Бурение нефтяных и газовых скважин
Способы бурения нефтяных и газовых скважин. Ударное и вращательное бурение, оборудование для бурения. Спускоподъемный комплекс буровой установки. Комплекс для вращения бурильной колонны. Технологический буровой инструмент. Наклонно-направленные скважины.
Рубрика | Геология, гидрология и геодезия |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 13.02.2012 |
Размер файла | 5,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
2.5.3.1 Турбобуры
Турбобур представляет собой многоступенчатую гидравлическую турбину, к валу которой непосредственно или через редуктор присоединяется долото.
Каждая ступень турбины состоит из диска статора и диска ротора (Рисунок 2.27)
Рисунок 2.27 -- Ступень трубопровода
В статоре, жестко соединенном с корпусом турбобура, поток бурового раствора меняет свое направление и поступает в ротор, где отдает часть своей гидравлической мощности на вращение лопаток ротора относительно оси турбины. При этом на лопатках статора создается реактивный вращающий момент, равный по величине и противоположный по направлению вращающему моменту ротора. Перетекая из ступени в ступень буровой раствор отдает часть своей гидравлической мощности каждой ступени. В результате вращающие моменты всех ступеней суммируются на валу турбобура и передаются долоту. Создаваемый при этом в статорах реактивный момент воспринимается корпусом турбобура и БК.
Режим, при котором мощность турбины достигает максимального значения, называется экстремальным. Все технические характеристики турбобуров даются для значений экстремального режима. В этом режиме работа турбобура наиболее устойчива.
Для бурения наклонно-направленных скважин разработаны шпиндельные турбобуры -- отклонители типа ТО.
Турбобур -- отклонитель состоит из турбинной секции и укороченного шпинделя. Корпуса турбинной секции и шпинделя соединены кривым переводником.
2.5.3.2 Винтовой забойный двигатель
Рабочим органом винтового забойного двигателя является винтовая пара: статор и ротор (Рисунок 2.28).
Рисунок 2.28 -- Поперечное сечение рабочих органов винтового двигателя
1 -- статор; 2 -- ротор
Статор представляет собой металлическую трубу, к внутренней поверхности которой привулканизирована резиновая обкладка, имеющая 10 винтовых зубьев левого направления, обращённых к ротору.
Ротор выполнен из высоколегированной стали с девятью винтовыми зубьями левого направления и расположен относительно оси статора эксцентрично.
Кинематическое отношение винтовой пары 9:10 и соответствующее профилирование её зубьев обеспечивает при движении бурового раствора планетарное обкатывание ротора по зубьям статора и сохранение при этом непрерывного контакта ротора и статора по всей длине. В связи с этим образуются полости высокого и низкого давления и осуществляется рабочий процесс двигателя.
Вращающий момент от ротора передаётся с помощью двухшарнирного соединения на вал шпинделя, укомплектованного многорядной осевой шаровой опорой и радиальными резино-металлическими опорами. К валу шпинделя присоединяется долото. Уплотнение вала достигается с помощью торцевых сальников.
Когда двигатель работает с максимальным вращающим моментом, режим называют оптимальным, а с максимальной мощностью -- экстремальным. Увеличение нагрузки на долото после достижения экстремального режима работы двигателя приводит к торможению вала двигателя и к резкому ухудшению его характеристики.
Неэффективны и нагрузки на долото, при которых момент, развиваемый двигателем, меньше момента, обеспечивающего оптимальный режим его работы.
2.6 ЦИКЛ СТРОИТЕЛЬСТВА СКВАЖИНЫ
В цикл строительства скважины входят:
? подготовительные работы;
? монтаж вышки и оборудования;
? подготовка к бурению;
? процесс бурения;
? крепление скважины обсадными трубами и ее тампонаж.
В ходе подготовительных работ выбирают место для буровой, прокладывают подъездную дорогу, подводят системы электроснабжения, водоснабжения и связи. Если рельеф местности неровный, то планируют площадку.
Монтаж вышки и оборудования производится в соответствии с принятой для данных конкретных условий схемой их размещения. Оборудование стараются разместить так, чтобы обеспечить безопасность в работе, удобство в обслуживании, низкую стоимость строительно-монтажных работ и компактность в расположении всех элементов буровой.
В общем случае (Рисунок 2.29) в центре буровой вышки 1 располагают ротор 3, а рядом с ним -- лебедку 2. За ней находятся буровые насосы 19, силовой привод 18, площадка горюче-смазочных материалов 11, площадка для хранения глинопорошка и химреагентов 9 и глиномешалка 17. С противоположной стороны от лебедки находится стеллаж мелкого инструмента 14, стеллажи 5 для укладки бурильных труб 4, приемные мостки 12, площадка отработанных долот 7 и площадка ловильного инструмента 10 (его используют для ликвидации аварий). Кроме того, вокруг буровой размещаются хозяйственная будка 8, инструментальная площадка 6, очистная система 15 для использованного бурового раствора и запасные емкости 16 для хранения бурового раствора, реагентов и воды.
Рисунок 2.29 -- Типовая схема размещения оборудования, инструмента, запасных частей и материалов на буровой
Различают следующие методы монтажа буровых установок: поагрегатный, мелкоблочный и крупноблочный.
При поагрегатном методе буровая установка собирается из отдельных агрегатов, для доставки которых используется автомобильный, железнодорожный или воздушный транспорт.
При мелкоблочном методе буровая установка собирается из 16...20 мелких блоков. Каждый из них представляет собой основание, на котором смонтированы один или несколько узлов установки.
При крупноблочном методе установка монтируется из 2 ... 4 блоков, каждый из которых объединяет несколько агрегатов и узлов буровой.
Блочные методы обеспечивают высокие темпы монтажа буровых установок и качество монтажных работ. Размеры блоков зависят от способа, условий и дальности их транспортировки.
После этого последовательно монтируют талевый блок с крон-блоком, вертлюг и ведущую трубу, присоединяют к вертлюгу напорный рукав. Далее проверяют отцентрированность вышки: ее центр должен совпадать с центром ротора.
Подготовка к бурению включает устройство направления и пробный пуск буровой установки.
Назначение направления описано выше. Его верхний конец соединяют с очистной системой, предназначенной для очистки от шлама бурового раствора, поступающего из скважины, и последующей подачи его в приемные резервуары буровых насосов.
Затем бурится шурф, для ведущей трубы и в него спускают обсадные трубы.
Буровая комплектуется долотами, бурильными трубами, ручным и вспомогательным инструментом, горюче-смазочными материалами, запасом воды, глины и химических реагентов. Кроме того, недалеко от буровой располагаются помещение для отдыха и приема пищи, сушилка для спецодежды и помещение для проведения анализов бурового раствора.
В ходе пробного бурения проверяется работоспособность всех элементов и узлов буровой установки.
Процесс бурения начинают, привинтив первоначально к ведущей трубе квадратного сечения долото. Вращая ротор, передают через ведущую трубу вращение долоту.
Во время бурения происходит непрерывный спуск (подача) бурильного инструмента таким образом, чтобы часть веса его нижней части передавалась на долото для обеспечения эффективного разрушения породы.
В процессе бурения скважина постепенно углубляется. После того как ведущая труба вся уйдет в скважину, необходимо нарастить колонну бурильных труб. Наращивание выполняется следующим образом. Сначала останавливают промывку. Далее бурильный инструмент поднимают из скважины настолько, чтобы ведущая труба полностью вышла из ротора. При помощи пневматического клинового захвата инструмент подвешивают на роторе. Далее ведущую трубу отвинчивают от колонны бурильных труб и вместе с вертлюгом спускают в шурф -- слегка наклонную скважину глубиной 15 ... 16 м, располагаемую в углу буровой. После этого крюк отсоединяют от вертлюга, подвешивают на крюке очередную, заранее подготовленную трубу, соединяют ее с колонной бурильных труб, подвешенной на роторе, снимают колонну с ротора, опускают ее в скважину и вновь подвешивают на роторе. Подъемный крюк снова соединяют с вертлюгом и поднимают его с ведущей трубой из шурфа. Ведущую трубу соединяют с колонной бурильных труб, снимают последнюю с ротора, включают буровой насос и осторожно доводят долото до забоя. После этого бурение продолжают.
При бурении долото постепенно изнашивается и возникает необходимость в его замене. Для этого бурильный инструмент, как и при наращивании, поднимают на высоту, равную длине ведущей трубы, подвешивают на роторе, отсоединяют ведущую трубу от колонны и спускают ее с вертлюгом в шурф. Затем поднимают колонну бурильных труб на высоту, равную длине бурильной свечи, подвешивают колонну на роторе, свечу отсоединяют от колонны и нижний конец ее устанавливают на специальную площадку -- подсвечник, а верхний -- на специальный кронштейн, называемый пальцем. В такой последовательности поднимают из скважины все свечи. После этого заменяют долото и начинают спуск бурильного инструмента. Этот процесс осуществляется в порядке, обратном подъему бурильного инструмента из скважины.
Крепление скважины обсадными трубами и ее тампонаж осуществляются согласно схемы, приведенной на рисунке 2.6. Целью тампонажа затрубного пространства обсадных колонн является разобщение продуктивных пластов.
2.7 МЕТОДЫ ВСКРЫТИЯ ПРОДУКТИВНЫХ ГОРИЗОНТОВ И ОСВОЕНИЯ СКВАЖИНЫ
Вскрытие пластов и освоение скважины должны быть проведены качественно.
В разрезе нефтяных и газовых месторождений встречается большое количество пористых пластов-коллекторов (песков, песчаников, известняков), разобщенных друг от друга глинами, мергелями, плотными песчаниками и другими породами. Эти пласты могут быть нефтеносными, газоносными, водоносными и сухими. Поэтому, особое внимание должно быть обращено на конструкцию забоя скважины.
В практике бурения применяют следующие основные конструкции забоев при заканчивании скважин (Рисунок 2.30).
Рисунок 2.30 -- Схема конструкции забоев при заканчивании скважины
1 -- обсадная колонна; 2 -- фильтр; 3 -- цементный камень; 4 -- пакер; 5 -- перфорационные отверстия; 6 -- продуктивный пласт; 7 -- хвостовик
Установка водозакрывающей колонны в кровле продуктивного горизонта и цементирование с последующим вскрытием пласта и спуском специального фильтра (Рисунок 2.30 б) или хвостовика (Рисунок 2.30 д). В некоторых случаях в устойчивых породах продуктивной части разреза фильтр или хвостовик не спускаются, и водозакрывающая колонна является эксплуатационной (Рисунок 2.30 а).
Полное вскрытие пласта со спуском комбинированной колонны с манжетной заливкой ее выше нефтеносного объекта и с фильтром в нижней части против пласта (Рисунок 2.30 в).
Полное вскрытие пласта со спуском колонны со сплошным цементированием и последующим простреливанием отверстий против продуктивных горизонтов (Рисунок 2.30 г).
Перечисленные методы направлены на то, чтобы не допустить закупорки пор и создать благоприятные условия для движения нефти из пласта в скважину.
Методы вскрытия пласта в зависимости от пластового давления, степени насыщенности пласта нефтью, степени дренирования и других факторов могут быть различными, но все они должны удовлетворять следующим основным требованиям:
? При вскрытии пласта с высоким давлением должна быть предотвращена возможность открытого фонтанирования скважины.
? При вскрытии пласта должны быть сохранены на высоком уровне природные фильтрационные свойства пород призабойной зоны. Если проницаемость пород мала, должны быть приняты меры по улучшению фильтрационных свойств призабойной зоны скважины.
? Должны быть обеспечены соответствующие интервалы вскрытия пласта, гарантирующие длительную безводную эксплуатацию скважин и максимальное облегчение притока нефти к забою.
В скважинах с высоким пластовым давлением должно осуществляться полное вскрытие пласта со всеми мерами предосторожности с последующим спуском эксплуатационной колонны со сплошной цементировкой и простреливанием отверстий против продуктивных горизонтов.
Перфорация обсадной колонны. Для вскрытия пластов с целью их эксплуатации или опробования в обсадной колонне и цементном кольце пробивают отверстия при помощи пулевой или беспулевой перфорации. Перфораторы, соединенные в гирлянды, спускают в скважину на каротажном кабеле. В камеры перфоратора закладывают заряд пороха и запал. При подаче тока по кабелю с поверхности порох воспламеняется и пуля с большой скоростью выталкивается из ствола перфоратора (Рисунок 2.31).
За один спуск и подъем перфоратор простреливает 6 - 12 отверстий пулями диаметром 11 - 11.5 мм.
Рисунок 2.31 -- Пулевой перфоратор с вертикально-криволинейными стволами
Широкое распространение получила беспулевая перфорация. В этом случае отверстие в колонне создается не пулями, а фокусированными струями газов, которые возникают при взрыве кумулятивных зарядов (Рисунок 2.32).
Рисунок 2.32 -- Устройство корпусного кумулятивного перфоратора ПК105ДУ
1 -- взрывной патрон; 2 -- детонирующий шнур; 3 -- кумулятивный заряд; 4 -- электропровод
Для улучшения связи скважины с продуктивным пластом может применяться гидропескоструйный метод вскрытия пласта. В скважину на колонне насосно-компрессорных труб спускают струйный аппарат, состоящий из корпуса и сопел (Рисунок 2.33). При нагнетании в трубы под большим давлением жидкость с песком выходит из сопел с большой скоростью и песок разрушает колонну, цементное кольцо и породу. Гидропескоструйная перфорация имеет ряд преимуществ перед другими методами: отверстия в колонне и цементе не имеют трещин, имеется возможность регулировать диаметр и глубину отверстий, можно создать горизонтальные и вертикальные надрезы. К недостаткам этого вида перфорации следует отнести большую стоимость и потребность в громоздком наземном оборудовании.
Рисунок 2.33 -- Аппарат для пескоструйной перфорации АП-6М
1 -- корпус; 2 -- шар опрессовочного клапана; 3 -- узел насадки; 4 -- заглушка; 5 -- шар клапана;
6 -- хвостовик; 7 -- центратор
После перфорации проводится освоение скважины, т.е. вызывают приток в нее нефти и газа. Для чего уменьшают давление бурового раствора на забой одним из следующих способов:
? промывка -- замена бурового раствора, заполняющего ствол скважины после бурения, более легкой жидкостью -- водой или нефтью;
? поршневание (свабирование) -- снижение уровня жидкости в скважине путем спуска в насосно-компрессорные трубы и подъема на стальном канате специального поршня (сваба). Поршень имеет клапан, который открывается при спуске и пропускает через себя жидкость, заполняющую НКТ. При подъеме же клапан закрывается, и весь столб жидкости, находящийся над поршнем, выносится на поверхность.
От использовавшихся прежде способов уменьшения давления бурового раствора на забой, продавливания сжатым газом и аэрации (насыщения раствора газом) в настоящее время отказались по соображениям безопасности.
Таким образом, освоение скважины в зависимости от конкретных условий может занимать от нескольких часов до нескольких месяцев.
После появления нефти и газа скважину принимают эксплуатационники, а вышку передвигают на несколько метров для бурения очередной скважины куста или перетаскивают на следующий куст.
2.8 ПРОМЫВКА СКВАЖИН
бурение нефтяной газовый скважина
Промывка скважин -- одна из самых ответственных операций, выполняемых при бурении. Первоначально назначение промывки ограничивалось очисткой забоя от частичек выбуренной породы и их выносом из скважины, а также охлаждением долота. Однако по мере развития бурового дела функции бурового раствора расширились. Теперь сюда входят:
1. вынос частиц выбуренной породы из скважины;
2. передача энергии турбобуру или винтовому двигателю;
3. предупреждение поступления в скважину нефти, газа и воды;
4. удержание частичек разбуренной породы во взвешенном состоянии при прекращении циркуляции;
5. охлаждение и смазывание трущихся деталей долота;
6. уменьшение трения бурильных труб о стенки скважины;
7. предотвращение обвалов пород со стенок скважины;
8. уменьшение проницаемости стенок скважины, благодаря коркообразованию.
Соответственно буровые растворы должны удовлетворять ряду требований:
? выполнять возложенные функции;
? не оказывать вредного влияния на бурильный инструмент и забойные двигатели (коррозия, абразивный износ и т.д.);
? легко прокачиваться и очищаться от шлама и газа;
? быть безопасными для обслуживающего персонала и окружающей среды;
? быть удобными для приготовления и очистки;
? быть доступными, недорогими, допускать возможность многократного использования.
При вращательном бурении нефтяных и газовых скважин в качестве промывочных жидкостей используются:
? агенты на водной основе (техническая вода, естественные буровые растворы, глинистые и неглинистые растворы);
? агенты на углеводородной основе;
? агенты на основе эмульсий;
? газообразные и аэрированные агенты.
Техническая вода -- наиболее доступная и дешевая промывочная жидкость. Имея малую вязкость, она легко прокачивается, хорошо удаляет шлам с забоя скважины и лучше, чем другие жидкости, охлаждает долото. Однако она плохо удерживает частицы выбуренной породы (особенно при прекращении циркуляции), не образует упрочняющей корки на стенке скважины, хорошо поглощается низконапорными пластами, вызывает набухание глинистых пород, ухудшает проницаемость коллекторов нефти и газа.
Естественным буровым раствором называют водную суспензию, образующуюся в скважине в результате диспергирования шлама горных пород, разбуриваемых на воде.
Основное достоинство применения естественных буровых растворов состоит в значительном сокращении потребности в привозных материалах на их приготовление и обработку, что ведет к удешевлению растворов. Однако их качество и свойства зависят от минералогического состава и природы разбуриваемых глин, способа и режима бурения, типа породоразрушающего инструмента. Нередко в них велико содержание абразивных частиц. Поэтому естественные буровые растворы применяют в тех случаях, когда по геолого-стратиграфическим условиям не требуется промывочная жидкость высокого качества.
Глинистые буровые растворы получили наибольшее распространение при бурении скважин. Для бурового дела наибольший интерес представляют три группы глинистых минералов: бентонитовые (монтмориллонит, бейделлит, нонтронит, сапонит и др.), каолиновые (каолинит, галлуазит, накрит и др.) и гидрослюдистые (иллит, бравиазит и др.). Наилучшими качествами с точки зрения приготовления бурового раствора обладают онтмориллонит и другие бентонитовые минералы. Так, из 1 тонны бентонитовой глины можно получить около 15 м3 высококачественного глинисого раствора, тогда как из глины среднего качества -- 4 ... 8 м3, а из низкосортных глин -- менее 3 м3.
Глинистые растворы глинизируют стенки скважины, образуя тонкую плотную корку, которая препятствует проникновению фильтрата в пласты. Их плотность и вязкость таковы, что растворы удерживают шлам разбуренной породы даже в покое, предотвращая его оседание на забой при перерывах в промывке. Утяжеленные глинистые растворы, создавая большое противодавление на пласты, предупреждают проникновение пластовых вод, нефти и газа в скважину и открытое фонтанирование при бурении. Однако по этим же причинам затруднено отделение частиц породы в циркуляционной системе бурового раствора.
Применяются также другие буровые растворы на водной основе: малоглинистые (для бурения верхней толщи выветрелых и трещиноватых горных пород), соленасыщенные (при бурении в мощных толщах соленосных пород), ингибированные (обработанные химреагентами для предупреждения набухания разбуриваемых пород и чрезмерного обогащения раствора твердой фазой) и т.д.
К неглинистым относятся буровые растворы, приготовленные без использования глины. Безглинистый буровой раствор с конденсированной твердой фазой готовится на водной основе. Дисперсная фаза в нем получается химическим путем, в результате взаимодействия находящихся в растворе ионов магния с щелочью NaOH или Са(ОН)2. Химическая реакция приводит к образованию в растворе микроскопических частиц гидрооксида магния Mg(OH)r Раствор приобретает гелеобразную консистенцию и после химической обработки превращается в седиментационно устойчивую систему. Такой раствор сохраняет свои структурно-механические свойства при любой минерализации. Поэтому его применяют в случаях, когда требуется обеспечить высокую устойчивость стенок скважины, но обеспечить контроль и регулирование минерализации раствора сложно.
Другим типом неглинистых буровых растворов являются биополимерные растворы. Биополимеры получают при воздействии некоторых штаммов бактерий на полисахариды. Свойства биополимерных растворов регулируются так же легко, как свойства лучших буровых растворов из бентонитовых глин. Вместе с тем, некоторые из них оказывают флокулирующее воздействие на шлам выбуренных пород, предупреждая таким образом образование суспензии. Кроме того, растворы биополимеров термоустойчивы. Сдерживает их применение относительно высокая стоимость.
Буровые растворы на углеводородной основе представляют собой многокомпонентную систему, в которой дисперсионной (несущей) средой является нефть или жидкие нефтепродукты (обычно дизельное топливо), а дисперсной (взвешенной) фазой -- окисленный битум, асфальт или специально обработанная глина (гидрофобизи-рованный бентонит).
Буровые растворы на углеводородной основе не оказывают отрицательного влияния на свойства коллекторов нефти и газа, обладают смазывающей способностью: при их использовании уменьшается расход мощности на холостое вращение бурильной колонны в стволе скважины и снижается износ бурильных труб и долот. Однако стоимость приготовления таких буровых растворов довольно высока, они пожароопасны, трудно удаляются с инструмента и оборудования.
Применяют буровые растворы на углеводородной основе для повышения эффективности бурения в породах-коллекторах и сохранения их нефтегазоотдачи на исходном уровне, а также для проводки скважин в сложных условиях при разбуривании мощных пачек набухающих глин и растворимых солей.
У эмульсионных буровых растворов дисперсионной средой является эмульсия типа «вода в нефти», а дисперсной фазой -- глина.
Буровой раствор, приготовленный на основе эмульсии типа «вода в нефти», называется обращенным эмульсионным или инвертной эмульсией. Жидкая фаза такого раствора на 60 ... 70 % состоит из нефти или нефтепродуктов, остальное -- вода. Однако содержание воды в инвертной эмульсии может быть доведено до 80 % и выше, если в нее ввести специальные эмульгаторы.
Эмульсионные буровые растворы используются при бурении в глинистых отложениях и солевых толщах. Они обладают хорошими смазочными свойствами и способствуют предупреждению прихвата инструмента в скважине.
Сущность бурения с продувкой газом заключается в том, что для очистки забоя, выноса выбуренной породы на дневную поверхность, а также для охлаждения долота используют сжатый воздух, естественный газ или выхлопные газы двигателей внутреннего сгорания. Применение газообразных агентов позволяет получить большой экономический эффект: увеличивается механическая скорость (в 10 ... 12 раз) и проходка на долото (в 10 раз и более). Благодаря высоким скоростям восходящего потока в затрубном пространстве, ускоряется вынос выбуренных частиц породы. Использование газообразных агентов облегчает проведение гидрогеологических наблюдений в скважинах. Кроме того, увеличивается коэффициент нефтегазоотдачи пласта.
Аэрированные буровые растворы представляют собой смеси пузырьков воздуха с промывочными жидкостями (водой, нефтеэмуль-сиями и др.) в соотношении до 30:1. Для повышения стабильности аэрированных растворов в их состав вводят реагенты -- поверхностно-активные вещества и пенообразователи.
Аэрированные буровые растворы обладают теми же свойствами, что и жидкости, из которых они приготовлены (для глинистых растворов -- образуют глинистую корку, обладают вязкостью и напряжением сдвига, сохраняют естественную проницаемость призабойной зоны пласта при его вскрытии). Вместе с тем, большим преимуществом аэрированных жидкостей является возможность их применения в осложненных условиях бурения, при катастрофических поглощениях промывочных жидкостей, вскрытии продуктивных пластов с низким давлением.
Основными параметрами буровых растворов являются плотность, вязкость, показатель фильтрации, статическое напряжение сдвига, стабильность, суточный отстой, содержание песка, водородный показатель.
Плотность промывочных жидкостей может быть различной: у растворов на нефтяной основе она составляет 890 ... 980 кг/м3, у малоглинистых растворов -- 1050 ... 1060 кг/м3, у утяжеленных буровых растворов -- до 2200 кг/м3 и более.
Выбор бурового раствора должен обеспечить превышение гидростатического давления столба в скважине глубиной до 1200 м над пластовым на 10 ... 15 %, а для скважин глубже 1200 м -- на 5 ... 10 %.
Определение величины плотности раствора производится прибором АБР-1 (Рисунок 2.34).
Вязкость характеризует свойство раствора оказывать сопротивление его движению и определяется с помощью «воронки МАРША»
Показатель фильтрации -- способность раствора при определенных условиях отдавать воду пористым породам. Чем больше в растворе свободной воды и чем меньше глинистых частиц, тем большее количество воды проникает в пласт. Фильтрация глинистого раствора определяется с помощью прибора ВМ-6 (Рисунок 2.36).
Статическое напряжение сдвига характеризует усилие, которое требуется приложить, чтобы вывести раствор из состояния покоя.
Стабильность характеризует способность раствора удерживать частицы во взвешенном состоянии. Она определяется величиной разности плотностей нижней и верхней половин объема одной пробы после отстоя в течении 24 ч. и определяется с помощью цилиндра ЦС - 2 (Рисунок 2.37). Для обычных растворов ее величина должна быть не более 0.02 г/см3, а для утяжеленных -- 0.06 г/см3.
Рисунок 2.36 -- Конструкция прибора ВМ - 6 |
Рисунок 2.37 -- Цилиндр стабильности ЦС - 2 |
Суточный отстой -- количество воды, выделяющееся за сутки из раствора при его неподвижном хранении (Рисунок 2.38). Для высокостабильных растворов величина суточного отстоя должна быть равна нулю.
Содержание песка -- параметр, характеризующий содержание в растворе частиц (породы, не разведенных комочков глины), не способных растворяться в воде. Его измеряют по величине осадка, выпадающего из бурового раствора, разбавленного водой, после интенсивного взбалтывания (Рисунок 2.39). В хорошем растворе содержание песка не должно превышать 1 %.
Рисунок 2.38 -- Прибор для определения суточного отстоя |
Рисунок 2.39 -- ОМ - 2 |
Величина водородного показателя рН характеризует щелочность бурового раствора. При рН>7 раствор щелочной, при рН=7 -- нейтральный, при рН<7 -- кислый.
Химическая обработка буровых растворов
Химическая обработка бурового раствора заключается во введении в него определенных химических веществ с целью улучшения свойств без существенного изменения плотности.
В результате химической обработки достигаются следующие положительные результаты:
? повышение стабильности бурового раствора;
? снижение его способности к фильтрации, уменьшение толщины и липкости корки на стенке скважины;
? регулирование вязкости раствора в сторону ее увеличения или уменьшения;
? придание ему специальных свойств (термостойкости, солестойкости и др.).
В глинистые буровые растворы вводят также смазочные добавки и пеногасители. Благодаря смазывающим добавкам улучшаются условия работы бурильной колонны и породоразрушающего инструмента в скважине. Пеногасители препятствуют образованию пены при выделении из промывочной жидкости газовой фазы.
2.9 ОСЛОЖНЕНИЯ, ВОЗНИКАЮЩИЕ ПРИ БУРЕНИИ
В процессе проводки скважины возможны разного рода осложнения, в частности обвалы пород, поглощения промывочной жидкости, нефте-, газо- и водопроявления, прихваты бурильного инструмента, аварии, искривление скважин.
Обвалы пород возникают вследствие их неустойчивости (трещиноватости, склонности разбухать под влиянием воды). Характерными признаками обвалов являются:
? значительное повышение давления на выкиде буровых насосов;
? резкое повышение вязкости промывочной жидкости;
? вынос ею большого количества обломков обвалившихся пород и т.п.
Поглощение промывочной жидкости -- явление, при котором жидкость, закачиваемая в скважину, частично или полностью поглощается пластом. Обычно это происходит при прохождении пластов с большой пористостью и проницаемостью, когда пластовое давление оказывается меньше давления столба промывочной жидкости в скважине.
Интенсивность поглощения может быть от слабой до катастрофической, когда выход жидкости на поверхность полностью прекращается.
Для предупреждения поглощения применяют следующие методы:
? промывка облегченными жидкостями;
? ликвидация поглощения закупоркой каналов, поглощающих жидкость (за счет добавок в нее инертных наполнителей -- асбеста, слюды, рисовой шелухи, молотого торфа, древесных опилок, целлофана; заливки быстросхватывающихся смесей и т.д.);
? повышение структурно-механических свойств промывочной жидкости (добавкой жидкого стекла, поваренной соли, извести и т.п.).
Газо-, нефте- и водопроявления имеют место при проводке скважин через пласты с относительно высоким давлением, превышающим давление промывочной жидкости. Под действием напора воды происходит ее перелив или фонтанирование, а под действием напора нефти или газа -- непрерывное фонтанирование или периодические выбросы.
К мероприятиям, позволяющим избежать газо-, нефте- и водопроявлений, относятся:
? правильный выбор плотности промывочной жидкости;
? предотвращение понижения ее уровня при подъеме колонны бурильных труб и при поглощении жидкости.
Прихваты бурильного инструмента возникают по следующим причинам:
? образование на стенках скважины толстой и липкой корки, к которой прилипает бурильный инструмент, находящийся без движения;
? заклинивание бурильного инструмента в суженных частях ствола или при резких искривлениях скважины, при обвалах неустойчивых пород, при осаждении разбуренной породы в случае прекращения циркуляции.
Ликвидация прихватов -- сложная и трудоемкая операция. Поэтому необходимо принимать все возможные меры, чтобы их избежать.
Аварии, возникающие при бурении, можно разделить на четыре группы:
1. аварии с долотами (отвинчивание долота при спуске инструмента вследствие недостаточного его закрепления, слом долота в результате перегрузки и т.д.);
2. аварии с бурильными трубами и замками (слом трубы по телу; срыв резьбы труб, замков и переводников и т.д.);
3. аварии с забойными двигателями (отвинчивание; слом вала или корпуса и т.д.);
4. аварии с обсадными колоннами (их смятие; разрушение резьбовых соединений; падение отдельных секций труб в скважину и т.д.).
Для ликвидации аварий применяют специальные ловильные инструменты: шлипс, колокол, метчик, магнитный фрезер, паук и другие. Однако лучше всего предотвращать аварии, строго соблюдая правила эксплуатации оборудования, своевременно осуществляя его дефектоскопию, профилактику и замену.
При бурении вертикальных скважин вращательным способом часто встречается самопроизвольное искривление скважин, т.е. отклонение их ствола от вертикального. Искривление вертикальных скважин влечет за собой ряд проблем: нарушение запланированной сетки разработки нефтяных и газовых месторождений, повышенный износ бурильных труб, ухудшение качества изоляционных работ, невозможность использования штанговых насосов при эксплуатации скважин и т.д.
Причинами искривления скважин являются геологические, технические и технологические факторы. К геологическим -- относятся наличие в разрезе скважин крутопадающих пластов; частая смена пород различной твердости; наличие в породах, через которые проходит скважина, трещин и каверн. Техническими факторами, способствующими искривлению скважин, являются несовпадение оси буровой вышки с центром ротора и осью скважины; наклонное положение стола ротора; применение искривленных бурильных труб и т.д. К технологическим факторам, обуславливающим искривление скважин, относятся создание чрезмерно высоких осевых нагрузок на долото; несоответствие типа долота, количества и качества промывочной жидкости характеру проходимых пород.
В соответствии с перечисленными факторами принимаются меры по предотвращению искривления скважин. В сложных геологических условиях применяется особая компоновка низа бурильной колонны, включающая калибраторы и центраторы. Кроме того, необходимо:
? монтаж оборудования проводить в соответствии с техническими условиями;
? тип долота выбирать соответственно типу пород;
? снижать нагрузку на долото и т.д.
2.10 НАКЛОННО-НАПРАВЛЕННЫЕ СКВАЖИНЫ
Скважины, для которых проектом предусматривается определенное отклонение забоя от вертикали, а ствол проводится по заранее заданной траектории, называются наклонно направленными.
Наклонные скважины бурят, когда продуктивные пласты залегают под акваториями морей, озер, рек, под территориями населенных пунктов, промышленных объектов, в заболоченной местности, а также для удешевления строительства буровых сооружений.
Разработанные в настоящее время виды профилей для наклонно-направленных скважин делятся на две группы: профили обычного типа (представляющие собой кривую линию, лежащую в вертикальной плоскости) и профили пространственного типа (в виде пространственных кривых).
Типы профилей наклонно направленных скважин обычного типа приведены на рисунке 2.40. Профиль типа А состоит из трех участков: вертикального 1, участка набора угла наклона ствола 2 и прямолинейного наклонного участка 3. Его рекомендуется применять при бурении неглубоких скважин в однопластовых месторождениях, если предполагается большое смещение забоя.
Рисунок 2.40 -- Типы профилей наклонно-направленных скважин
1 -- наклонный участок; 2 -- участок набора угла наклона ствола; 3 -- прямолинейный наклонный участок; 4 -- участок снижения угла наклона ствола
Профиль типа Б отличается от предыдущего тем, что вместо прямолинейного наклонного участка имеет участок 4 естественного снижения угла наклона. Данный профиль рекомендуется применять при больших глубинах скважин.
Профиль типа В состоит из пяти участков: вертикального 1, участка набора угла наклона ствола 2, прямолинейного наклонного участка 3, участка снижения угла наклона 4 и снова -- вертикального 1. Его рекомендуется применять при проводке глубоких скважин, пересекающих несколько продуктивных пластов.
Профиль типа Г отличается от предыдущего тем, что в нем участки 3 и 4 заменены участком самопроизвольного снижения угла наклона 4. Данный профиль рекомендуется применять при бурении глубоких скважин, в которых возможны отклонения в нижней части ствола скважины.
Профиль типа Д состоит из вертикального участка 1 и участка набора угла наклона ствола 2. Для него характерна большая длина второго участка. Профиль рекомендуется при необходимости выдержать заданный угол входа в пласт и вскрыть его на наибольшую мощность.
Как видно из рисунка 2.40, все типы профилей в начале имеют вертикальный участок. Его глубина должна быть не менее 40 ... 50 м. Окончание вертикального участка приурочивают к устойчивым породам, где можно за один рейс набрать зенитный угол S...6 градусов.
Для отклонения скважины от вертикали применяют специальные отклоняющие приспособления: кривую бурильную трубу, кривой переводник, эксцентричный ниппель и отклонители различных типов.
В последние годы все большее распространение получают вертикальные и наклонные скважины, имеющие горизонтальные окончания большой протяженности. Это делается для того, чтобы увеличить площадь поверхности, через которую в скважину поступает нефть и соответственно увеличить дебит. Одновременно стало возможным извлекать в промышленных масштабах нефть, считавшуюся ранее неизвлекаемой, вследствие малой мощности и низкой проницаемости продуктивного пласта. Кроме того, горизонтальное окончание скважин располагают в пласте выше подошвенной воды, что позволяет продлить период безводной эксплуатации.
2.11 БУРЕНИЕ СКВАЖИН НА МОРЕ
В настоящее время на долю нефти, добытой из морских месторождений, приходится около 30 % всей мировой продукции, а газа -- еще больше. Как люди добираются до этого богатства (Рисунок 2 41).
Самое простое решение -- на мелководье забивают сваи, на них устанавливают платформу, а на ней уже размещают буровую вышку и необходимое оборудование.
Другой способ -- «продлить» берег, засыпав мелководье грунтом. Так, в 1926 г. была засыпана Биби-Эйбатская бухта в районе Баку и на ее месте создан нефтяной промысел.
После того как в Северном море были обнаружены большие залежи нефти и газа более полувека назад, родился смелый проект его осушения. Дело в том, что средняя глубина большей части Северного моря едва превышает 70 м, а отдельные участки дна покрыты всего лишь сорокаметровым слоем воды. Поэтому авторы проекта считали целесообразным с помощью двух дамб -- через пролив Ла-Манш в районе Дувра, а также между Данией и Шотландией (длина более 700 км) -- отсечь огромный участок Северного моря и откачать оттуда воду. К счастью, этот проект остался только на бумаге.
В 1949 г. в Каспийском море в 40 км от берега была пробурена первая в СССР нефтяная скважина в открытом море. Так началось создание города на стальных сваях, названного «Нефтяные Камни». Однако сооружение эстакад, уходящих на многие километры от берега стоит очень дорого. Кроме того, их строительство возможно только на мелководье.
При бурении нефтяных и газовых скважин в глубоководных районах морей и океанов использовать стационарные платформы технически сложно и экономически невыгодно. Для этого случая созданы плавучие буровые установки, способные самостоятельно или с помощью буксиров менять районы бурения.
Различают самоподъемные буровые платформы, полупогружные буровые платформы и буровые платформы гравитационного типа.
Самоподъемная буровая платформа представляет собой плавучий понтон с вырезом, над которым расположена буровая вышка. Понтон имеет трех-, четырех- или многоугольную форму. На ней размещаются буровое и вспомогательное оборудование, многоэтажная рубка с каютами для экипажа и рабочих, электростанция и склады. По углам платформы установлены многометровые колонны-опоры.
В точке бурения с помощью гидравлических домкратов колонны опускаются, достигают дна, опираются на грунт и заглубляются в него, а платформа поднимается над поверхностью воды. После окончания бурения в одном месте платформу переводят в другое.
Надежность установки самоподъемных буровых платформ зависит от прочности грунта, образующего дно в месте бурения.
Полупогружные буровые платформы применяют при глубинах 300 ...600 м, где неприменимы самоподъемные платформы. Они не опираются на морское дно, а плавают над местом бурения на огромных понтонах. От перемещений такие платформы удерживаются якорями массой 15 т и более. Стальные канаты связывают их с автоматическими лебедками, ограничивающими горизонтальные смещения относительно точки бурения.
Первые полупогружные платформы были несамоходными, и их доставляли в район работ с помощью буксиров. Впоследствии платформы были оборудованы гребными винтами с приводом от электромоторов суммарной мощностью 4.5 тысяч кВт.
Недостатком полупогружных платформ является возможность их перемещения относительно точки бурения под воздействием волн. Более устойчивыми являются буровые платформы гравитационного типа. Они снабжены мощным бетонным основанием, опирающемся на морское дно. В этом основании размещаются не только направляющие колонны для бурения, но также ячейки-резервуары для хранения добытой нефти и дизельного топлива, используемого в качестве энергоносителя, многочисленные трубопроводы.
Морское дно в месте установки гравитационных платформ должно быть тщательно подготовлено. Даже небольшой уклон дна грозит превратить буровую в Пизанскую башню, а наличие выступов на дне может вызвать раскол основания. Поэтому перед постановкой буровой «на точку» все выступающие камни убирают, а трещины и впадины на дне заделывают бетоном.
Все типы буровых платформ должны выдерживать напор волн высотой до 30 м, хотя такие волны и встречаются раз в 100 лет.
Размещено на Allbest.ru
Подобные документы
Технология бурения нефтяных и газовых скважин. Закономерности разрушения горных пород. Буровые долота. Бурильная колонна, ее элементы. Промывка скважины. Турбинные и винтовые забойные двигатели. Особенности бурения скважин при равновесии "скважина-пласт".
презентация [1,5 M], добавлен 18.10.2016Изучение технологических процессов бурения нефтяных и газовых скважин на примере НГДУ "Альметьевнефть". Геолого-физическая характеристика объектов, разработка нефтяных месторождений. Методы увеличения производительности скважин. Техника безопасности.
отчет по практике [2,0 M], добавлен 20.03.2012Описание содержания и структуры курсовой работы по бурению нефтяных и газовых скважин. Рекомендации и справочные данные для разработки конструкции скважины, выбора режима бурения, расхода промывочной жидкости. Разработка режима цементирования скважины.
методичка [35,5 K], добавлен 02.12.2010Стратиграфический разрез скважины, ее нефте-, водо- и газоносность. Выбор и расчет конструкции и профиля наклонно-направленной скважины. Подготовка буровой установки к креплению нефтяных скважин. Показатели работы долот и режимы бурения скважины.
курсовая работа [538,3 K], добавлен 12.03.2013Исследование основных способов бурения нефтяных и газовых скважин: роторного, гидравлическими забойными двигателями и бурения электробурами. Характеристика причин и последствий искривления вертикальных скважин, естественного искривления оси скважин.
курсовая работа [2,0 M], добавлен 15.09.2011Технические средства и технологии бурения скважин. Колонковое бурение: схема, инструмент, конструкция колонковых скважин, буровые установки. Промывка и продувка буровых скважин, типы промывочной жидкости, условия применения, методы измерения свойств.
курсовая работа [163,3 K], добавлен 24.06.2011Первичный, вторичный и третичный способы разработки нефтяных и газовых месторождений, их сущность и характеристика. Скважина и ее виды. Наклонно-направленное (горизонтальное) бурение. Искусственное отклонение скважин. Бурение скважин на нефть и газ.
курсовая работа [1,8 M], добавлен 18.12.2014Проектирование конструкции нефтяных скважин: расчет глубины спуска кондуктора и параметров профиля ствола. Выбор оборудования устья скважины, режимов бурения, цементирующих растворов и долот. Технологическая оснастка обсадных и эксплуатационных колонн.
дипломная работа [2,8 M], добавлен 19.06.2011Описание ударного и вращательного бурения. Назначение и состав бурильной колонны. Технологические требования и ограничения к свойствам буровых растворов. Влияние разных типов долот на качество цементирования скважин. Особенности применения буровых долот.
курсовая работа [1,3 M], добавлен 19.09.2010Комплекс оборудования для вращения бурильной колонны - роторы, вертлюги. Конструкция и область применения забойных двигателей: трубобуры, электробуры, винтовые двигатели. Основные методы повышения нефтеотдачи пластов. Зарезка и бурение второго ствола.
отчет по практике [2,6 M], добавлен 01.02.2013