Prediction of imputed share returns

Investigation of the possibility of predicting imputed moments of the distribution of stock returns. Factors affecting moments among macroeconomic and individual variables. The relationship between volatility and profitability, kurtosis and profitability.

Рубрика Экономика и экономическая теория
Вид курсовая работа
Язык английский
Дата добавления 28.10.2019
Размер файла 637,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

10. M. Neumann, G. Skiadopoulos. “Predictable dynamics in Higher-Order Risk-Neutral Moments: Evidence from the S&P 500 Options”. Journal of Financial and Quantitative Analysis, No 3, June 2013.

11. H. Hong, J. Stein. “Differences of Opinion, Short-Sales Constraints, and Market Crashes”. Review of Financial Studies, Vol 16, Is. 2, 2003.

12. H. Pesaran, R. Smith. “Estimating Long-Run Relationships from Dynamic Heterogeneous Panels”. Journal of Econometrics, Vol 68, Is. 1, July 1995.

13. H. Pesaran. “Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure”. Econometrica, Vol 74, Is. 4, June 2006.

A. Chudik, H. Pesaran, E. Tosetti. “Weak and Strong Cross Section Dependence and Estimation of Large Panels”. Econometrics Journal, No 14, June 2009.

A. Chudik, H. Pesaran. “Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors”. Journal of Econometrics, Vol 188, Is 2, 2015.

14. H. Pesaran. “Testing Weak Cross-Sectional Dependence in Large Panels”. Econometric Reviews, Vol 34, Is. 6, 2015.

Appendix 1

R-script used to calculate the RNM's

rm(list=ls())

# Loading the necessary packages.

library(data.table)

library(stringr)

library(caTools)

library(compiler)

library(tryCatchLog)

# Functions to calculate values of the contracts:

Vcontract_value<-function(SecurityID, Date)

{

tryCatch(expr={

return(trapz(data_id$ImpliedStrike[data_id$SecurityID==SecurityID & data_id$Date==Date & data_id$CallPut=='C'],

data_id$Vcontract[data_id$SecurityID==SecurityID & data_id$Date==Date & data_id$CallPut=='C'])+

trapz(data_id$ImpliedStrike[data_id$SecurityID==SecurityID & data_id$Date==Date & data_id$CallPut=='P'],

data_id$Vcontract[data_id$SecurityID==SecurityID & data_id$Date==Date & data_id$CallPut=='P']))},

error=function(e){return(NA)})

}

Vcontract_value<-cmpfun(Vcontract_value)

Wcontract_value<-function(SecurityID, Date)

{

tryCatch(expr={

return(trapz(data_id$ImpliedStrike[data_id$SecurityID==SecurityID & data_id$Date==Date & data_id$CallPut=='C'],

data_id$Wcontract[data_id$SecurityID==SecurityID & data_id$Date==Date & data_id$CallPut=='C'])+

trapz(data_id$ImpliedStrike[data_id$SecurityID==SecurityID & data_id$Date==Date & data_id$CallPut=='P'],

data_id$Wcontract[data_id$SecurityID==SecurityID & data_id$Date==Date & data_id$CallPut=='P']))},

error=function(e){return(NA)})

}

Wcontract_value<-cmpfun(Wcontract_value)

Xcontract_value<-function(SecurityID, Date)

{

tryCatch(expr={

return(trapz(data_id$ImpliedStrike[data_id$SecurityID==SecurityID & data_id$Date==Date & data_id$CallPut=='C'],

data_id$Xcontract[data_id$SecurityID==SecurityID & data_id$Date==Date & data_id$CallPut=='C'])+

trapz(data_id$ImpliedStrike[data_id$SecurityID==SecurityID & data_id$Date==Date & data_id$CallPut=='P'],

data_id$Xcontract[data_id$SecurityID==SecurityID & data_id$Date==Date & data_id$CallPut=='P']))},

error=function(e){return(NA)})

}

Xcontract_value<-cmpfun(Xcontract_value)

# Downloading the file with interest rates, parsing:

setwd('/Users/mac/Desktop/Thesis/2005')

monthrate<-fread('monthrate.csv')

names(monthrate)<-c('Date', 'InterestRate')

monthrate$Date<-as.Date(monthrate$Date, format='%d.%m.%Y')

monthrate$InterestRate<-as.numeric(monthrate$InterestRate)/100

# Loop through the necessary years to download the files with the prices of the underlying and the volatility surfaces:

for (year in 1996:2016){

setwd(paste('/Volumes/KINGSTON/Optionmetrics_data_feed/', year, sep = ''))

# Import of the necessary files, binding them into one file "data":

files<-list.files()

# Securities prices file:

sec_prices<-fread(paste('Security_price_', year, '.csv', sep=''), dec=',')

names(sec_prices)<-c('SecurityID', 'Date', 'BidLow', 'AskHigh',

'ClosePrice', 'Volume', 'TotalReturn', 'AdjustmentFactor1',

'OpenPrice', 'SharesOutstanding', 'AdjustmentFactor2')

prices<-sec_prices[,c('SecurityID', 'Date', 'ClosePrice')]

prices$SecurityID<-as.numeric(prices$SecurityID)

prices$ClosePrice<-abs(as.numeric(prices$ClosePrice))

prices$Date<-as.Date(prices$Date, format="%Y-%m-%d")

rm(sec_prices)

# Volatility Surface files:

volatility_files_names<-files[2:5]

rm(files)

data<-do.call(rbind, lapply(volatility_files_names,

function(x) fread(x, dec=',',

col.names = c('SecurityID', 'Date', 'Days','Delta',

'CallPut', 'ImpliedVolatility',

'ImpliedStrike', 'ImpliedPremium', 'Dispersion'))))

rm(volatility_files_names)

data$Date<-as.Date(data$Date, format="%Y-%m-%d")

data<-data[,c('SecurityID', 'Date', 'Days','Delta', 'CallPut', 'ImpliedVolatility',

'ImpliedStrike', 'ImpliedPremium')]

data[,c('SecurityID', 'Days', 'Delta', 'ImpliedVolatility',

'ImpliedStrike', 'ImpliedPremium')]<-lapply(

data[,c('SecurityID', 'Days', 'Delta',

'ImpliedVolatility', 'ImpliedStrike', 'ImpliedPremium')], as.numeric)

data<-data[ImpliedVolatility!=-99.99]

data<-data[ImpliedPremium!=-99.99]

data<-data[Days==30]

data<-data[abs(Delta)<50]

# Merging the files:

data<-merge(data, monthrate, by=c('Date'))

data<-merge(data, prices, by=c('SecurityID', 'Date'))

rm(prices)

data<-data[order(SecurityID, Date, CallPut, ImpliedStrike)]

# Calculation of the weights of contracts in the BKM integrals:

data[,Vcontract:=2*((1-log(ImpliedStrike/ClosePrice))/(ImpliedStrike^2))*ImpliedPremium]

data[,Wcontract:=((6*log(ImpliedStrike/ClosePrice)-3*(log(ImpliedStrike/ClosePrice))^2)/(ImpliedStrike^2))*ImpliedPremium]

data[,Xcontract:=((12*(log(ImpliedStrike/ClosePrice))^2-4*(log(ImpliedStrike/ClosePrice))^3)/(ImpliedStrike^2))*ImpliedPremium]

# Approximation of the BKM integrals using trapezoid rule to get values of contracts:

moments<-unique(data[, c('SecurityID', 'Date', 'InterestRate')])

moments$Vvalue<-0

moments$Wvalue<-0

moments$Xvalue<-0

results<-moments[1]

for (i in unique(moments$SecurityID)){

data_id<-data[SecurityID==i]

moments_id<-moments[SecurityID==i]

moments_id[,Vvalue:=mapply(Vcontract_value, moments_id$SecurityID, moments_id$Date)]

moments_id[,Wvalue:=mapply(Wcontract_value, moments_id$SecurityID, moments_id$Date)]

moments_id[,Xvalue:=mapply(Xcontract_value, moments_id$SecurityID, moments_id$Date)]

results<-rbind(results, moments_id)

}

# Calculation of the moments:

results<-results[2:nrow(results)]

results[, Mu:=exp(InterestRate*30/360)-1-exp(InterestRate*30/360)*Vvalue/2-exp(InterestRate*30/360)*Wvalue/6-exp(InterestRate*30/360)*Xvalue/24]

results[, Volatility:=((exp(InterestRate*30/360)*Vvalue-(Mu)^2)*360/30)^(1/2)]

results[, Skewness:=(exp(InterestRate*30/360)*Wvalue-3*Mu*exp(InterestRate*30/360)*Vvalue+2*(Mu)^3)/(exp(InterestRate*30/360)*Vvalue-(Mu)^2)^(3/2)]

results[, Kurtosis:=(exp(InterestRate*30/360)*Xvalue-4*Mu*exp(InterestRate*30/360)*Wvalue+6*exp(InterestRate*30/360)*(Mu)^2*Vvalue-3*(Mu)^4)/(exp(InterestRate*30/360)*Vvalue-(Mu)^2)^2]

# Saving the results:

results<-results[,c("SecurityID", "Date", "Mu", "Volatility", "Skewness","Kurtosis")]

setwd('/Users/mac/Desktop/Thesis/New Results')

write.csv2(results, file=paste(year, '_moments.csv', sep=''), row.names = FALSE, na='')

rm(data)

rm(moments)

rm(results)

rm(data_id)

rm(moments_id)

}

Appendix 2

The CD tests for the Volatility, Skewness and Kurtosis Series.

The CD tests for the Volatility, Skewness and Kurtosis Series

Volatility

Skewness

Kurtosis

Pesaran (2015) test for weak cross-sectional dependence.

Pesaran (2015) test for weak cross-sectional dependence.

Pesaran (2015) test for weak cross-sectional dependence.

H0: errors are weakly cross-sectional dependent.

H0: errors are weakly cross-sectional dependent.

H0: errors are weakly cross-sectional dependent.

CD = 303.559

CD = 164.877

CD = 80.044

p-value = 0.000

p-value = 0.000

p-value = 0.000

Appendix 3

The output of the CCE models for Volatility, Skewness and Kurtosis.

Common Correlated Effects models for Volatility, Skewness and Kurtosis. Return (-1), BidAskSpread (-1) and HistoricBeta (-1) refer to the return, bid-ask spread and beta variables lagged one period. Leverage, DefaultSpread, TermSpread, RiskFreeRate and VIX refer to the leverage ratio, default spread, term spread risk-free rate and Vix variables. The resulting coefficients, standard errors and p-values are given for these variables in the table. Coefficients of the significant coefficients at 5% level are highlight in bold.

Volatility

Skewness

Kurtosis

Coef. (St. Er.).

P-Value

Coef. (St. Er.).

P-Value

Coef. (St. Er.).

P-Value

Return (-1)

-0,3813

0,000

-0,6361

0,000

-0,1780

0,049

(0,0243)

(0,0651)

(0,0904)

BidAskSpread (-1)

2,0365

0,000

0,8409

0,000

-0,2219

0,165

(0,1229)

(0,1176)

(0,1598)

HistoricBeta (-1)

0,0851

0,002

0,0285

0,229

-0,0467

0,267

(0,0277)

(0,0237)

(0,0421)

Leverage

-0,8454

0,264

-0,1296

0,587

-0,1889

0,673

(0,7573)

(0,2384)

(0,4479)

DefaultSpread

3,3689

0,079

-0,3123

0,835

-0,3761

0,900

(1,9196)

(1,4988)

(2,9962)

TermSpread

0,5271

0,539

-0,4681

0,546

0,9217

0,529

(0,8574)

(0,7762)

(1,4644)

RiskFreeRate

1,4877

0,299

-0,4326

0,855

-0,1423

0,976

(1,4320)

(2,3654)

(4,7638)

VIX

-0,0005

0,705

0,0005

0,532

0,0015

0,299

(0,0012)

(0,0008)

(0,0015)

RMSE:

0,270

RMSE:

0,400

RMSE:

0,910

Appendix 4

Summary statistics and the corralation table for the subsample of 150 stocks used for regressions.

Summary statistics for the computed RNM's for the subsample

Volatility

Skewness

Kurtosis

Number of observations

548125

548125

548125

Mean

1,1790

-0,1139

2,4076

Median

1,0517

-0,1439

2,2058

Standart Deviation

0,5727

0,4797

1,0274

Autocorrelation

0,9401

0,6394

0,6644

Correlations between the dependent and the explanatory variables in the subsample. Vol, Skew, Kurt and Lev refer to the volatility, skewness, kurtosis and leverage variables, respectively

Vol

Skew

Kurt

Return

Spread

Beta

Lev

DefautSpread

Term Spread

Risk-Free Rate

VIX

Vol

1,0000

Skew

0,3367

1,0000

Kurt

-0,0277

0,4503

1,0000

Return

-0,0122

-0,0951

-0,0372

1,0000

Spread

0,5650

0,1960

-0,0956

-0,0141

1,0000

Beta

0,3168

0,1295

-0,0644

0,0033

0,2318

1,0000

Lev

-0,0881

-0,0631

0,0232

-0,0021

-0,0454

-0,0612

1,0000

DefautSpread

0,2735

-0,0413

-0,0804

0,0026

0,2447

0,0441

-0,0145

1,0000

Term Spread

0,0263

-0,0722

0,0023

0,0056

-0,0094

0,0119

0,0006

0,3022

1,0000

Risk-Free Rate

0,0512

0,0944

-0,0917

-0,0071

0,1237

-0,0516

0,0089

-0,3240

-0,7924

1,0000

VIX

0,4070

0,0504

-0,1242

-0,0604

0,4137

-0,0341

0,0128

0,6440

0,1651

0,0177

1,0000

Размещено на Allbest.ru


Подобные документы

  • Mergers and acquisitions: definitions, history and types of the deals. Previous studies of post-merger performance and announcement returns and Russian M&A market. Analysis of factors driving abnormal announcement returns and the effect of 2014 events.

    дипломная работа [7,0 M], добавлен 02.11.2015

  • Calculation of accounting and economic profits. The law of diminishing returns. Short-Run production relationships and production costs, it's graphic representation. The long-run cost curve. Average fixed, variable, total costs and marginal costs.

    презентация [66,7 K], добавлен 19.10.2016

  • Solving the problem of non-stationary time series. Estimating nominal exchange rate volatility ruble/dollar by using autoregressive model with distributed lags. Constructing regressions. Determination of causality between aggregate export and volatility.

    курсовая работа [517,2 K], добавлен 03.09.2016

  • The stock market and economic growth: theoretical and analytical questions. Analysis of the mechanism of the financial market on the efficient allocation of resources in the economy and to define the specific role of stock market prices in the process.

    дипломная работа [5,3 M], добавлен 07.07.2013

  • Estimate risk-neutral probabilities and the rational for its application. Empirical results of predictive power assessment for risk-neutral probabilities as well as their comparisons with stock-implied probabilities defined as in Samuelson and Rosenthal.

    дипломная работа [549,4 K], добавлен 02.11.2015

  • Issues about housing prices formation process. Analytical model of housing prices. Definition a type of relationship between the set of independent variables and housing prices. The graph of real housing prices of all Russian regions during the period.

    курсовая работа [1,6 M], добавлен 23.09.2016

  • What is Demand. Factors affecting demand. The Law of demand. What is Supply. Economic equilibrium. Demand is an economic concept that describes a buyer's desire, willingness and ability to pay a price for a specific quantity of a good or service.

    презентация [631,9 K], добавлен 11.12.2013

  • Thematic review of the characteristics of each factor of production. The theories of main economists. The possible variants of new factors of production. Labor resources. "Elementary factors of the labour-process" or "productive forces" of Marx.

    реферат [437,4 K], добавлен 18.10.2014

  • Short and long run macroeconomic model. Saving and Investment in Italy, small open economy. Government expenditure and saving scatterplot. Loanable market equilibrium in closed economy in the USA. Okun’s Law in the USA and Italy, keynesian cross.

    курсовая работа [1,6 M], добавлен 20.11.2013

  • Financial bubble - a phenomenon on the financial market, when the assessments of people exceed the fair price. The description of key figures of financial bubble. Methods of predicting the emergence of financial bubbles, their use in different situations.

    реферат [90,0 K], добавлен 14.02.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.