Природа Мирового океана

Характеристика Мирового океана, его скрытые ресурсы в виде полезных ископаемых, морская добычи нефти и газа. Особенности строения земной коры под океанами, геоморфологические процессы в Мировом океане. Проблема борьбы с загрязнением вод Мирового океана.

Рубрика Геология, гидрология и геодезия
Вид лекция
Язык русский
Дата добавления 23.03.2009
Размер файла 56,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Помимо нефти и газа в богатейших кладовых Нептуна содержатся и твердые полезные ископаемые, которые в зависимости от места залегания могут быть подразделены на прибрежно-морские россыпи, коренные месторождения и ископаемые морского дна.

Прибрежно-морские россыпи образуются на границе суши и моря в результате перемещения водных масс, которые приводят к сортировке обломочного материала и накоплению частиц тяжелых минералов. Месторождения этих минералов и образуют прибрежно-морские россыпи.

На берегу моря волны, скатываясь с пляжа, уносят с собой легкие и мелкие песчинки, а более тяжелые песчинки при сильном прибое накапливаются на пляже. Кроме того, часть тяжелых песков концентрируется и на подводном склоне уже в пределах шельфа, а также оседает в устьевых затопленных частях рек, впадающих в моря и океаны.

Прибрежно-морские россыпи содержат очень разнообразные и ценные, преимущественно рудные минералы: ильменит, рутил, циркон, монацит, магнетит, хромит, касситерит, золото, платину, алмазы и некоторые другие.

Разработки прибрежно-морские россыпей расширяются во всем мире, и все новые страны начинают поставлять на мировой рынок свою продукцию. Основные залежи прибрежно-морские россыпей находятся в районах: Чокурдакского россыпного месторождения в море Лаптевых, Чаунской губы Восточно-Сибирского моря, Чукотского и Берингова морей.

Прибрежно-морские россыпи разрабатываются по-разному. У полосы прибоя тяжелые пески добываются скреперами, бульдозерами, экскаваторами и гидромонигорами.

На больших глубинах применяются драги, снабженные подъемной лебедкой и черпаком-грейфером или ковшом на тросе. В море черпак опускается на тросе лебедки, врезается в грунт и, захватив материал, поднимается наверх. Грейферы тяжелого типа за час работы извлекают до 1000 т грунта. Драги с грунтовыми насосами применятся как на малых глубинах, так и на глубинах до 330 м.

Среди коренных месторождений твердых полезных ископаемых прежде всего необходимо отметить те виды, которые добываются шахтным способом. Подводными шахтами, пройденными с суши добываются каменный уголь, железная руда, руды меди, никеля, олова, ртути. Известно более 100 подводных шахт, заложенных с берега. Некоторые из них удалены от берега до 8 км при глубинах моря до 120 м.

Миллионы тонн каменного угля добываются ежегодно на подводных шахтах в Японии, Канаде, Великобритании, Шотландии, Турции, на острове Тайвань. Большие запасы каменного угля обнаружены на юго-восточном шельфе Австралии, в КНР, в Чили, Испании. Чаще всего морские месторождения представляют собой продолжение пластов, скрытых в недрах суши.

Хорошо развита добыча из подводных шахт железной руды, которая ведется в Японии на острове Кюсю, в Австралии, в Канаде в Гудзоновом заливе и на острове Ньюфаундленд, а также в Финляндии, у входа в Финский залив.

Значительно реже встречаются подводные шахты, где разрабатываются руды меди и никеля, олова и ртути. В Канаде, в Гудзоновом заливе, близ г. Черчилл, добывается медь и никель, в Великобритании, на полуострове Корнуолл, - медь, никель, и олово.

В Турции у побережья Эгейского моря разрабатываются месторождения ртутных руд.

В СССР благоприятны для развития шахтной подводной добычи некоторые участки шельфов Приморья, Сахалина, Чукотки, Камчатки, а также шельфов Белого и западной части Карского моря и Азовское море. Ученые предполагают, что добыча минерального сырья с помощью подводных шахт в ближайшем будущем будет развиваться в пределах шельфа га глубинах до 100 м. И при удалении от берегов до 40-50 км. Разработки на больших глубинах будут в ближайшие годы нецелесообразны.

Среди глубоководных твердых полезных ископаемых, обнаруженных на морском дне, прежде всего, необходимо отметить железомарганцевые конкреции. Они представляют собой минералы, образующиеся в результате осаждения гидроокислов марганца, железа и других минеральных солей из морской воды. При этом они обычно концентрируются около какого-нибудь небольшого ядра вроде обломка камня или зуба акулы.

Каким же образом попадают железо и марганец в морскую воду? По этому поводу нет единой точки зрения. Одна группа ученых считает, что эти металлы попадают в океан с суши с речным стоком; другая - что они попадают в моря и океаны при подводных извержениях с вулканическими газами. По-видимому, имеют место оба этих источника попадания этих металлов в воды Мирового океана. Районы распространения конкреций занимают обширные площади в миллионы квадратных километров, плотность их залегания настолько высока, что они местами лежат вплотную, прилегая друг к другу. Железомарганцевые конкреции имеют очень широкое распространение на дне морей и океанов на глубинах от 60 до 7000 м. Обычно в среднем конкреции содержат 24% марганца, 14% железа, 1% никеля, 0,5% меди и меньше 0,5% кобальта. Так как в марганцевой руде, добываемой на суше в среднем от 35 до 55% марганца, то именно медь, никель и кобальт оказываются наиболее привлекательными с экономической точки зрения. Однако следует учитывать, что по сравнению с запасами марганца во всех известных на суше месторождениях, запасы этого металла в конкрециях в сотни раз больше.

В настоящее время предложено два основных метода добычи марганцевых конкреций с морского дна. Это метод гидравлического землесоса с применением всасывающей и подъемной силы потока воды в трубе и метод ковшовой драги, механически сгребающей конкреции прикрепленной к канату ковшом. Каждый из этих методов имеет свои сильные и слабые стороны, и лишь с началом промышленной разработки конкреций станет ясно, какой из них лучше зарекомендует себя в процессе работы.

Кроме железомарганцевых конкреций на морском дне интерес представляют и фосфоритовые конкреции. Они распространены на глубинах 50-2500 м, близ берегов США, Чили, перу, Японии, Австралии, Индии, Марокко, Гвинеи, Анголы и других стран. Спрос на фосфориты небольшой, и поэтому морские месторождения пока не в состоянии конкурировать с месторождениями суши. К тому же в большинстве случаев фосфориты морских месторождений по своему качеству значительно уступают разрабатываемым на суше. Освоение морских залежей фосфоритов представляет интерес и для России так как основные земледельческие районы испытывают недостаток фосфатного сырья. Крупнейшее месторождение апатитового сырья - Хибинское - удалено от основных районов потребления фосфатов, и запасы апатитового концентрата по мере возрастания потребностей заметно истощаются. Кроме того, сырье для всех заводов по производству суперфосфата завозится по железной дороге с Кольского полуострова, что делает стоимость удобрений довольно высокой. Запасы фосфатного сырья в море оцениваются в сотни миллиардов тонн и могут обеспечить потребности на тысячелетия вперед.

Наконец, в Красном море обнаружены впадины с температурой воды до +62С и с содержанием солей до 26. Практически такая вода представляет собой «горячий рассол». В этих «рассолах» встречены илы черного, белого, желтого, оранжевого цветов с высоким содержанием железа, марганца, меди и цинка с примесью других металлов, в том числе серебра, золота. Таких впадин в Красном море существует около тринадцати.

Рассказывая о богатствах Мирового океана нельзя не упомянуть о «живой руде», или «тощей руде», как часто называют морскую воду за то, что в ней растворено около 60 химических элементов таблицы Д.И. Менделеева. Человек пока научился извлекать из воды лишь очень небольшое количество элементов. Из 35 г. солей, содержащихся в 1 л морской воды, 30,1 г. составляет хлористый натрий, 2,7 г - сульфаты, 2,1 г - магний, калий, кальций, а все остальные вещества - лишь 0,035 г. Около 99 мировых запасов брома приходится на воды Мирового океана. Большое внимание уделяется разработке методики добычи урана из морской воды. Сначала ХХ в. различными странами предпринимались попытки добычи золота из морской воды.

В 1959 г. во время одного из рейсов научно-исследовательского судна «Михаил Ломоносов» ионно-обменные смолы, представляющие, по существу, один из видов сорбента, были помещены в фильтрующую колонку, которая была укреплена ниже ватерлинии и подключена к водозаборному кингстону. В течение всего рейса чрез фильтрационную колонку пропускалась океанская вода. Всего ее прошло около 60 тыс. Л. В результате каждый килограмм ионитов извлек из морской воды 0,15 г. урана, 0,125 г. серебра; были обнаружены также золото, стронций, висмут, цинк, медь, марганец, железо, алюминий, кремний, кальций, магний. В ходе другого эксперимента советские ученые получили из 500 л морской воды крупинку золота массой в 1 мг. Между тем установлено, что среднее содержание золота в воде 0,032-0,049 мг на 1 т, а общие запасы в океане по различным данным оцениваются в 8-10 млн. т, что составляет почти 2,5 кг на каждого жителя планеты.

Возможно, что скоро ионообменные колонки будут установлены на всех судах торгового флота. В течение рейса эти устройства смогут фильтровать воду, и по возвращении в порт содержимое колонок будет сдаваться на обработку в химические лаборатории, а колонки заменяться новыми. Вероятно, таким способом в ближайшем будущем и будут добывать из океана ценные редкие металлы. Пока же добыча урана, золота и других элементов из морской воды экономически невыгодна и не оправдывает себя. Однако, учитывая гигантские темпы роста технических достижений и все возрастающие потребности в ряде ценных металлов, мы все более приближаемся к тому моменту, когда морская вода займет свое место как «комплексная руда номер один» и полностью «отдаст» человеку все необходимые элементы. Безусловно, минеральные богатства Мирового океана будут играть ведущую роль в экономике ближайшего будущего нашей планеты.

Действительно ли Мировой океан находится под угрозой? На этот вопрос, к сожалению, надо ответить утвердительно, без всяких колебаний. Проблема, связанная с загрязнением вод Мирового океана, одна из самых важных проблем, стоящих перед человечеством.

Наиболее опасны загрязнения:

нефтью,

нефтепродуктами,

радиоактивными веществами,

отходами, промышленными и бытовыми сточными водами,

выбросами химических удобрений.

Загрязнение вод Мирового океана приняло за последние 10 лет катастрофические размеры. Этому во многом способствовало широко распространенное мнение о неограниченных возможностях вод Мирового океана к самоочищению. Многие это понимали так, что любые отходы и отбросы в любом количестве в водах океана подвергаются биологической переработке без вредных последствий для самих вод.

Независимо от вида загрязнения, идет ли речь о загрязнении почвы, атмосферы или воды, все сводится в итоге к загрязнению вод Мирового океана, куда в конце концов попадают все отравляющие вещества, превращая Мировой океан в «мировую помойку».

По подсчетам в Мировой океан ежегодно попадает 6-15 млн. т нефти и нефтепродуктов. Здесь, прежде всего, необходимо отметить потери, связанные с ее транспортировкой танкерами. После разгрузки нефти, чтобы придать танкеру необходимую устойчивость, его танки заполняют балластной водой, слив балластной воды с остатками нефти до последнего времени осуществлялся чаще всего в открытое море. Лишь немногие танкеры обладают резервуарами, специально предназначенными для балластной воды, которые никогда не заполняются нефтью.

Значительные количества нефти попадают в море после промывки цистерн и нефтеналивных сосудов. Подсчитано, что в море попадает около 1 нефти и нефтепродуктов от всего перевозимого груза. Например, нефтеналивное судно водоизмещением около 30000 т сбрасывает в море около 300 т мазута при каждом рейсе. При перевозке 500 млн. т нефти в год, потери мазута составляют около 5 млн. т в год, или 13700 т в сутки!

Огромное количество нефтепродуктов попадает в Мировой океан при их использовании. Только дизельные двигатели судов выбрасывают в море до 2 млн. т тяжелых нефтепродуктов.

Велики потери при морском бурении, сборе нефти в местные резервуары и перекачке по магистральным нефтепроводам. Здесь теряется до 0,25 от всего количества добываемой нефти.

По мере роста морской добычи нефти количество перевозок ее танкерами резко возрастает, а, следовательно, возрастает и количество аварийных случаев. В последний годы увеличилось количество крупных танкеров, перевозящих нефть. На долю супертанкеров приходится более половины всего объема перевозимой нефти. Такой гигант даже после включения экстренного торможения проходит больше 1 мили до полной остановки. Естественно, что опасность катастрофических столкновений у таких танкеров возрастает в несколько раз.

Вынос нефти и нефтепродуктов в море с водами рек. Таким путем в моря попадает до 28 от общего количества поступающей нефти.

Приток нефтепродуктов с атмосферными осадками. Легкие фракции нефти испаряются с поверхности моря и попадают в атмосферу. Таким образом в Мировой океан поступает около 10 нефти и нефтепродуктов от общего количества.

Слив неочищенных вод с заводов и нефтебаз, расположенных на морских побережьях и в портах. В США таким путем в Мировой океан попадает более 500 тыс. т нефти в год.

Нефтяными пленками охвачены: огромные акватории Атлантического и Тихого океанов; полностью покрыты Южно-Китайское и Желтое моря, зона Панамского канала, обширная зона вдоль берегов Северной Америки, акватория между Гавайскими островами и Сан-Франциско в северной части Тихого океана и многие другие районы. Особенно большой вред такие нефтяные пленки приносят в полузамкнутых, внутренних и северных морях, куда они приносятся системами течений. Так, Гольфстрим и Северо-Атлантическое течения переносят углеводороды от берегов Северной Америки и Европы в районы Норвежского и Баренцева морей. Особенно опасно попадание нефти в моря Северного Ледовитого океана и Антарктики, так как низкие температуры воздуха тормозят процессы химического и биологического окисления нефти даже в летний период. Таким образом, нефтяное загрязнение носит глобальный характер.

Подсчитано, что даже 15 млн. т нефти достаточно чтобы покрыть нефтяной пленкой Атлантический и Северный Ледовитый океаны. А ведь содержание 10 г. нефти в 1 м3 воды губительно для икры рыбы. Нефтяная пленка уменьшает проникновение солнечных лучей, что губительно влияет на процессы фотосинтеза фитопланктона, основной кормовой базы большинства живых организмов морей и океанов. Достаточно 1 л нефти чтобы лишить кислорода 400 тыс. л морской воды.

Нефтяные пленки могут: существенно нарушить обмен энергией, теплом, влагой, газами между океаном и атмосферой. А ведь океан играет большую роль в формировании климата, вырабатывает 60-70 кислорода, необходим для существования жизни на Земле.

При испарении нефти с поверхности воды, присутствие ее паров в воздухе вредно отражается на здоровье людей. Особенно выделяются акватории: Средиземного, Северного, Ирландского, Яванского морей; Мексиканского, Бискайского, Токийского заливов.

В Северном море, где плотность движения танкеров самая высокая в мире, ежегодно перевозится около 500 млн. т нефти, происходит 50 всех столкновений.

Загрязнение сточными отходами промышленных и бытовых вод. Один из самых массовых видов загрязнения. В этом виде загрязнения повинны практически все развитые в экономическом отношении страны. До последнего времени для подавляющего большинства промышленных предприятий реки и моря являлись место сброса отработанных стоков. К сожалению очистка стоков лишь в немногих странах поспевает за экономическим развитием и ростом народонаселения.

Особенно повинны в сильном загрязнении вод следующие отрасли промышленности:

химическая,

Ц/Б,

текстильная,

металлургическая.

Сильно загрязняют водоемы шахтные воды в связи с усилившимся в последнее время способом добычи угля - гидродобычей, при которой большое количество мелких частиц угля выносится с отработанными водами.

Вредное воздействие оказывают сбросы Ц/Б заводов, имеющих обычно вспомогательные производства сульфита, хлора, извести и других продуктов, стоки которых также сильно загрязняют и отравляют морские водоемы. Практически сточные неочищенные воды любой промышленности несут угрозу водам Мирового океана.

Свой «вклад» вносят также:

отходы бытовых,

стоки пищевых предприятий,

бытовые нечистоты,

детергенты.

Значительный вред наносит использование детергентов - синтетических моющих средств. Все детергенты обычно образуют стойкую пену при внесении в воду сравнительно небольшого количества вещества. Способность к пенообразованию детергенты не теряют даже при прохождении очистных сооружений. Поэтому водоемы, куда попадают детергенты бывают покрыты клубами пены. Детергенты очень токсичны, устойчивы к процессам биологического разложения, не оседают и не уничтожаются при разбавлении чистой водой.

До 50 распыляемых пестицидов никогда не достигает растений, а разносятся ветрами. ДДТ обнаруживают в тканях пингвинов и белых медведей Арктики - далеко от мест его распыления. Анализ снежного покрова Антарктики показал, что на поверхности около 2300 т пестицидов. Один из видов ДДТ, применяемый на полях Африки был через несколько месяцев обнаружен в воде Бенгальского залива.

Токсичность пестицидов увеличивается с увеличением температуры морской воды.

Применение фосфатов и нитратов также губительно сказывается на море. Нарицательным стало название Японского города Минимате. В результате сброса насыщенных ртутью сточных вод было отравлено свыше 600 тыс. человек, 79 из них погибло.

Велика также степень загрязнения предметами массового потребления.

Радиоактивное загрязнение вод Мирового океана.

Пути попадания радиоактивных осадков:

из атмосферы в результате ядерных испытаний,

при сбросе радиоактивных вод и веществ с предприятий атомной промышленности и АЭС,

в результате аварий судов, работающих на атомных двигателях, а также сброса радиоактивных отходов судовых реакторов,

после аварий атомных подводных лодок,

Так, в 1963 г. в Атлантическом океане затонула американская подводная лодка, остатки которой были найдены более чем в 200 милях восточнее Бостона. А уже в 1966 г. у берегов Ирландии, примерно в 2 500 милях от места катастрофы, выловили деталь лодки с надписью «радиоактивно».

Таких судов в мире более 300. За один год работы в атомных подлодках образуется от 300 до 500 л загрязненных смол, используемых при фильтрации вод. Проблема их захоронения пока еще кардинально не решена.

Опасность заключается в:

быстрый перенос радиоактивных частиц воздушными течениями на большие расстояния. После испытания французской атомной бомбы в Сахаре понадобилось 2 дня чтобы радиоактивные частицы достигли побережья Индии, 3 дня - Японии,

радиоактивные частицы исключительно «живучи», особенно при испытаниях над поверхностью земли. Попадая в высокие слои атмосферы, радиоактивные частицы затем способны выпадать в виде «радиоактивных» дождей через многие месяцы после ядерных взрывов, иногда за несколько тысяч километров от места испытания. Стойкость радиоактивных веществ к разрушению и распаду способствует переносу на морскими течениями и заражению рыбы, планктона и других животных и растительных организмов на больших расстояниях.

В последнее время установлено, что обновление глубинных вод морей происходит за период не менее 100 лет, т.е. За срок в течение которого радиоактивные отходы не теряют своих вредных свойств. Также, находящиеся в поверхностных слоях, радиоактивные воды проникают на глубину в несколько км.

Между тем, в большинстве стран отходы АЭС сбрасываются в реки и прибрежные воды морей, причем чаще всего это не единичные сбросы в небольших количествах, а ежегодные захоронения. Говоря о захоронении отходов необходимо коснуться и других высокотоксичных соединений. В 1970 г. США затопили в 500 км от побережья Флориды судно, на борту которого находилось 68 т нервнопаралитического газа, в 418 бетонных контейнерах. Но рано или поздно бетонные контейнеры дадут утечку и тогда трудно будет представить все последствия.

К числу сильнозагрязненных акваторий Мирового океана относятся:

Северное, Ирландское, Японское и Средиземное моря; Мексиканский, Бискайский, Токийский заливы и Атлантическое побережье США.

В ряде случаев, несмотря на колоссальные достижения современной науки, ликвидировать определенные виды химического, а также радиоактивного загрязнений в настоящее время невозможно.

Методы очистки вод Мирового океана:

локализация участка,

сжигание на локализованных участках,

удаление с помощью песка, обработанного особым составом, в результате чего нефть прилипает к зернам песка и опускается на дно.

поглощение нефти соломой, опилками, эмульсиями, диспергаторами, с помощью гипса,

препарат «ДН-75»,

За несколько минут очищает поверхность моря от нефтяных загрязнений.

ряд биологических методов,

Применение микроорганизмов, которые способны разлагать углеводороды вплоть до углекислоты и воды.

использование специальных судов, оснащенных установками для сбора нефти с поверхности моря.

Созданы специальные суда малых размеров, которые доставляются самолетами к месту аварии танкеров; каждое такое судно может всасывать до 1,5 тыс. л нефтеводяной смеси, отделяя свыше 90 нефти и закачивая ее в специальные плавучие емкости, буксируемые затем к берегу.

Предусмотрены нормы безопасности при строительстве танкеров, при организации систем транспортировки, передвижения в бухтах.

Но все они страдают недостатком - расплывчатые формулировки позволяют частным компаниям их обходить; кроме береговой охраны некому следить за соблюдением этих законов.


Подобные документы

  • Геологическая деятельность океанов и морей. Особенности добычи нефти и газа из подводных недр. Крупнейшие центры подводных нефтеразработок. Шельфовые месторождения твердых ископаемых. Минеральные ресурсы Мирового океана и возможности их освоения.

    курсовая работа [406,7 K], добавлен 22.03.2016

  • Основные черты рельефа дна Мирового океана по морфологическим данным. Основные особенности строения земной коры под океанами. Краткая история развития сейсморазведки. Современные методы сейсморазведки и аппаратура, применяемая при исследованиях на море.

    курсовая работа [7,6 M], добавлен 19.06.2011

  • Главные черты строения океанических впадин. Действительная картина подводного рельефа на современных картах Мирового океана. Особенность строения океанского ложа и хребтов. Осадки Мирового океана. Будущее освоение океана. Основные типы донных осадков.

    реферат [17,4 K], добавлен 16.03.2010

  • История исследования глубоководных областей океана. Методы изучения строения океанического дна. Анализ особенностей образования континентальных окраин материков. Структура ложа океана. Описания основных форм рельефа, характерных для Мирового океана.

    реферат [4,4 M], добавлен 07.10.2013

  • Биогенное и эндогенное происхождение вод биосферы. Распределение суши и воды по поверхности. Суммарные запасы поверхностных вод. Составляющие Мирового океана. Водный и солевой баланс, температурный режим. Население Мирового океана, его суммарная биомасса.

    курсовая работа [715,7 K], добавлен 19.04.2011

  • Определение понятия, динамики вод Мирового океана. Гольфстрим исчезает - Европа замерзает. Рассмотрение зависимости между Лабрадорским течением и плотностью Гольфстрима. Кардиостимулятор мирового климата на планете, угроза нового ледникового периода.

    презентация [1,6 M], добавлен 28.05.2015

  • Характеристика наиболее крупных форм рельефа океана, которые отражают поднятия материков и впадины океанов, а также их взаимоотношение. Материковые отмели или шельфы, склоны. Глобальная система срединных океанических хребтов. Островные дуги, талаплены.

    курсовая работа [1,1 M], добавлен 16.04.2011

  • Исследования континентальных окраин Индийского океана. Общие сведения и факторы формирования континентальных окраин Индийского океана. Основные структурные и тектонические особенности выделенных по географическому признаку берегов Индийского океана.

    реферат [8,1 M], добавлен 06.06.2011

  • Влияние добычи полезных ископаемых на природу. Современные способы добычи полезных ископаемых: поиск и разработка месторождений. Охрана природы при разработке полезных ископаемых. Обработка поверхности отвалов после прекращения открытой выработки.

    реферат [29,4 K], добавлен 10.09.2014

  • Подвижность и непостоянство физических состояний земной коры, газообразной и водной оболочек, процессы, действующие на рельеф. Особенности рельефа Земли, морфология равнин и горных стран. Геоморфологические процессы, происходящие на земной поверхности.

    курсовая работа [11,6 M], добавлен 22.10.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.