.

Общая устойчивость ГМСП при воздействии внешних нагрузок от волн и ветра обеспечивается их собственной массой и массой балласта, поэтому не требуется их крепление сваями к морскому дну. ГМСП применяют в акваториях морей, где прочность основания морского грунта обеспечивает надежную устойчивость сооружения.

Рис. 23 Схема платформы типа «Кондип» 1 -- емкость с топливом; 2 -- стенки ячейки; 3 -- верхняя крышка; 4 -- опора хозяйственного оборудования; 5 -- верхнее строение; 6 -- буровая опорная колонна; 7 -- хранилище нефти; 8 -- нижняя крышка; 9 -- балласт; 10 -- стальная юбка; 11 -- штифт

ГМСП -- очень массивные объекты, состоящие из двух частей: верхнего строения и опорной части. Опорная часть состоит из одной или нескольких колонн, изготовляемых из железобетонa. Колонны цилиндрической или конической формы опираются на многоячеистую монолитную базу (рис.23)

База относительно небольшой высоты по сравнению с колоннами, состоит из ячеек-понтонов, жестко связанных между собой, и заканчивается в нижней части юбками с развитой общей опорной площадью на морское дно. Размеры опорной многоблочной плиты бывают в длину 180 м и по ширине до 135 м.

Преимущество ГМСП -- непродолжительное время установки их в море, примерно 24 ч вместо 7--12 мес, необходимых для установки и закрепления сваями металлических свайных платформ. Собственная плавучесть и наличие системы балластировки позволяют буксировать ГМСП на большие расстояния и устанавливать их в рабочее положение на месте эксплуатации в море без применения дорогостоящих грузоподъемных и транспортных средств. Преимуществом их также является возможность повторного использования на новом месторождении, повышенные огнестойкость и виброустойчивость, высокая сопротивляемость морской коррозии, незначительная деформация под воздействием нагрузок и более высокая защита от загрязнения моря.

ГМСП применяют в различных акваториях Мирового океана. Особенно широко они используются в Северном море.

К недостаткам гравитационных платформ относится необходимость тщательной подготовки места их установки. Особое внимание следует уделять на опасность аварий, которые могут возникнуть при разжижении грунта, его поверхностной и внутренней эрозии, местных размывах.

Лекция № 10. Гравитационно-свайные МСП. Упругие башни

Упругие МСП

Обычно при проектировании МСП статическую прочность конструкции рассчитывают на действие максимальных нагрузок, повторяющихся один раз в 100 лет, и производят поверочный расчет на динамические и циклические нагрузки.

Упругой башней называют относительно тонкую стальную пространственную ферму из стержней с довольно равномерным по высоте расстоянием между горизонтальными поясами.

К классу упругих башен относят находящуюся в эксплуатации в Мексиканском заливе на глубине 305 м МСП «Лена». Конструкция ее представляет собой ферму квадратного сечения со стороной квадрата 36,636,6 м, высотой 320 м и массой 21 тыс. т. В верхней части фермы имеется 16 опор диаметром 1220 мм, на которых установлено верхнее строение. Нижняя часть башни имеет 12 таких опор. В пределах верхней половины башни размещены 12 понтонов диаметром 6,1 м, длиной 36,6 м, обеспечивающие 9100 т плавучести. Понтоны стабилизируют платформу, уменьшают давление на фундамент, значительно облегчают монтаж платформы и оттяжек.

Используя опыт эксплуатации МСП «Лена», фирма «Эксон» изучила шесть проектов глубоководных МСП, разработанных специалистами фирмы. Нагрузки от окружающей среды и гравитационные, действующие на МСП «Лена», распределяются на сваи, оттяжки, инерционность конструкции и понтоны. Перераспределяя эти нагрузки на перечисленные узлы конструкции, можно достичь оптимального варианта решения конструкции. Например, вес палубы можно передать на сваи или компенсировать подъемной силой понтонов. Понтоны, кроме этого, компенсирую горизонтальные силы, обеспечивая устойчивость платформы, уменьшают или полностью снимают нагрузки на оттяжки. Инерция основания увеличивает период боковых колебаний, снижает их амплитуду и соответственно снижает динамические нагрузки на оттяжки и сваи.

Рис. 24 Схема распределения нагрузок между основными элементами конструкции упругих башен

Разница в вариантах проектов упругих башен заключается в способах, которыми достигается заданный период колебаний, и определяется волновыми нагрузками, их воздействие перераспределялось между основными элементами конструкции (рис. 25).

Гибкая башня рассматривалась как вариант обычной свайной ферменной конструкции, у которой основание закреплено, а жесткость фермы уменьшена настолько, чтобы достигался большой период основных колебаний гибкого стержня.

Рис. 25 Схемы упругих платформ: 1 -- башня с оттяжками; 2 -- плавучая башня; 3 -- башня с оттяжками и жестким основанием; 4 -- гибкая башня; 5 -- упругая свайная башня; 6 -- упругая свайная башня с жестким основанием

Период вторичных колебаний должен быть небольшим, чтобы обеспечить стойкость к усталостным разрушениям. Под периодом основных колебаний гибкого стержня понимается период поперечных колебаний, а под периодом вторичных колебаний гибкого стержня -- период изгибных колебаний.

Рис. 26 Крепление свай к опорам платформы: 1 -- свая, приваренная к направляющей втулке; 2 -- свая свободно проходит через направляющую втулку; 3 -- узел крепления направляющей втулки к главной опоре; 4 -- нижняя удлиненная направляющая втулка

Период поперечных колебаний задавался 25 с. Максимальный период изгибных колебаний выбирался около 7 с. При этом обеспечивалась стойкость к усталостному разрушению в условиях Мексиканского залива.

Башня (рис.27)общей высотой 372 м, прямоугольного сечения 5844 м состоит из 20-ти опор переменного сечения 9 от 2012 мм в нижней части до 1524 мм в верхней части. Фундамент башни поднят над морским дном на 3 м. Башня состоит из двух секций. Верхняя секция длиной 155 м имеет 10 понтонов 6 размерами 14,680 м, и нижняя секция длиной 217 м имеет 6 понтонов размерами 14,620 м. Верхние понтоны расположены на 30 м ниже уровня моря. Они предотвращают колебания башни с периодом более 6 с. Десять балластных камер (понтонов) 4 размерами 14,620 снижают плавучесть всей платформы до нейтральной. Семь осевых свай 8 диаметром 1220 мм заглублены на 110 м и возвышаются над морским дном на 360 м. Они привариваются к опорам башни на расстоянии 10 м от уровня моря 2. Количество и диаметр осевых свай выбраны из расчета обеспечения требуемой осевой жесткости, существенно снижают период вертикальных колебаний, но не должны иметь значительной жесткости при кручении.

26 периферийных свай диаметром 2134 мм воспринимают горизонтальные нагрузки и работают на срез. Они заглублены в морское дно на 50 м. Расчетный период собственных колебаний башни по оси х составляет 65,2 с и по оси у -- 52,2 с, что значительно больше возможного периода волн. Первый период изгибных колебаний по обеим осям менее 4 с, что указывает на невозможность динамической раскачки, так как волны с периодом менее 6 с большую нагрузку не создают.

При максимальной штормовой нагрузке высота волн достигает 30 м, период волн 15 с, скорость течения меняется от 1,2 до 0,6 м/с у дна, скорость ветра на палубе 40 м/с. При минимальных скоростях ветра и течения башня отклоняется от вертикали на 1,12° и при волнении -- на 2,52° (это такие же отклонения, что и у башни «Лена»).

Максимальные перемещения фундамента башни 680 мм. С учетом этого для изготовления башни рекомендуется использовать сталь с пределом текучести 346 МПа. На уровне дна в сваях возникают более высокие напряжения, и для свай рекомендуется сталь с пределом текучести 438 МПа. Секции башни транспортируются на место установки и собираются в горизонтальном положении.

Гравитационно-свайные МСП не сдвигаются с места установки благодаря не только собственной массе конструкции, но и за счет дополнительного крепления сваями опорной их части к морскому дну. МСП этого типа бывают различных конструкций, как по конфигурации сооружения, так и сочетанию применяемых материалов.

Гравитационно-свайные основания на глубине более 300 м в большинстве случаев представляют собой форму треноги. Конструкция опорной части состоит из центральной колонны большого диаметра, поддерживаемой тремя наклонными опорами.

Колонны могут быть в виде сплошных металлических цилиндров больших диаметров или элементов ферменной конструкции. Например, в конструкции проекта «Трипод тауэр платформ» центральная колонна диаметром 15 м поддерживается тремя наклонными колоннами диаметром 8 м. Толщина стенок всех колонн 160 мм.

Центральные колонны и боковые наклонные опоры в средней части связываются горизонтальными элементами жесткости и раскосами. Конструкция МСП устанавливается на четыре донных фундамента, закрепленных сваями и связанных между собой А-образной стальной рамой.

В проекте «Хайлант» центральная ферма-опора укреплена тремя боковыми наклонными фермами. Сечение всех ферм треугольное. Каждый силовой элемент изготовляется отдельным блоком. Масса центральной фермы 10 тыс. т, опор --4,5--5 тыс. т. На палубе предусматривается установка технологического оборудования массой 24 тыс. т и 16 направляющих колонн диаметром 712 мм. Масса основных конструкций 31 тыс. т, свай -- 20 тыс. т. Расстояние от основной центральной фермы до основания опор 110м.

Опоры крепятся к центральной ферме на глубине от 40 до 79 м ниже уровня моря. Конструкции могут применяться на глубинах моря: первая -- от 150 до 460 м и вторая -- от 200 до 400 м.

Лекция № 11. Полупогружные платформы. Эстакады. Мелководные основания

Разработка морских осуществляется как, правило, на разведанных акваториях.

В процессе разработки морских месторождений на Каспии потребовалось надежное сообщение между отдельными объектами, расположенными на морских стационарных основаниях. Доставка грузов на судах при волнении 4 балл и ветре 5 баллов была затруднена. Кроме того, несудоходность акватории в местах разработки обусловила создание эстакад как средств сообщения между объектами существующего промысла.

Сущность данного способа заключается в следующем: на основании проекта разработки месторождения сооружается сеть магистральных эстакад ответвлениями. Параллельно со строительством эстакад возводятся приэстакадные площадки для бурения и эксплуатации скважин, нефтесборные пункты, нефтяные и водяные насосные, водоочистные сооружения по сбору и утилизации сточных вод, парки товарных резервуаров, жилые, административные здания.

Эстакадами называются протяженные сооружения, обеспечивающие непрерывную надводную связь буровых платформ с помощью автотранспорта.

Морская эстакада: предназначена для обеспечения непрерывной, независимой от состояния волнения моря, сухопутной связи между объектами по эстакаде осуществляется:

движение автотранспорта и железнодорожный транспорт.

прокладка необходимого числа трубопроводов различного назначения (для воды, нефти, года, пара глинистого раствора).

В общем, виде, морская эстакада представляет собой многопролетные, однорядные линейное сооружение, состоящее из пространственных ферм, отирающихся на трубчатые опоры.

На сравнительно неглубоких акваториях применяются плоские опоры, состоящие из двух наклонно забитых свай связанных сверху ригелем, а по высоте трубчатыми связями. Пространственная ферма пролетных строений сооружаются сквозными из трубчатого проката в виде спаренных балок.

Приэстакадные площадки независимо от них назначения представляют многорядную и многопролетными систем ферм, опирающихся на трубчатые свайные опоры, связанные ригелями и трубчатыми связями, обеспечивающими продольную и поперечную жесткость сооружения.

Рис. 28 Металлическая эстакада (строительство очередного пролета). 1 - свая; 2 - ригель; 3 - поперечная надводная связь; 4 - ферма пролетного строения; 5 - эстакадный строительный кран Гипроморнефть-20

Цикл операций по возведению одного пролета состоит из следующих основных видов работ: устройства свайной опоры рамного типа, забивкой свай в грунт и последующей обвязки их ригелем по верху и системой одно и двухярусных связей по высоте, монтаж пролетных строений, устройства временного рельсового пути.

Для того чтобы иметь возможность бурить скважины под дно водного бассейна, а затем добывать нефть или газ необходимо сооружать специальные основания, на которых и следует размещать буровое и эксплуатационное оборудование.

Стационарные основания подразделяют на насыпные острова, основания из металлоконструкций свайного типа, крупноблочного типов, основания очень большого веса гравитационного типа.

Металлические стационарные морские основания для бурения скважин и добычи нефти за рубежом начали свое развитие с простейших конструкций на глубину 6м до сложных конструкций на глубины до 305м и более.

Основания из металлоконструкций свайного и крупноблочного типов в буровой практике использует широко.

Основания свайного типа - применяют при различной глубине, а также в случае резких изменений рельефа дна водоема. Под сваи в дне моря со специального судна бурят скважины. В каждую такую скважину спускают свою - трубу и цементируют её. Затем сваи обрезают так, чтобы их концы были над водой на одинаковым уровне. Концы труб связывают плоскими металлическими фермами, на которые настилают пол и устанавливают вышку и буровое оборудование. Высота свай над уровнем воды должна превышать высоту самых больших волн.

Крупноблочные основания

В настоящее время для строительства морских оснований используют крупные блоки (МОС-1,2) конструкция Межлумова, Оруджева и Саттарова рассчитаны на применение при глубине вод до 8 м, 14 м, 22 м. После установки на дне моря блока, входящего в основание МОС, через внутреннего полость под дно водоема бурят скважины, в которые затем опускают железобетонные сваи, связывающие блоки с дном.

Надводная часть блока оснащена фермами, регулируемыми по высоте, что позволяет использовать при изменениях рельефа дна до 1м. Для более глубоководных участков используют основания других типов.

Лекция № 12. Надводная и подводная эксплуатация

Морские нефтегазовые промыслы (МНП): - технологические комплексы, предназначенные для добычи, сбора, нефти и газа и конденсата из морских месторождений углеводородов, а также для подготовки продукции и дальнейшей транспортировки.

Добыча осуществляется преиму-щественно фонтанным способом (в.т.ч. с ППД) с последующим переходом на газлифтную и др. механизированные способы добычи.

Нефть и газ добываемый при этом используется для внутренних нужд энергопотребления в газлифтном цикле. Газовые месторождения разрабатываются в случае сообщения с береговым потребителем подводным газопроводом. Отличие МНП от промысла на суше необходимость размещения основного и вспомогательного оборудования на морских нефте-газопромысловых гидротехнических сооружениях.

Технологические схемы МНП зависят от глубины, возможности появления и (толщины) ледовых образований, высоты волн, скорости ветра и др. природно-климатических условиях. Эксплуатация осуществляется главным образом на незамерзающих акваториях до глубины 300 м.

При глубинах 25-30 м располагаются МНП преимущественно на искусственных островах и дамбах (до 5-10 м) эстакадах и других свайных сооружениях.

Надводная эксплуатация - это комплекс мероприятий по извлечению и транспорту нефти и газа стационарных платформ, оснований и приэстакадных площадок. Эксплуатация осуществляется наклонными и горизонтальными скважинами большой протяженности при этом устье скважины, оборудовано, обычном надводным способом

На глубине 25-30 м применяют стационарные платформы состоящих из металлической или железобетонной опорный части и палубы, на которой размещается промысловые оборудование. До глубины 60-80 м главным образом используются однофункциональные платформы с добывающими скважинами или технологическим оборудованием (для сбора и подготовки продукции), энергетическими объектами, жилыми помещениями и др.

Глубина больше 80 м - как правило, является многофункциональными, причем каждая платформа может являться самостоятельным нефтегазопро-мыслом. Количество платформ определяется объектом дренирования и обычно бывает от 2-4.

Особенность шельфовой эксплуатации высокие затраты и недостаточность места для размещения оборудования. Эти ограничения привели к бурению горизонтальных скважин большой протяженности для увеличения площади дренирования нефтяного пласта.

Нефтяные компании уже разработали технологию направленного бурения для достижения максимального охвата с каждой скважины Статойл, например, пробурил за последнее 7 километровую скважину, расходящуюся на 5 км вокруг платформы Статфьюрд вглубь пласта, расположенного под морским дном на глубине 3500 м.

Первая скважина с подводным расположением устья была пробурена в 1943 г. на оз. Эри (США) на глубине 11,5 м. С тех пор этим методом закончено около 300 скважин в различных морских месторождениях мира: в Мексиканском заливе, у Тихоокеанского побережья США, у побережья Юго-Восточной Азии, в Северном море и т. д. За 1976--1980 гг. число скважин с подводным расположением устья возросло с 217 до 283. В первой половине 1980г. намечалось оборудовать еще 66 скважин, для которых уже имелось оборудование или оно было заказано.

Рис. 29 Комплекс подводной эксплуатации скважин

Метод разработки морских нефтяных месторождений с подводным расположением устьев скважины хотя и сложен, но обладает рядом преимуществ перед обычным способом надводного оборудования устьев.

Основным преимуществом этого метода является возможность ввода нефтяного месторождения в эксплуатацию очередями, что на практике ведет к ускоренному получению первой нефти. Пробурить с бурового судна несколько скважин, оборудовать их устья соответствующей подводной арматурой и ввести в эксплуатацию можно значительно быстрее, чем устанавливать дорогостоящую стационарную платформу, бурить с нее наклонно-направленные скважины, и лишь после этого ввести месторождение в эксплуатацию. Кроме того, метод разработки месторождения с подводным расположением устьев скважин дает возможность выявить некоторые геолого-физические характеристики месторождения и эксплуатационные параметры на более ранней стадии разработки.

Вследствие сравнительно низких капитальных затрат метод может быть применен для разработки месторождений с небольшими запасами нефти, эксплуатация которых с обычных стационарных платформ является нерентабельной.

Преимуществом системы с подводным расположением устья является также защищенность всего оборудования, установленного на дне, от внешних погодных условий. Известно, что надводные стационарные платформы представляют значительную навигационную опасность, в то время как при установке оборудования под водой такая опасность практически отсутствует, устраняется также пожарная опасность.

Существенным недостатком систем с подводным расположением устья является трудность доступа к устьевому оборудованию, особенно при расположении последнего на большой глубине и при необходимости частых ремонтов скважин. Кроме того, недостатком считают необходимость использования труда опытных водолазов, умеющих работать на большой глубине.

Следует отметить, что ряд крупных зарубежных нефтяных фирм относится с известной осторожностью к методу разработки морских месторождений скважинами с подводным расположением устья, считая, что этот метод еще не вышел из опытной стадии или же что он применим только для отдельных изолированных скважин.

Под водой устьевое оборудование устанавливают на устьях отдельных вертикально пробуренных скважин или на устьях направленных скважин, пробуренных на ограниченной площади кустом.

Для управления устьевым оборудованием и манифольдными камерами применяются гидравлические или электрогидравлические системы. Управление каждой задвижкой осуществляется либо по отдельным линиям, идущим с обслуживающего судна, либо через единый распределительный блок.

Различают две системы подводной установки оборудования:

с открытым расположением оборудования устья под водой;

и с закрытым оборудованием-- «сухим» (атмосферным).

В системах открытого типа все устьевое оборудование находится под гидростатическим давлением, соответствующим глубине моря. В системах закрытого типа устьевое оборудование устанавливают в специальных погружных камерах, внутри которых сохраняется либо атмосферное, либо слегка повышенное давление. Системы с открытым расположением оборудования получили значительно большее распространение, чем системы «сухого» типа. Монтаж, техническое обслуживание и ремонт оборудования открытых систем проводится манипуляторами или водолазами, а в закрытых системах -- в атмосферных камерах, где операторы работают в обычной одежде. Арматура для установки на подводное устье скважины отличается от обычного как размерами, так и конструктивным решением.

Надежность подводной технологии

Проблема обеспечения надежности -- одна из наиважнейших при применении подводной технологии, поскольку инспекция подводного оборудования затруднена, а его обслуживание и (или) замена требует больших затрат. Кроме того, отказ подводного оборудования непосредственно влияет на состояние окружающей среды. И, наконец, подводное оборудование должно обеспечивать непрерывность добычи и окупаемость капитальных вложений.

Чтобы свести к минимуму подводные операции, важно обеспечить извлекаемость компонентов подводного оборудования для инспекции, ремонта или замены. В этой связи необходимо заложить в подводные системы принцип частичного дублирования, который служил бы гарантией непрерывности добычи. Поэтому модульные системы должны проектироваться с включением стандартных компонентов, проходить надлежащие испытания и изготавливаться со строгим контролем качества.

Одним словом, для обеспечения надежности подводных систем следует сочетать творческую изобретательность с осторожным применением новых идей. Девизом должна быть простота, а целью -- надежность, а не техническая элегантность решений.

Обслуживание подводного оборудования

Как говорилось выше, проблема обслуживания подводного оборудования тесно связана с обеспечением его надежности. Обслуживание подводных и любых других систем основывается на одних и тех же принципах. Использование модульных систем предполагает применение опробованных компонентов, что позволяет извлекать их и заменять новыми. Однако в любой системе имеются уникальные, предназначенные только для данного месторождения компоненты. Они не извлекаются и служат в течение всего периода разработки месторождения. Другие части системы могут оказаться неисправными и потребовать ремонта или замены. Здесь, в принципе, возможны два подхода. Первый подход -- обеспечение высокой надежности этих компонентов подводной системы. Второй подход заключается в проектировании системы таким образом, чтобы в случае отказа одних компонентов их функции могли взять на себя другие компоненты. Необходимо также расширить доступ к подводному оборудованию водолазов и манипуляторов для проведения обслуживания и ремонта. Характер обслуживания подводных систем, наряду с результатами анализа их рентабельности, должен учитываться при решении вопроса о применении подводной технологии.

Обзор проектов подводной добычи проект «Закум»

Осуществление проекта подводной добычи «Закум» началось в августе 1969 г., когда была забурена скважина, и продолжалось до апреля 1972 г., когда подводная система была законсервирована и нефть из скважины с подводной устьевой арматурой начала поступать непосредственно на близлежащую платформу. За этот период были опробованы подводное эксплуатационное оборудование различных видов и разные подводные операции (рис.30).Осуществление проекта имело целью:

1. Обеспечить добычу нефти с помощью подводных методов.

2. Накопить опыт применения подводного оборудования и подводных методов нефтедо-бычи для дальнейшего их использования при разработке морских месторождений.

В рамках проекта были опробованы такие виды оборудования и такие операции, которые охватывают практически все аспекты подводной нефтедобычи. Помимо основного эксплуатационного оборудования (устьевая арматура, клапаны, выкидные линии и т. п.), в программу исследований входил целый ряд вспомогательных систем (сепараторы, источники электроэнергии, контрольно-измерительные приборы, водолазные системы и т. п.) и операций. Полный перечень оборудования и операций включал:

- устьевое оборудование;

сепараторы нефти и газа;

системы сброса газа;

устройства для регулирования работы клапанов;

контрольно-измерительные приборы и системы связи;

источники электроэнергии и системы ее распределения?

трубопроводы и манифольды;

канатные работы;

водолазные работы;

вспомогательное судно.

Рис. 30 Схема подводной нефтедобычи по проекту «Закум»: 1 -- подводная скважина с двумя устройствами для приведения в действие клапанов и блоками питания; 2--основной блок питания; 3 --трансформаторы; 4 --генератор радиосигналов; 5 -- радиосвязь; 6,9 -- трубопровод; 8 -- кабель; 10 -- сепаратор

Условия эксплуатации подводной системы «Закум» были достаточно благоприятными. Глубина воды не превышала 20 м, что позволило выполнять операции по установке и обслуживанию оборудования с привлечением водолазов. Кроме того, основная береговая база находилась недалеко от центра проводившихся работ (остров Дас), что также облегчало условия эксплуатации. Тем не менее, благодаря проекту «Закум» был накоплен значительный опыт проведения подводных операций, который оказался полезным при больших глубинах и в более суровых условиях.

Лекция №13. Методы разработки морских месторождений. Системы расположения скважин. Режимы работы пластов

Разработка морских месторождений требует применения стратегии, отличной от разработки наземных месторождений. Основное отличие заключается в числе скважин и их моделях.

При морских разработках на платформах должны быть размещены скважины, оборудование для добычи, вспомогательные системы и жилые помещения для персонала. Во многих случаях, подводные скважины могут использоваться в качестве альтернативы или как дополнение к платформенным скважинам. Следует также учитывать наличие многофазного потока, даже, если перерабатывающий центр (платформа или терминал) расположены на достаточно большом расстоянии.

По мере увеличения веса верхних строений, будет значительно увеличиваться и стоимость опорных блоков платформы. Поэтому важно уменьшить объем расположенного на ней оборудования. Это имеет существенное значение на всех фазах разработки проекта. Любое увеличение количества перерабатывающего оборудования на платформе также приведет к увеличению персонала, количества инструментов и ремонта оборудования. Далее должна быть составлена схема разработки месторождения, основанная на модели дренирования и определении требуемого типа продукции.

На фазе оценки возможности осуществления проекта рассматривают различные сценарии разработки, а оптимальная схема разработки месторождения получает детальное завершение на фазе формулирования концепции проекта.

Типичные сценарии технических схем разработки месторождения включают:

устьевые платформы, + обрабатывающие платформы + жилые платформы;

интегрированные эксплуатационные платформы;

плавучие эксплуатационные системы;

подводные эксплуатационные системы.

Кроме этого, должна быть рассмотрена система транспортировки, включающая:

- газоконденсатные экспортные трубопроводы;

- экспортные нефтепроводы;

- систему хранения нефти в сочетании с ее морской погрузкой.

До внедрения вторичных и третичных методов увеличения нефте-отдачи добыча нефти осуществлялась за счет проявления естественной энергии пласта и насыщающих его флюидов.

Естественный (или как его еще называют, первичный) режим притока жидкостей и газа к скважине может осуществляться посредством:

-- действия сил упругости (так называемый упругий и упруго-водонапорный режимы фильтрации);

-- выделения и расширения, первоначально растворенного в нефти газа (режим растворенного газа);

-- расширения газа в газонасыщенной части пласта (режим газовой шапки);

-- действия сил тяжести (гравитационный режим);

-- переуплотнения пород-коллекторов при частичной потере прочности скелетом породы под воздействием чрезмерно возросших эффективных напряжений на породу-коллектор.

Упругий режим проявляется наиболее полно на начальной стадии эксплуатации месторождения. При упругом режиме фильтрации движение нефти из пласта к скважине обусловлено сжимаемостью нефти и воды, насыщающих продуктивный пласт, приводящей к увеличению их объема при снижении пластового давления, и упругой деформацией породы, снижающей объем перового пространства. При проявлении чисто упругого режима нефтеотдача пласта обычно не превышает 1--2%.

Наличие большой по протяженности водонасыщенной зоны вокруг нефтяного пласта способствует переходу упругого режима в режим упруго-водонапорный, при котором используются упругие свойства законтурной воды (т.е. воды, находящейся за внешним контуром нефтеносности) и водоносного пласта. Этот режим в свою очередь может переходить в жестко-водонапорный режим, при котором объем отбираемой из скважин продукции (нефти, воды и газа) компенсируется притоком воды из законтурной зоны пласта. Пластовое давление в залежи при этом поддерживается на постоянном уровне, обеспечивая тем самым эффективную добычу нефти. Упруго- и жестко-водонапорный режимы фильтрации позволяют отобрать от 35 до 75% нефти, первоначально содержащейся в пласте.

При падении пластового давления ниже давления насыщения начинается процесс выделения из нефти газа, первоначально растворенного в ней. При дальнейшем снижении давления пузырьки газа расширяются и вытесняют нефть из порового пространства. Этот процесс получил название режима растворенного газа в связи с тем, что в большой степени именно первоначально растворенный в нефти газ обеспечивает движение нефти к скважинам и ее добычу. Режим растворенного газа имеет более длительный эффект в стратифицированных пластах или в пластах с низкой проницаемостью в вертикальном направлении, предотвращающей относительно быструю сегрегацию газа, вызванную различием в плотностях нефти и газа. В некоторых случаях «всплывание» газа может приводить к образованию так называемой вторичной газовой шапки. Как правило, режим растворенного газа является одним из наименее эффективных режимов фильтрации и позволяет добыть от 5 до 25% находящейся в пласте нефти.

При наличии в залежи газовой шапки (т.е. скопления газа над нефтенасыщенной частью пласта) добыча нефти осуществляется в основном за счет режима газовой шапки или газонапорного режима. Высокая сжимаемость газа и значительный объем газонасыщенной части пласта обеспечивают продолжительную и эффективную добычу: до 40% находящейся в пласте нефти может быть добыто при проявлении газонапорного режима.

В нефтеносных залежах большой мощности и крутопадающих нефтяных пластах значительная часть запасов нефти может быть отобрана за счет проявления гравитационных сил. В отдельных случаях гравитационный режим фильтрации позволяет достичь чрезвычайно высоких технологических показателей добычи.

Процесс переуплотнения пород-коллекторов может возникнуть при добыче нефти или газа на режиме истощения в случаях, когда эффективные напряжения на породу (т.е. разница между горным давлением и противодействующим ему пластовым давлением) становятся значительными (и могут даже превысить предел прочности породы) и приводят к ее переуплотнению или даже частичному разрушению. Это, в свою очередь, может иметь следствием постепенное или внезапное сокращение перового объема пласта или залежи. В первом случае подобное сокращение перового пространства может сопровождаться оседанием поверхности Земли (месторождение Уилмингтон в Калифорнии, участок М-6 в Венесуэле). В случае разработки месторождений шельфа проседание дна приводит к увеличению глубины моря, особенно ощутимой в эпицентре месторождения, и, как следствие, к погружению морской платформы (месторождение Экофиск на норвежском континентальном шельфе). При резком сокращении порового пространства разработка залежи может сопровождаться подземными толчками небольшой силы, напоминающими слабые землетрясения. Значительные землетрясения могут возникать при нарушении геодинамической обстановки в районе месторождения, вызванном его разработкой (Ромашкинское месторождение в Татарии, Старогрозненское -- в районе г. Баку, небольшие месторождения в районе Ферганской долины в Средней Азии). К наиболее крупным землетрясениям, инициированным разработкой месторождения, специалисты относят землетрясение 1974 г., имевшее место в районе газового месторождения Газли в Узбекистане.

Как правило, разработка месторождений природных углеводородов происходит при одновременном проявлении нескольких режимов фильтрации. При этом для правильного описания процесса добычи и оценки конечных показателей разработки важно выделить один или несколько основных режимов фильтрации.

Рис. 33 Динамика пластового давления (р) и газового фактора (ГФ) при различных режимах фильтрации

На рис.33показано, как изменяется пластовое давление и газовый фактор (ГФ) при проявлении того или иного режима фильтрации.

С целью достижения более высоких показателей разработки (большая экономическая эффективность, большая нефтеотдача, менее продолжительная эксплуатация и т.п.) используются вторичные и третичные методы добычи нефти, или, как их еще называют, методы увеличения нефтеотдачи (МУН). Как правило, МУН основываются на закачке в пласт рабочих агентов, в качестве которых могут служить вода с добавками различных активных веществ, как, например, загустители воды (полимеры), поверхностно-активные вещества (ПАВ), а также воздух, углеводородные растворители, пластовый газ и другие агенты. Различие между вторичными и третичными методами заключается во времени их использования: вторичные методы начинают применять с самого начала разработки или по прошествии короткого промежутка времени, в то время как третичные методы обычно начинают использовать, когда значительная часть запасов нефти уже добыта.

Использование вторичных и третичных методов добычи преследует достижение следующих целей:

поддержания пластового давления. При закачке в пласт достаточных объемов воды или газа пластовое давление может поддерживаться на уровне, необходимом для достижения высоких показателей разработки (например, на уровне, несколько превышающем давление насыщения нефти газом);

более высокой степени вытеснения нефти. Некоторые из агентов, подаваемых в пласт (растворители, ПАВ и др.), приводят к уменьшению остаточной нефтенасыщенности и способствуют тем самым повышению степени вытеснения нефти;

увеличения степени охвата пласта процессом вытеснения нефти. Такие технологии, как, например, закачка полимерного раствора, попеременная закачка воды и газа, закачка пен, подача в пласт тепла (закачка горячей воды или пара) или же внутрипластовая генерация тепла (внутрипластовое горение) имеют своей целью улучшение соотношения подвижности фильтрующихся в пласте нефти и воды или же нефти и газа* и, как следствие, увеличение охвата пласта процессом вытеснения.

Традиционно используемые методы добычи обычно позволяют добыть не более 45% от первоначальных запасов нефти в пласте. Таким образом, большая часть запасов оказывается неизвлеченной. Величина неизвлеченных запасов зависит от сложности геологического строения месторождения, его местоположения, стратегии его разработки и используемых методов добычи и в значительной степени определяется экономикой или уровнем рентабельности добычи. Целью применения методов увеличения нефтеотдачи является, вообще говоря, увеличение объема извлекаемых запасов, которые могут быть экономически выгодно добыты по сравнению с традиционными методами за счет увеличения охвата пласта процессом вытеснения нефти и/или за счет повышения степени вытеснения нефти из пласта.

Существуют различные классификации и многочисленные определения технологий и методов добычи. Это в особенности справедливо для методов увеличения нефтеотдачи.

Термин МУН используется в отношении технологий добычи, позволяющих повысить извлекаемые запасы по сравнению с традиционно используемыми на данный момент времени технологиями нефтеизвлечения.

Характерными чертами МУН являются закачка в пласт агентов, отличных от традиционно используемых воды и углеводородного газа, и необходимость проведения опытно-промышленных работ.

Методы увеличения нефтеотдачи включают (но не ограничиваются) следующие технологии нефтеизвлечения:

попеременную или чередующуюся закачку воды и газа;

физико-химические МУН (закачка полимеров, поверхностно-активных веществ, гелей, пен и т.п.);

закачку газов, отличных от углеводородных (например, углекислого газа, азота, дымовых газов и т.п.);

микробиологические методы увеличения нефтеотдачи;

термические методы увеличения нефтеотдачи.

Обычно используемые методы усовершенствованной нефтеотдачи включают в себя, но не ограничиваются следующими технологиями:

закачка воды или газа;

дополнительное разбуривание залежи;

-- бурение горизонтальных скважин для добычи нефти из тонких пропластков или же «карманов» пласта с неизвлеченной нефтью;

-- бурение скважин большой протяженности для добычи нефти из удаленных частей пласта (эта технология обычно используется при разработке шельфовых месторождений или в условиях, при которых обустройство новой буровой площадки сопряжено с неоправданно большими затратами времени и средств);

-- усовершенствование системы сбора и подготовки нефти, воды и газа;

-- снижение устьевого давления в добывающих скважинах;

-- использование лучшей стратегии заканчивания скважин.

Как следует из определения МУН, объектами применения методов увеличения нефтеотдачи являются запасы нефти, остающиеся в пласте после применения первичных и вторичных методов добычи; так называемые трудно извлекаемые запасы нефти (тяжелая и вязкая нефть, пласты с низкой проницаемостью, залежи со сложным геологическим строением и т.д.).

В обоих случаях объектами применения МУН являются запасы нефти, которые могут быть извлечены экономически выгодно. Это означает, что объем нефти, добытой с помощью МУН, зависит от определенных условий, таких как экономические условия, политическая ситуация, уровень технологии и т.п., и не представляет собой неизменную величину, как, например, начальные геологические запасы нефти. Очевидно, что наилучшим вариантом разработки нефтяного месторождения является вариант, позволяющий отобрать максимальный объем нефти из пласта минимальным числом скважин за кратчайший период времени.

Газовая залежь В случае запечатанной (т.е. изолированной от других пород-коллекторов) залежи газа скважины следует располагать равномерно по площади с использованием той или иной системы расстановки. Выбор интервала перфорации в этом случае не оказывает существенного влияния на показатели разработки (рис. 34а). В случае, когда газовая залежь подстилается подошвенной водой, рекомендуется интервал перфорации располагать как можно дальше от начального положения ВНК, т.е. в верхней части разреза (рис. 34 б).

Рис. 34 Расположение скважин по площади при разработке газовой залежи: а -- запечатанная газовая залежь. Метод разработки -- режим газовой шапки; б -- газовая залежь, подстилаемая подошвенной водой. Метод разработки -- сочетание режима газовой шапки и водонапорного режима

Нефтяная залежь

В случае нефтяной залежи с подошвенной водой расположение скважин должно учитывать форму залежи и водонефтяного контакта. Такое расположение скважин часто называют батарейным. Число таких батарей и количество скважин в каждой из них зависит от величины запасов месторождения. При этом в средней части залежи обычно следует располагать так называемый разрезающий ряд добывающих (или нагнетательных) скважин (рис. 35 а).

В случае запечатанной нефтяной залежи с высоким углом падения пластов, добывающие скважины обычно располагаются в нижней части структуры по равномерной трех- или четырехточечной сетке с предпочтительно низким интервалом перфорации (рис.35б).

Рис. 35 Расположение скважин по площади при разработке нефтяной залежи [4]: а -- нефтяная залежь, подстилаемая подошвенной водой. Метод разработки -- естественный водонапорный режим; б -- запечатанная нефтяная залежь. Метод разработки -- сочетание режима растворенного газа и гравитационного режима

Такое расположение скважин обеспечивает благоприятные условия эксплуатации в силу следующих причин:

при снижении пластового давления ниже давления насыщения газ, первоначально растворенный в нефти, выделяется из нефти преимущественно в призабойной зоне скважин и в вышележащих частях залежи, создавая тем самым более или менее благоприятные условия добычи в условиях режима растворенного газа;

гравитационные силы при таком расположении скважин помогают вязкостным силам и увеличивают приток нефти к скважинам, в то время как газ, в силу проявления тех же вязкостных сил, движется вверх по восстанию пластов. В некоторых случаях такой процесс добычи приводит к образованию вторичной газовой шапки.

Лекция № 14. Способы эксплуатации скважин

Если подъем жидкости или смеси с забоя на дневную поверхность происходит только за счет природной энергии WП (WИ=0), то такой способ будем называть естественно-фонтанным. Если давление на устье скважины больше давления насыщения (Ру > Рнас), то свободный газ в подъемнике отсутствует, а жидкость поднимается на поверхность только под действием собственной потенциальной энергии. Такой способ эксплуатации называется артезианским фонтанированием либо подъемом жидкости за счет гидростатического напора пласта. Следует заметить, что в настоящее время этот способ имеет ограниченное распространение.

Если подъем продукции скважины на дневную поверхность происходит либо за счет природной и искусственной энергии, либо только за счет искусственной энергии, то такой способ эксплуатации называется механизированным.

Рис. 38 Классификация различных энергетических источников подъема продукции скважин и способов эксплуатации

Механизированный способ эксплуатации может осуществляться в двух вариантах:

1. Искусственная энергия вводится в добываемую продукцию централизованно, а распределение ее между добывающими скважинами происходит непосредственно в залежи. Такой способ ввода энергии в залежь и ее распределение осуществляются при использовании методов поддержания пластового давления.

Если при этом каждая конкретная добывающая скважина оборудована только колонной насосно-компрессорных труб (отсутствуют механические приспособления для подъема продукции скважины), указанный способ будем называть искусственно-фонтанным. Искусственно-фонтанный способ эксплуатации добывающих скважин получил довольно широкое распространение, особенно в России.

2. Искусственная энергия вводится непосредственно в каждую конкретную добывающую скважину с помощью какого-либо механического, электрического или гидравлического устройства. Ввод искусственной энергии в скважину осуществляется различными способами: компримированным газом (воздухом) или специальными глубинными насосами. При первом способе ввода энергии в скважину мы имеем дело с компрессорным (газлифтным) способом эксплуатации, при втором -- с глубиннонасосным способом.

Особое место занимают некоторые способы эксплуатации добывающих скважин, осуществляемые за счет использования природной энергии жидкости и газа с применением специального подземного (внутрискважинного) оборудования, не являющегося источником энергии. К ним относятся:

а) эксплуатация скважин бескомпрессорным (внутрискважинным) газлифтом, теоретические основы подъема продукции при которой аналогичны таковым при фонтанно-компрессорной эксплуатации. Разница заключается в том, что для подъема продукции используется газ высокого давления, отбираемый из газоносных пропластков в данной скважине либо из отдельной газовой залежи. В этом случае отпадает необходимость использования компрессоров;

б) эксплуатация скважин плунжерным лифтом, при которой подъем продукции, происходит за счет природной энергии выделяющегося из нефти газа с применением специальных плунжеров. Таким образом, в общем, виде схему используемых энергетических источников для подъема продукции скважин (а, следовательно, и способов эксплуатации) можно представить, как показано на рис. 38.Совершенно очевидно, что представленная схема не претендует на абсолютную полноту, а должна рассматриваться только в качестве классификационной.

Способ эксплуатации скважин, при котором подъем жидкости на поверхность происходит под действием пластовой энергии, называется фонтанным.

Фонтанирование скважин происходит в том случае, если перепад давления между пластовым и забойным будет достаточным для преодоления противодавления столба жидкости и потерь давления на трение, т. е. фонтанирование происходит под действием гидростатического давления жидкости или энергии расширяющегося газа. Большинство скважин фонтанирует за счет энергии газа и гидростатического напора одновременно.

Газ, находящийся в нефти, обладает подъемной силой, которая проявляется в форме давления на нефть. Чем больше газа растворено в нефти, тем меньше будет плотность смеси и тем выше поднимается уровень жидкости. Достигнув устья, жидкость переливается, и скважина начинает фонтанировать.

Оборудование фонтанных скважин

При фонтанной эксплуатации подъем газонефтяной смеси от забоя до устья скважины осуществляется по колонне насосно-компрессорных труб, которые спускают в скважину перед освоением. Необходимость их спуска вызвана рациональным использованием энергии газа, улучшением выноса песка, уменьшением потерь на скольжение газа и возможностью сохранить фонтанирование при меньших пластовых давлениях.

На устье скважины монтируют фонтанную арматуру, которая представляет собой соединение различных тройников, крестовиков и запорных устройств. Эта арматура предназначена для подвешивания насосно-компрессорных труб, герметизации затрубного пространства между трубами и обсадной колонной, контроля и регулирования работы фонтанной скважины.


Подобные документы

  • Разработка морских месторождений. Область применения и классификация морских стационарных платформ. Морские буровые установки. Конструкция стационарной платформы. Основное преимущество свайных оснований. Создание металлических стационарных оснований.

    курсовая работа [215,6 K], добавлен 26.10.2012

  • Первичный, вторичный и третичный способы разработки нефтяных и газовых месторождений, их сущность и характеристика. Скважина и ее виды. Наклонно-направленное (горизонтальное) бурение. Искусственное отклонение скважин. Бурение скважин на нефть и газ.

    курсовая работа [1,8 M], добавлен 18.12.2014

  • Описание месторождений Сахалина. Ключевые стадии разработки проекта "Сахалин-1", который включает в себя освоение трех морских месторождений: Чайво, Одопту и Аркутун-Даги, расположенных на северо-восточном шельфе о. Сахалин. Береговой комплекс подготовки.

    презентация [2,2 M], добавлен 12.11.2013

  • Внешне оптимистичные и проблемные тенденции в разработке нефтяных месторождений. Нарушения проектных систем разработки. Методы и основные направления повышения эффективности разработки нефтяных месторождений и обеспечения стабильной добычи нефти.

    презентация [259,8 K], добавлен 30.03.2010

  • Буровые вышки и сооружения. Талевая система. Буровые лебёдки. Роторы. Буровые насосы и оборудование циркуляционной системы. Вертлюги. Ознакомление с бурением скважин кустами. Спуск и цементирование обсадных колонн. Вскрытие и опробование.

    отчет по практике [1,3 M], добавлен 11.10.2005

  • Критерии выделения эксплуатационных объектов. Системы разработки нефтяных месторождений. Размещение скважин по площади залежи. Обзор методов увеличения производительности скважин. Текущий и капитальный ремонт скважин. Сбор и подготовка нефти, газа, воды.

    отчет по практике [2,1 M], добавлен 30.05.2013

  • Буровые вышки и оборудование для спуска и подъема бурильной колонны. Буровые лебедки и талевая система. Инструменты для свинчивания и развинчивания БТ. Морские буровые установки. Методы ликвидации ГНВП. Техника безопасности при эксплуатации.

    курсовая работа [746,5 K], добавлен 11.10.2005

  • Изучение и оценка ресурсов углеводородного сырья в статическом и динамическом состоянии; геологическое обеспечение эффективной разработки месторождений; методы геолого-промыслового контроля. Охрана недр и природы в процессе бурения и эксплуатации скважин.

    курс лекций [4,4 M], добавлен 22.09.2012

  • Понятие о нефтяной залежи, ее основные типы. Источники пластовой энергии. Пластовое давление. Приток жидкости к скважине. Условие существования режимов разработки нефтяных месторождений: водонапорного, упругого, газовой шапки, растворенного газа.

    презентация [1,0 M], добавлен 29.08.2015

  • Методы поиска и разведки нефтяных и газовых месторождений. Этапы поисково-разведочных работ. Классификация залежей нефти и газа. Проблемы при поисках и разведке нефти и газа, бурение скважин. Обоснование заложения оконтуривающих разведочных скважин.

    курсовая работа [53,5 K], добавлен 19.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.