Прогнозирование региональной динамики с учетом пространственной взаимосвязи на основе нейронных сетей
Построение разных типов моделей с учетом и без учета пространственной зависимости. Комбинирование прогнозов для увеличения точности прогнозирования. Сравнительный анализ нейросетевых и регрессионных моделей прогноза без учета пространственного лага.
Рубрика | Экономика и экономическая теория |
Вид | диссертация |
Язык | русский |
Дата добавления | 30.07.2016 |
Размер файла | 534,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
f15 <- gdp.r ~ gdp.r.tlag + pop.r.tlag + lab.r.tslag
f16 <- gdp.r ~ gdp.r.tlag + pop.r.tlag + lab.r.tlag + lab.r.tslag
f17 <- gdp.r ~ gdp.r.tlag + pop.r.tlag + lab.r.tlag + lab.r.tslag + pop.r.tslag + gdp.r.tslag
f18 <- gdp.r ~ gdp.r.tlag + pop.r.tlag + gdp.r.tslag + pop.r.tslag
f19 <- gdp.r ~ gdp.r.tlag + lab.r.tlag + gdp.r.tslag + lab.r.tslag
x01 <- data.frame(gdp.r.tlag) # monotone=c(1)
x02 <- data.frame(gdp.r.tlag,pop.r.tlag) # monotone=c(1,2)
x03 <- data.frame(gdp.r.tlag,lab.r.tlag)
x04 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag)
x05 <- data.frame(gdp.r.tlag,gdp.r.tslag)
x06 <- data.frame(gdp.r.tlag,lab.r.tslag)
x07 <- data.frame(gdp.r.tlag,pop.r.tslag)
x08 <- data.frame(gdp.r.tlag,pop.r.tlag,gdp.r.tslag)
x09 <- data.frame(gdp.r.tlag,lab.r.tlag,gdp.r.tslag)
x10 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,gdp.r.tslag)
x11 <- data.frame(gdp.r.tlag,pop.r.tlag,pop.r.tslag)
x12 <- data.frame(gdp.r.tlag,lab.r.tlag,pop.r.tslag)
x13 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,pop.r.tslag)
x14 <- data.frame(gdp.r.tlag,lab.r.tlag,lab.r.tslag)
x15 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tslag)
x16 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,lab.r.tslag)
x17 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,lab.r.tslag,pop.r.tslag,gdp.r.tslag)
x18 <- data.frame(gdp.r.tlag,pop.r.tlag,gdp.r.tslag,pop.r.tslag)
x19 <- data.frame(gdp.r.tlag,lab.r.tlag,gdp.r.tslag,lab.r.tslag)
x20 <- data.frame(gdp.r.tlag)
x21 <- data.frame(gdp.r.tlag,pop.r.tlag)
x22 <- data.frame(gdp.r.tlag,lab.r.tlag)
x23 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag)
x24 <- data.frame(gdp.r.tlag,gdp.r.tslag)
x25 <- data.frame(gdp.r.tlag,lab.r.tslag)
x26 <- data.frame(gdp.r.tlag,pop.r.tslag)
x27 <- data.frame(gdp.r.tlag,pop.r.tlag,gdp.r.tslag)
x28 <- data.frame(gdp.r.tlag,lab.r.tlag,gdp.r.tslag)
x29 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,gdp.r.tslag)
x30 <- data.frame(gdp.r.tlag,pop.r.tlag,pop.r.tslag)
x31 <- data.frame(gdp.r.tlag,lab.r.tlag,pop.r.tslag)
x32 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,pop.r.tslag)
x33 <- data.frame(gdp.r.tlag,lab.r.tlag,lab.r.tslag)
x34 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tslag)
x35 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,lab.r.tslag)
x36 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,lab.r.tslag,pop.r.tslag,gdp.r.tslag)
x37 <- data.frame(gdp.r.tlag,pop.r.tlag,gdp.r.tslag,pop.r.tslag)
x38 <- data.frame(gdp.r.tlag,lab.r.tlag,gdp.r.tslag,lab.r.tslag)
x39 <- data.frame(gdp.r.tlag) # monotone=c(1)
x40 <- data.frame(gdp.r.tlag,pop.r.tlag) # monotone=c(1,2)
x41 <- data.frame(gdp.r.tlag,lab.r.tlag)
x42 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag)
x43 <- data.frame(gdp.r.tlag,gdp.r.tslag)
x44 <- data.frame(gdp.r.tlag,lab.r.tslag)
x45 <- data.frame(gdp.r.tlag,pop.r.tslag)
x46 <- data.frame(gdp.r.tlag,pop.r.tlag,gdp.r.tslag)
x47 <- data.frame(gdp.r.tlag,lab.r.tlag,gdp.r.tslag)
x48 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,gdp.r.tslag)
x49 <- data.frame(gdp.r.tlag,pop.r.tlag,pop.r.tslag)
x50 <- data.frame(gdp.r.tlag,lab.r.tlag,pop.r.tslag)
x51 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,pop.r.tslag)
x52 <- data.frame(gdp.r.tlag,lab.r.tlag,lab.r.tslag)
x53 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tslag)
x54 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,lab.r.tslag)
x55 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,lab.r.tslag,pop.r.tslag,gdp.r.tslag)
x56 <- data.frame(gdp.r.tlag,pop.r.tlag,gdp.r.tslag,pop.r.tslag)
x57 <- data.frame(gdp.r.tlag,lab.r.tlag,gdp.r.tslag,lab.r.tslag)
x58 <- data.frame(gdp.r.tlag) # monotone=c(1)
x59 <- data.frame(gdp.r.tlag,pop.r.tlag) # monotone=c(1,2)
x60 <- data.frame(gdp.r.tlag,lab.r.tlag)
x61 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag)
x62 <- data.frame(gdp.r.tlag,gdp.r.tslag)
x63 <- data.frame(gdp.r.tlag,lab.r.tslag)
x64 <- data.frame(gdp.r.tlag,pop.r.tslag)
x65 <- data.frame(gdp.r.tlag,pop.r.tlag,gdp.r.tslag)
x66 <- data.frame(gdp.r.tlag,lab.r.tlag,gdp.r.tslag)
x67 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,gdp.r.tslag)
x68 <- data.frame(gdp.r.tlag,pop.r.tlag,pop.r.tslag)
x69 <- data.frame(gdp.r.tlag,lab.r.tlag,pop.r.tslag)
x70 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,pop.r.tslag)
x71 <- data.frame(gdp.r.tlag,lab.r.tlag,lab.r.tslag)
x72 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tslag)
x73 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,lab.r.tslag)
x74 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,lab.r.tslag,pop.r.tslag,gdp.r.tslag)
x75 <- data.frame(gdp.r.tlag,pop.r.tlag,gdp.r.tslag,pop.r.tslag)
x76 <- data.frame(gdp.r.tlag,lab.r.tlag,gdp.r.tslag,lab.r.tslag)
x101 <- data.frame(gdp.r.tlag) # monotone=c(1)
x102 <- data.frame(gdp.r.tlag,pop.r.tlag) # monotone=c(1,2)
x103 <- data.frame(gdp.r.tlag,lab.r.tlag)
x104 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag)
x105 <- data.frame(gdp.r.tlag,gdp.r.tslag)
x106 <- data.frame(gdp.r.tlag,lab.r.tslag)
x107 <- data.frame(gdp.r.tlag,pop.r.tslag)
x108 <- data.frame(gdp.r.tlag,pop.r.tlag,gdp.r.tslag)
x109 <- data.frame(gdp.r.tlag,lab.r.tlag,gdp.r.tslag)
x110 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,gdp.r.tslag)
x111 <- data.frame(gdp.r.tlag,pop.r.tlag,pop.r.tslag)
x112 <- data.frame(gdp.r.tlag,lab.r.tlag,pop.r.tslag)
x113 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,pop.r.tslag)
x114 <- data.frame(gdp.r.tlag,lab.r.tlag,lab.r.tslag)
x115 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tslag)
x116 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,lab.r.tslag)
x117 <- data.frame(gdp.r.tlag,pop.r.tlag,lab.r.tlag,lab.r.tslag,pop.r.tslag,gdp.r.tslag)
x118 <- data.frame(gdp.r.tlag,pop.r.tlag,gdp.r.tslag,pop.r.tslag)
x119 <- data.frame(gdp.r.tlag,lab.r.tlag,gdp.r.tslag,lab.r.tslag)
for(j in 12:(k-1))
{
LEARNset <- year>=(year0+j) & year<=(year0+window-1+j)
TESTset <- year==(year0+window+j)
TESTset2 <- year==(year0+window-1+j)
gdp.actual <- gdp[TESTset]
plm01 <- plm(formula = f01, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm02 <- plm(formula = f02, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm03 <- plm(formula = f03, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm04 <- plm(formula = f04, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm05 <- plm(formula = f05, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm06 <- plm(formula = f06, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm07 <- plm(formula = f07, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm08 <- plm(formula = f08, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm09 <- plm(formula = f09, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm10 <- plm(formula = f10, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm11 <- plm(formula = f11, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm12 <- plm(formula = f12, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm13 <- plm(formula = f13, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm14 <- plm(formula = f14, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm15 <- plm(formula = f15, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm16 <- plm(formula = f16, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm17 <- plm(formula = f17, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm18 <- plm(formula = f18, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
plm19 <- plm(formula = f19, data=factors.all[LEARNset,], model='within', effect='individual',index=c('state','year'))
y.learn <- as.matrix(gdp.r[LEARNset])
y.actual <- as.matrix(gdp.r[TESTset])
x01.learn <- as.matrix(x01[LEARNset,])
x01.predict <- as.matrix(x01[TESTset,])
x02.learn <- as.matrix(x02[LEARNset,])
x02.predict <- as.matrix(x02[TESTset,])
x03.learn <- as.matrix(x03[LEARNset,])
x03.predict <-
as.matrix(x03[TESTset,])
x04.learn <- as.matrix(x04[LEARNset,])
x04.predict <- as.matrix(x04[TESTset,])
x05.learn <- as.matrix(x05[LEARNset,])
x05.predict <- as.matrix(x05[TESTset,])
x06.learn <- as.matrix(x06[LEARNset,])
x06.predict <- as.matrix(x06[TESTset,])
x07.learn <- as.matrix(x07[LEARNset,])
x07.predict <- as.matrix(x07[TESTset,])
x08.learn <- as.matrix(x08[LEARNset,])
x08.predict <- as.matrix(x08[TESTset,])
x09.learn <- as.matrix(x09[LEARNset,])
x09.predict <- as.matrix(x09[TESTset,])
x10.learn <- as.matrix(x10[LEARNset,])
x10.predict <- as.matrix(x10[TESTset,])
x11.learn <- as.matrix(x11[LEARNset,])
x11.predict <- as.matrix(x11[TESTset,])
x12.learn <- as.matrix(x12[LEARNset,])
x12.predict <- as.matrix(x12[TESTset,])
x13.learn <- as.matrix(x13[LEARNset,])
x13.predict <- as.matrix(x13[TESTset,])
x14.learn <- as.matrix(x14[LEARNset,])
x14.predict <- as.matrix(x14[TESTset,])
x15.learn <- as.matrix(x15[LEARNset,])
x15.predict <- as.matrix(x15[TESTset,])
x16.learn <- as.matrix(x16[LEARNset,])
x16.predict <- as.matrix(x16[TESTset,])
x17.learn <- as.matrix(x17[LEARNset,])
x17.predict <- as.matrix(x17[TESTset,])
x18.learn <- as.matrix(x18[LEARNset,])
x18.predict <- as.matrix(x18[TESTset,])
x19.learn <- as.matrix(x19[LEARNset,])
x19.predict <- as.matrix(x19[TESTset,])
x20.learn <- as.matrix(x20[LEARNset,])
x20.predict <- as.matrix(x20[TESTset,])
x21.learn <- as.matrix(x21[LEARNset,])
x21.predict <- as.matrix(x21[TESTset,])
x22.learn <- as.matrix(x22[LEARNset,])
x22.predict <- as.matrix(x22[TESTset,])
x23.learn <- as.matrix(x23[LEARNset,])
x23.predict <- as.matrix(x23[TESTset,])
x24.learn <- as.matrix(x24[LEARNset,])
x24.predict <- as.matrix(x24[TESTset,])
x25.learn <- as.matrix(x25[LEARNset,])
x25.predict <- as.matrix(x25[TESTset,])
x26.learn <- as.matrix(x26[LEARNset,])
x26.predict <- as.matrix(x26[TESTset,])
x27.learn <- as.matrix(x27[LEARNset,])
x27.predict <- as.matrix(x27[TESTset,])
x28.learn <- as.matrix(x28[LEARNset,])
x28.predict <- as.matrix(x28[TESTset,])
x29.learn <- as.matrix(x29[LEARNset,])
x29.predict <- as.matrix(x29[TESTset,])
x30.learn <- as.matrix(x30[LEARNset,])
x30.predict <- as.matrix(x30[TESTset,])
x31.learn <- as.matrix(x31[LEARNset,])
x31.predict <- as.matrix(x31[TESTset,])
x32.learn <- as.matrix(x32[LEARNset,])
x32.predict <- as.matrix(x32[TESTset,])
x33.learn <- as.matrix(x33[LEARNset,])
x33.predict <- as.matrix(x33[TESTset,])
x34.learn <- as.matrix(x34[LEARNset,])
x34.predict <- as.matrix(x34[TESTset,])
x35.learn <- as.matrix(x35[LEARNset,])
x35.predict <- as.matrix(x35[TESTset,])
x36.learn <- as.matrix(x36[LEARNset,])
x36.predict <- as.matrix(x36[TESTset,])
x37.learn <- as.matrix(x37[LEARNset,])
x37.predict <- as.matrix(x37[TESTset,])
x38.learn <- as.matrix(x38[LEARNset,])
x38.predict <- as.matrix(x38[TESTset,])
x39.learn <- as.matrix(x39[LEARNset,])
x39.predict <- as.matrix(x39[TESTset,])
x40.learn <- as.matrix(x40[LEARNset,])
x40.predict <- as.matrix(x40[TESTset,])
x41.learn <- as.matrix(x41[LEARNset,])
x41.predict <- as.matrix(x41[TESTset,])
x42.learn <- as.matrix(x42[LEARNset,])
x42.predict <- as.matrix(x42[TESTset,])
x43.learn <- as.matrix(x43[LEARNset,])
x43.predict <- as.matrix(x43[TESTset,])
x44.learn <- as.matrix(x44[LEARNset,])
x44.predict <- as.matrix(x44[TESTset,])
x45.learn <- as.matrix(x45[LEARNset,])
x45.predict <- as.matrix(x45[TESTset,])
x46.learn <- as.matrix(x46[LEARNset,])
x46.predict <- as.matrix(x46[TESTset,])
x47.learn <- as.matrix(x47[LEARNset,])
x47.predict <- as.matrix(x47[TESTset,])
x48.learn <- as.matrix(x48[LEARNset,])
x48.predict <- as.matrix(x48[TESTset,])
x49.learn <- as.matrix(x49[LEARNset,])
x49.predict <- as.matrix(x49[TESTset,])
x50.learn <- as.matrix(x50[LEARNset,])
x50.predict <- as.matrix(x50[TESTset,])
x51.learn <- as.matrix(x51[LEARNset,])
x51.predict <- as.matrix(x51[TESTset,])
x52.learn <- as.matrix(x52[LEARNset,])
x52.predict <- as.matrix(x52[TESTset,])
x53.learn <- as.matrix(x53[LEARNset,])
x53.predict <- as.matrix(x53[TESTset,])
x54.learn <- as.matrix(x54[LEARNset,])
x54.predict <- as.matrix(x54[TESTset,])
x55.learn <- as.matrix(x55[LEARNset,])
x55.predict <- as.matrix(x55[TESTset,])
x56.learn <- as.matrix(x56[LEARNset,])
x56.predict <- as.matrix(x56[TESTset,])
x57.learn <- as.matrix(x57[LEARNset,])
x57.predict <- as.matrix(x57[TESTset,])
x58.learn <- as.matrix(x58[LEARNset,])
x58.predict <- as.matrix(x58[TESTset,])
x59.learn <- as.matrix(x59[LEARNset,])
x59.predict <- as.matrix(x59[TESTset,])
x60.learn <- as.matrix(x60[LEARNset,])
x60.predict <- as.matrix(x60[TESTset,])
x61.learn <- as.matrix(x61[LEARNset,])
x61.predict <- as.matrix(x61[TESTset,])
x62.learn <- as.matrix(x62[LEARNset,])
x62.predict <- as.matrix(x62[TESTset,])
x63.learn <- as.matrix(x63[LEARNset,])
x63.predict <- as.matrix(x63[TESTset,])
x64.learn <- as.matrix(x64[LEARNset,])
x64.predict <- as.matrix(x64[TESTset,])
x65.learn <- as.matrix(x65[LEARNset,])
x65.predict <- as.matrix(x65[TESTset,])
x66.learn <- as.matrix(x66[LEARNset,])
x66.predict <- as.matrix(x66[TESTset,])
x67.learn <- as.matrix(x67[LEARNset,])
x67.predict <- as.matrix(x67[TESTset,])
x68.learn <- as.matrix(x68[LEARNset,])
x68.predict <- as.matrix(x68[TESTset,])
x69.learn <- as.matrix(x69[LEARNset,])
x69.predict <- as.matrix(x69[TESTset,])
x70.learn <- as.matrix(x70[LEARNset,])
x70.predict <- as.matrix(x70[TESTset,])
x71.learn <- as.matrix(x71[LEARNset,])
x71.predict <- as.matrix(x71[TESTset,])
x72.learn <- as.matrix(x72[LEARNset,])
x72.predict <- as.matrix(x72[TESTset,])
x73.learn <- as.matrix(x73[LEARNset,])
x73.predict <- as.matrix(x73[TESTset,])
x74.learn <- as.matrix(x74[LEARNset,])
x74.predict <- as.matrix(x74[TESTset,])
x75.learn <- as.matrix(x75[LEARNset,])
x75.predict <- as.matrix(x75[TESTset,])
x76.learn <- as.matrix(x76[LEARNset,])
x76.predict <- as.matrix(x76[TESTset,])
x101.predict <- as.matrix(x101[TESTset,])
x102.predict <- as.matrix(x102[TESTset,])
x103.predict <- as.matrix(x103[TESTset,])
x104.predict <- as.matrix(x104[TESTset,])
x105.predict <- as.matrix(x105[TESTset,])
x106.predict <- as.matrix(x106[TESTset,])
x107.predict <- as.matrix(x107[TESTset,])
x108.predict <- as.matrix(x108[TESTset,])
x109.predict <- as.matrix(x109[TESTset,])
x110.predict <- as.matrix(x110[TESTset,])
x111.predict <- as.matrix(x111[TESTset,])
x112.predict <- as.matrix(x112[TESTset,])
x113.predict <- as.matrix(x113[TESTset,])
x114.predict <- as.matrix(x114[TESTset,])
x115.predict <- as.matrix(x115[TESTset,])
x116.predict <- as.matrix(x116[TESTset,])
x117.predict <- as.matrix(x117[TESTset,])
x118.predict <- as.matrix(x118[TESTset,])
x119.predict <- as.matrix(x119[TESTset,])
mlp01 <- monmlp.fit(x=x01.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1), silent=TRUE, iter.max=5000)
mlp02 <- monmlp.fit(x=x02.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp03 <- monmlp.fit(x=x03.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp04 <- monmlp.fit(x=x04.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp05 <- monmlp.fit(x=x05.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1), silent=TRUE, iter.max=5000)
mlp06 <- monmlp.fit(x=x06.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1), silent=TRUE, iter.max=5000)
mlp07 <- monmlp.fit(x=x07.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1), silent=TRUE, iter.max=5000)
mlp08 <- monmlp.fit(x=x08.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp09 <- monmlp.fit(x=x09.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp10 <- monmlp.fit(x=x10.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp11 <- monmlp.fit(x=x11.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp12 <- monmlp.fit(x=x12.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp13 <- monmlp.fit(x=x13.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp14 <- monmlp.fit(x=x14.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp15 <- monmlp.fit(x=x15.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp16 <- monmlp.fit(x=x16.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp17 <- monmlp.fit(x=x17.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp18 <- monmlp.fit(x=x18.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp19 <- monmlp.fit(x=x19.learn, y=y.learn, hidden1=10, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp20 <- monmlp.fit(x=x20.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1), silent=TRUE, iter.max=5000)
mlp21 <- monmlp.fit(x=x21.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp22 <- monmlp.fit(x=x22.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp23 <- monmlp.fit(x=x23.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp24 <- monmlp.fit(x=x24.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1), silent=TRUE, iter.max=5000)
mlp25 <- monmlp.fit(x=x25.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1), silent=TRUE, iter.max=5000)
mlp26 <- monmlp.fit(x=x26.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1), silent=TRUE, iter.max=5000)
mlp27 <- monmlp.fit(x=x27.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp28 <- monmlp.fit(x=x28.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp29 <- monmlp.fit(x=x29.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp30 <- monmlp.fit(x=x30.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp31 <- monmlp.fit(x=x31.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp32 <- monmlp.fit(x=x32.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp33 <- monmlp.fit(x=x33.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp34 <- monmlp.fit(x=x34.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp35 <- monmlp.fit(x=x35.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp36 <- monmlp.fit(x=x36.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp37 <- monmlp.fit(x=x37.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp38 <- monmlp.fit(x=x38.learn, y=y.learn, hidden1=5, n.ensemble=2, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp39 <- monmlp.fit(x=x39.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1), silent=TRUE, iter.max=5000)
mlp40 <- monmlp.fit(x=x40.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp41 <- monmlp.fit(x=x41.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp42 <- monmlp.fit(x=x42.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp43 <- monmlp.fit(x=x43.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1), silent=TRUE, iter.max=5000)
mlp44 <- monmlp.fit(x=x44.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1), silent=TRUE, iter.max=5000)
mlp45 <- monmlp.fit(x=x45.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1), silent=TRUE, iter.max=5000)
mlp46 <- monmlp.fit(x=x46.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp47 <- monmlp.fit(x=x47.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp48 <- monmlp.fit(x=x48.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp49 <- monmlp.fit(x=x49.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp50 <- monmlp.fit(x=x50.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp51 <- monmlp.fit(x=x51.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp52 <- monmlp.fit(x=x52.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp53 <- monmlp.fit(x=x53.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp54 <- monmlp.fit(x=x54.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp55 <- monmlp.fit(x=x55.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp56 <- monmlp.fit(x=x56.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp57 <- monmlp.fit(x=x57.learn, y=y.learn, hidden1=10, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp58 <- monmlp.fit(x=x58.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1), silent=TRUE, iter.max=5000)
mlp59 <- monmlp.fit(x=x59.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp60 <- monmlp.fit(x=x60.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp61 <- monmlp.fit(x=x61.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp62 <- monmlp.fit(x=x62.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1), silent=TRUE, iter.max=5000)
mlp63 <- monmlp.fit(x=x63.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1), silent=TRUE, iter.max=5000)
mlp64 <- monmlp.fit(x=x64.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1), silent=TRUE, iter.max=5000)
mlp65 <- monmlp.fit(x=x65.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp66 <- monmlp.fit(x=x66.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp67 <- monmlp.fit(x=x67.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp68 <- monmlp.fit(x=x68.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp69 <- monmlp.fit(x=x69.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp70 <- monmlp.fit(x=x70.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp71 <- monmlp.fit(x=x71.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp72 <- monmlp.fit(x=x72.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp73 <- monmlp.fit(x=x73.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp74 <- monmlp.fit(x=x74.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2,3), silent=TRUE, iter.max=5000)
mlp75 <- monmlp.fit(x=x75.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
mlp76 <- monmlp.fit(x=x76.learn, y=y.learn, hidden1=5, n.ensemble=4, n.trials=5, bag=TRUE, monotone=c(1,2), silent=TRUE, iter.max=5000)
fix01 <- as.matrix(fixef(plm01))
fix02 <- as.matrix(fixef(plm02))
fix03 <- as.matrix(fixef(plm03))
fix04 <- as.matrix(fixef(plm04))
fix05 <- as.matrix(fixef(plm05))
fix06 <- as.matrix(fixef(plm06))
fix07 <- as.matrix(fixef(plm07))
fix08 <- as.matrix(fixef(plm08))
fix09 <- as.matrix(fixef(plm09))
fix10 <- as.matrix(fixef(plm10))
fix11 <- as.matrix(fixef(plm11))
fix12 <- as.matrix(fixef(plm12))
fix13 <- as.matrix(fixef(plm13))
fix14 <- as.matrix(fixef(plm14))
fix15 <- as.matrix(fixef(plm15))
fix16 <- as.matrix(fixef(plm16))
fix17 <- as.matrix(fixef(plm17))
fix18 <- as.matrix(fixef(plm18))
fix19 <- as.matrix(fixef(plm19))
c01 <- as.matrix(coef(plm01))
c02 <- as.matrix(coef(plm02))
c03 <- as.matrix(coef(plm03))
c04 <- as.matrix(coef(plm04))
c05 <- as.matrix(coef(plm05))
c06 <- as.matrix(coef(plm06))
c07 <- as.matrix(coef(plm07))
c08 <- as.matrix(coef(plm08))
c09 <- as.matrix(coef(plm09))
c10 <- as.matrix(coef(plm10))
c11 <- as.matrix(coef(plm11))
c12 <- as.matrix(coef(plm12))
c13 <- as.matrix(coef(plm13))
c14 <- as.matrix(coef(plm14))
c15 <- as.matrix(coef(plm15))
c16 <- as.matrix(coef(plm16))
c17 <- as.matrix(coef(plm17))
c18 <- as.matrix(coef(plm18))
c19 <- as.matrix(coef(plm19))
y01.predict <- monmlp.predict(x = x01.predict, weights = mlp01)
y02.predict <- monmlp.predict(x = x02.predict, weights = mlp02)
y03.predict <- monmlp.predict(x = x03.predict, weights = mlp03)
y04.predict <- monmlp.predict(x = x04.predict, weights = mlp04)
y05.predict <- monmlp.predict(x = x05.predict, weights = mlp05)
y06.predict <- monmlp.predict(x = x06.predict, weights = mlp06)
y07.predict <- monmlp.predict(x = x07.predict, weights = mlp07)
y08.predict <- monmlp.predict(x = x08.predict, weights = mlp08)
y09.predict <- monmlp.predict(x = x09.predict, weights = mlp09)
y10.predict <- monmlp.predict(x = x10.predict, weights = mlp10)
y11.predict <- monmlp.predict(x = x11.predict, weights = mlp11)
y12.predict <- monmlp.predict(x = x12.predict, weights = mlp12)
y13.predict <- monmlp.predict(x = x13.predict, weights = mlp13)
y14.predict <- monmlp.predict(x = x14.predict, weights = mlp14)
y15.predict <- monmlp.predict(x = x15.predict, weights = mlp15)
y16.predict <- monmlp.predict(x = x16.predict, weights = mlp16)
y17.predict <- monmlp.predict(x = x17.predict, weights = mlp17)
y18.predict <- monmlp.predict(x = x18.predict, weights = mlp18)
y19.predict <- monmlp.predict(x = x19.predict, weights = mlp19)
y20.predict <- monmlp.predict(x = x20.predict, weights = mlp20)
y21.predict <- monmlp.predict(x = x21.predict, weights = mlp21)
y22.predict <- monmlp.predict(x = x22.predict, weights = mlp22)
y23.predict <- monmlp.predict(x = x23.predict, weights = mlp23)
y24.predict <- monmlp.predict(x = x24.predict, weights = mlp24)
y25.predict <- monmlp.predict(x = x25.predict, weights = mlp25)
y26.predict <- monmlp.predict(x = x26.predict, weights = mlp26)
y27.predict <- monmlp.predict(x = x27.predict, weights = mlp27)
y28.predict <- monmlp.predict(x = x28.predict, weights = mlp28)
y29.predict <- monmlp.predict(x = x29.predict, weights = mlp29)
y30.predict <- monmlp.predict(x = x30.predict, weights = mlp30)
y31.predict <- monmlp.predict(x = x31.predict, weights = mlp31)
y32.predict <- monmlp.predict(x = x32.predict, weights = mlp32)
y33.predict <- monmlp.predict(x = x33.predict, weights = mlp33)
y34.predict <- monmlp.predict(x = x34.predict, weights = mlp34)
y35.predict <- monmlp.predict(x = x35.predict, weights = mlp35)
y36.predict <- monmlp.predict(x = x36.predict, weights = mlp36)
y37.predict <- monmlp.predict(x = x37.predict, weights = mlp37)
y38.predict <- monmlp.predict(x = x38.predict, weights = mlp38)
y39.predict <- monmlp.predict(x = x39.predict, weights = mlp39)
y40.predict <- monmlp.predict(x = x40.predict, weights = mlp40)
y41.predict <- monmlp.predict(x = x41.predict, weights = mlp41)
y42.predict <- monmlp.predict(x = x42.predict, weights = mlp42)
y43.predict <- monmlp.predict(x = x43.predict, weights = mlp43)
y44.predict <- monmlp.predict(x = x44.predict, weights = mlp44)
y45.predict <- monmlp.predict(x = x45.predict, weights = mlp45)
y46.predict <- monmlp.predict(x = x46.predict, weights = mlp46)
y47.predict <- monmlp.predict(x = x47.predict, weights = mlp47)
y48.predict <- monmlp.predict(x = x48.predict, weights = mlp48)
y49.predict <- monmlp.predict(x = x49.predict, weights = mlp49)
y50.predict <- monmlp.predict(x = x50.predict, weights = mlp50)
y51.predict <- monmlp.predict(x = x51.predict, weights = mlp51)
y52.predict <- monmlp.predict(x = x52.predict, weights = mlp52)
y53.predict <- monmlp.predict(x = x53.predict, weights = mlp53)
y54.predict <- monmlp.predict(x = x54.predict, weights = mlp54)
y55.predict <- monmlp.predict(x = x55.predict, weights = mlp55)
y56.predict <- monmlp.predict(x = x56.predict, weights = mlp56)
y57.predict <- monmlp.predict(x = x57.predict, weights = mlp57)
y58.predict <- monmlp.predict(x = x58.predict, weights = mlp58)
y59.predict <- monmlp.predict(x = x59.predict, weights = mlp59)
y60.predict <- monmlp.predict(x = x60.predict, weights = mlp60)
y61.predict <- monmlp.predict(x = x61.predict, weights = mlp61)
y62.predict <- monmlp.predict(x = x62.predict, weights = mlp62)
y63.predict <- monmlp.predict(x = x63.predict, weights = mlp63)
y64.predict <- monmlp.predict(x = x64.predict, weights = mlp64)
y65.predict <- monmlp.predict(x = x65.predict, weights = mlp65)
y66.predict <- monmlp.predict(x = x66.predict, weights = mlp66)
y67.predict <- monmlp.predict(x = x67.predict, weights = mlp67)
y68.predict <- monmlp.predict(x = x68.predict, weights = mlp68)
y69.predict <- monmlp.predict(x = x69.predict, weights = mlp69)
y70.predict <- monmlp.predict(x = x70.predict, weights = mlp70)
y71.predict <- monmlp.predict(x = x71.predict, weights = mlp71)
y72.predict <- monmlp.predict(x = x72.predict, weights = mlp72)
y73.predict <- monmlp.predict(x = x73.predict, weights = mlp73)
y74.predict <- monmlp.predict(x = x74.predict, weights = mlp74)
y75.predict <- monmlp.predict(x = x75.predict, weights = mlp75)
y76.predict <- monmlp.predict(x = x76.predict, weights = mlp76)
y101.predict <- fix01 + x101.predict %*% c01
y102.predict <- fix02 + x102.predict %*% c02
y103.predict <- fix03 + x103.predict %*% c03
y104.predict <- fix04 + x104.predict %*% c04
y105.predict <- fix05 + x105.predict %*% c05
y106.predict <- fix06 + x106.predict %*% c06
y107.predict <- fix07 + x107.predict %*% c07
y108.predict <- fix08 + x108.predict %*% c08
y109.predict <- fix09 + x109.predict %*% c09
y110.predict <- fix10 + x110.predict %*% c10
y111.predict <- fix11 + x111.predict %*% c11
y112.predict <- fix12 + x112.predict %*% c12
y113.predict <- fix13 + x113.predict %*% c13
y114.predict <- fix14 + x114.predict %*% c14
y115.predict <- fix15 + x115.predict %*% c15
y116.predict <- fix16 + x116.predict %*% c16
y117.predict <- fix17 + x117.predict %*% c17
y118.predict <- fix18 + x118.predict %*% c18
y119.predict <- fix19 + x119.predict %*% c19
gdp01.predict <- gdp[TESTset2]*(1+y01.predict/100)
gdp02.predict <- gdp[TESTset2]*(1+y02.predict/100)
gdp03.predict <- gdp[TESTset2]*(1+y03.predict/100)
gdp04.predict <- gdp[TESTset2]*(1+y04.predict/100)
gdp05.predict <- gdp[TESTset2]*(1+y05.predict/100)
gdp06.predict <- gdp[TESTset2]*(1+y06.predict/100)
gdp07.predict <- gdp[TESTset2]*(1+y07.predict/100)
gdp08.predict <- gdp[TESTset2]*(1+y08.predict/100)
gdp09.predict <- gdp[TESTset2]*(1+y09.predict/100)
gdp10.predict <- gdp[TESTset2]*(1+y10.predict/100)
gdp11.predict <- gdp[TESTset2]*(1+y11.predict/100)
gdp12.predict <- gdp[TESTset2]*(1+y12.predict/100)
gdp13.predict <- gdp[TESTset2]*(1+y13.predict/100)
gdp14.predict <- gdp[TESTset2]*(1+y14.predict/100)
gdp15.predict <- gdp[TESTset2]*(1+y15.predict/100)
gdp16.predict <- gdp[TESTset2]*(1+y16.predict/100)
gdp17.predict <- gdp[TESTset2]*(1+y17.predict/100)
gdp18.predict <- gdp[TESTset2]*(1+y18.predict/100)
gdp19.predict <- gdp[TESTset2]*(1+y19.predict/100)
gdp20.predict <- gdp[TESTset2]*(1+y20.predict/100)
gdp21.predict <- gdp[TESTset2]*(1+y21.predict/100)
gdp22.predict <- gdp[TESTset2]*(1+y22.predict/100)
gdp23.predict <- gdp[TESTset2]*(1+y23.predict/100)
gdp24.predict <- gdp[TESTset2]*(1+y24.predict/100)
gdp25.predict <- gdp[TESTset2]*(1+y25.predict/100)
gdp26.predict <- gdp[TESTset2]*(1+y26.predict/100)
gdp27.predict <- gdp[TESTset2]*(1+y27.predict/100)
gdp28.predict <- gdp[TESTset2]*(1+y28.predict/100)
gdp29.predict <- gdp[TESTset2]*(1+y29.predict/100)
gdp30.predict <- gdp[TESTset2]*(1+y30.predict/100)
gdp31.predict <- gdp[TESTset2]*(1+y31.predict/100)
gdp32.predict <- gdp[TESTset2]*(1+y32.predict/100)
gdp33.predict <- gdp[TESTset2]*(1+y33.predict/100)
gdp34.predict <- gdp[TESTset2]*(1+y34.predict/100)
gdp35.predict <- gdp[TESTset2]*(1+y35.predict/100)
gdp36.predict <- gdp[TESTset2]*(1+y36.predict/100)
gdp37.predict <- gdp[TESTset2]*(1+y37.predict/100)
gdp38.predict <- gdp[TESTset2]*(1+y38.predict/100)
gdp39.predict <- gdp[TESTset2]*(1+y39.predict/100)
gdp40.predict <- gdp[TESTset2]*(1+y40.predict/100)
gdp41.predict <- gdp[TESTset2]*(1+y41.predict/100)
gdp42.predict <- gdp[TESTset2]*(1+y42.predict/100)
gdp43.predict <- gdp[TESTset2]*(1+y43.predict/100)
gdp44.predict <- gdp[TESTset2]*(1+y44.predict/100)
gdp45.predict <- gdp[TESTset2]*(1+y45.predict/100)
gdp46.predict <- gdp[TESTset2]*(1+y46.predict/100)
gdp47.predict <- gdp[TESTset2]*(1+y47.predict/100)
gdp48.predict <- gdp[TESTset2]*(1+y48.predict/100)
gdp49.predict <- gdp[TESTset2]*(1+y49.predict/100)
gdp50.predict <- gdp[TESTset2]*(1+y50.predict/100)
gdp51.predict <- gdp[TESTset2]*(1+y51.predict/100)
gdp52.predict <- gdp[TESTset2]*(1+y52.predict/100)
gdp53.predict <- gdp[TESTset2]*(1+y53.predict/100)
gdp54.predict <- gdp[TESTset2]*(1+y54.predict/100)
gdp55.predict <- gdp[TESTset2]*(1+y55.predict/100)
gdp56.predict <- gdp[TESTset2]*(1+y56.predict/100)
gdp57.predict <- gdp[TESTset2]*(1+y57.predict/100)
gdp58.predict <- gdp[TESTset2]*(1+y58.predict/100)
gdp59.predict <- gdp[TESTset2]*(1+y59.predict/100)
gdp60.predict <- gdp[TESTset2]*(1+y60.predict/100)
gdp61.predict <- gdp[TESTset2]*(1+y61.predict/100)
gdp62.predict <- gdp[TESTset2]*(1+y62.predict/100)
gdp63.predict <- gdp[TESTset2]*(1+y63.predict/100)
gdp64.predict <- gdp[TESTset2]*(1+y64.predict/100)
gdp65.predict <- gdp[TESTset2]*(1+y65.predict/100)
gdp66.predict <- gdp[TESTset2]*(1+y66.predict/100)
gdp67.predict <- gdp[TESTset2]*(1+y67.predict/100)
gdp68.predict <- gdp[TESTset2]*(1+y68.predict/100)
gdp69.predict <- gdp[TESTset2]*(1+y69.predict/100)
gdp70.predict <- gdp[TESTset2]*(1+y70.predict/100)
gdp71.predict <- gdp[TESTset2]*(1+y71.predict/100)
gdp72.predict <- gdp[TESTset2]*(1+y72.predict/100)
gdp73.predict <- gdp[TESTset2]*(1+y73.predict/100)
gdp74.predict <- gdp[TESTset2]*(1+y74.predict/100)
gdp75.predict <- gdp[TESTset2]*(1+y75.predict/100)
gdp76.predict <- gdp[TESTset2]*(1+y76.predict/100)
gdp101.predict <- gdp[TESTset2]*(1+y101.predict/100)
gdp102.predict <- gdp[TESTset2]*(1+y102.predict/100)
gdp103.predict <- gdp[TESTset2]*(1+y103.predict/100)
gdp104.predict <- gdp[TESTset2]*(1+y104.predict/100)
gdp105.predict <- gdp[TESTset2]*(1+y105.predict/100)
gdp106.predict <- gdp[TESTset2]*(1+y106.predict/100)
gdp107.predict <- gdp[TESTset2]*(1+y107.predict/100)
gdp108.predict <- gdp[TESTset2]*(1+y108.predict/100)
gdp109.predict <- gdp[TESTset2]*(1+y109.predict/100)
gdp110.predict <- gdp[TESTset2]*(1+y110.predict/100)
gdp111.predict <- gdp[TESTset2]*(1+y111.predict/100)
gdp112.predict <- gdp[TESTset2]*(1+y112.predict/100)
gdp113.predict <- gdp[TESTset2]*(1+y113.predict/100)
gdp114.predict <- gdp[TESTset2]*(1+y114.predict/100)
gdp115.predict <- gdp[TESTset2]*(1+y115.predict/100)
gdp116.predict <- gdp[TESTset2]*(1+y116.predict/100)
gdp117.predict <- gdp[TESTset2]*(1+y117.predict/100)
gdp118.predict <- gdp[TESTset2]*(1+y118.predict/100)
gdp119.predict <- gdp[TESTset2]*(1+y119.predict/100)
gdp.01[TESTset] <- gdp01.predict
gdp.02[TESTset] <- gdp02.predict
gdp.03[TESTset] <- gdp03.predict
gdp.04[TESTset] <- gdp04.predict
gdp.05[TESTset] <- gdp05.predict
gdp.06[TESTset] <- gdp06.predict
gdp.07[TESTset] <- gdp07.predict
gdp.08[TESTset] <- gdp08.predict
gdp.09[TESTset] <- gdp09.predict
gdp.10[TESTset] <- gdp10.predict
gdp.11[TESTset] <- gdp11.predict
gdp.12[TESTset] <- gdp12.predict
gdp.13[TESTset] <- gdp13.predict
gdp.14[TESTset] <- gdp14.predict
gdp.15[TESTset] <- gdp15.predict
gdp.16[TESTset] <- gdp16.predict
gdp.17[TESTset] <- gdp17.predict
gdp.18[TESTset] <- gdp18.predict
gdp.19[TESTset] <- gdp19.predict
gdp.20[TESTset] <- gdp20.predict
gdp.21[TESTset] <- gdp21.predict
gdp.22[TESTset] <- gdp22.predict
gdp.23[TESTset] <- gdp23.predict
gdp.24[TESTset] <- gdp24.predict
gdp.25[TESTset] <- gdp25.predict
gdp.26[TESTset] <- gdp26.predict
gdp.27[TESTset] <- gdp27.predict
gdp.28[TESTset] <- gdp28.predict
gdp.29[TESTset] <- gdp29.predict
gdp.30[TESTset] <- gdp30.predict
gdp.31[TESTset] <- gdp31.predict
gdp.32[TESTset] <- gdp32.predict
gdp.33[TESTset] <- gdp33.predict
gdp.34[TESTset] <- gdp34.predict
gdp.35[TESTset] <- gdp35.predict
gdp.36[TESTset] <- gdp36.predict
gdp.37[TESTset] <- gdp37.predict
gdp.38[TESTset] <- gdp38.predict
gdp.39[TESTset] <- gdp39.predict
gdp.40[TESTset] <- gdp40.predict
gdp.41[TESTset] <- gdp41.predict
gdp.42[TESTset] <- gdp42.predict
gdp.43[TESTset] <- gdp43.predict
gdp.44[TESTset] <- gdp44.predict
gdp.45[TESTset] <- gdp45.predict
gdp.46[TESTset] <- gdp46.predict
gdp.47[TESTset] <- gdp47.predict
gdp.48[TESTset] <- gdp48.predict
gdp.49[TESTset] <- gdp49.predict
gdp.50[TESTset] <- gdp50.predict
gdp.51[TESTset] <- gdp51.predict
gdp.52[TESTset] <- gdp52.predict
gdp.53[TESTset] <- gdp53.predict
gdp.54[TESTset] <- gdp54.predict
gdp.55[TESTset] <- gdp55.predict
gdp.56[TESTset] <- gdp56.predict
gdp.57[TESTset] <- gdp57.predict
gdp.58[TESTset] <- gdp58.predict
gdp.59[TESTset] <- gdp59.predict
gdp.60[TESTset] <- gdp60.predict
gdp.61[TESTset] <- gdp61.predict
gdp.62[TESTset] <- gdp62.predict
gdp.63[TESTset] <- gdp63.predict
gdp.64[TESTset] <- gdp64.predict
gdp.65[TESTset] <- gdp65.predict
gdp.66[TESTset] <- gdp66.predict
gdp.67[TESTset] <- gdp67.predict
gdp.68[TESTset] <- gdp68.predict
gdp.69[TESTset] <- gdp69.predict
gdp.70[TESTset] <- gdp70.predict
gdp.71[TESTset] <- gdp71.predict
gdp.72[TESTset] <- gdp72.predict
gdp.73[TESTset] <- gdp73.predict
gdp.74[TESTset] <- gdp74.predict
gdp.75[TESTset] <- gdp75.predict
gdp.76[TESTset] <- gdp76.predict
gdp.101[TESTset] <- gdp101.predict
gdp.102[TESTset] <- gdp102.predict
gdp.103[TESTset] <- gdp103.predict
gdp.104[TESTset] <- gdp104.predict
gdp.105[TESTset] <- gdp105.predict
gdp.106[TESTset] <- gdp106.predict
gdp.107[TESTset] <- gdp107.predict
gdp.108[TESTset] <- gdp108.predict
gdp.109[TESTset] <- gdp109.predict
gdp.110[TESTset] <- gdp110.predict
gdp.111[TESTset] <- gdp111.predict
gdp.112[TESTset] <- gdp112.predict
gdp.113[TESTset] <- gdp113.predict
gdp.114[TESTset] <- gdp114.predict
gdp.115[TESTset] <- gdp115.predict
gdp.116[TESTset] <- gdp116.predict
gdp.117[TESTset] <- gdp117.predict
gdp.118[TESTset] <- gdp118.predict
gdp.119[TESTset] <- gdp119.predict
MAPPE[1,(j+1)] <- mean(abs(1-gdp01.predict/gdp.actual))
MAPPE[2,(j+1)] <- mean(abs(1-gdp02.predict/gdp.actual))
MAPPE[3,(j+1)] <- mean(abs(1-gdp03.predict/gdp.actual))
MAPPE[4,(j+1)] <- mean(abs(1-gdp04.predict/gdp.actual))
MAPPE[5,(j+1)] <- mean(abs(1-gdp05.predict/gdp.actual))
MAPPE[6,(j+1)] <- mean(abs(1-gdp06.predict/gdp.actual))
MAPPE[7,(j+1)] <- mean(abs(1-gdp07.predict/gdp.actual))
MAPPE[8,(j+1)] <- mean(abs(1-gdp08.predict/gdp.actual))
MAPPE[9,(j+1)] <- mean(abs(1-gdp09.predict/gdp.actual))
MAPPE[10,(j+1)] <- mean(abs(1-gdp10.predict/gdp.actual))
MAPPE[11,(j+1)] <- mean(abs(1-gdp11.predict/gdp.actual))
MAPPE[12,(j+1)] <- mean(abs(1-gdp12.predict/gdp.actual))
MAPPE[13,(j+1)] <- mean(abs(1-gdp13.predict/gdp.actual))
MAPPE[14,(j+1)] <- mean(abs(1-gdp14.predict/gdp.actual))
MAPPE[15,(j+1)] <- mean(abs(1-gdp15.predict/gdp.actual))
MAPPE[16,(j+1)] <- mean(abs(1-gdp16.predict/gdp.actual))
MAPPE[17,(j+1)] <- mean(abs(1-gdp17.predict/gdp.actual))
MAPPE[18,(j+1)] <- mean(abs(1-gdp18.predict/gdp.actual))
MAPPE[19,(j+1)] <- mean(abs(1-gdp19.predict/gdp.actual))
MAPPE[20,(j+1)] <- mean(abs(1-gdp20.predict/gdp.actual))
MAPPE[21,(j+1)] <- mean(abs(1-gdp21.predict/gdp.actual))
MAPPE[22,(j+1)] <- mean(abs(1-gdp22.predict/gdp.actual))
MAPPE[23,(j+1)] <- mean(abs(1-gdp23.predict/gdp.actual))
MAPPE[24,(j+1)] <- mean(abs(1-gdp24.predict/gdp.actual))
MAPPE[25,(j+1)] <- mean(abs(1-gdp25.predict/gdp.actual))
MAPPE[26,(j+1)] <- mean(abs(1-gdp26.predict/gdp.actual))
MAPPE[27,(j+1)] <- mean(abs(1-gdp27.predict/gdp.actual))
MAPPE[28,(j+1)] <- mean(abs(1-gdp28.predict/gdp.actual))
MAPPE[29,(j+1)] <- mean(abs(1-gdp29.predict/gdp.actual))
MAPPE[30,(j+1)] <- mean(abs(1-gdp30.predict/gdp.actual))
MAPPE[31,(j+1)] <- mean(abs(1-gdp31.predict/gdp.actual))
MAPPE[32,(j+1)] <- mean(abs(1-gdp32.predict/gdp.actual))
MAPPE[33,(j+1)] <- mean(abs(1-gdp33.predict/gdp.actual))
MAPPE[34,(j+1)] <- mean(abs(1-gdp34.predict/gdp.actual))
MAPPE[35,(j+1)] <- mean(abs(1-gdp35.predict/gdp.actual))
MAPPE[36,(j+1)] <- mean(abs(1-gdp36.predict/gdp.actual))
MAPPE[37,(j+1)] <- mean(abs(1-gdp37.predict/gdp.actual))
MAPPE[38,(j+1)] <- mean(abs(1-gdp38.predict/gdp.actual))
MAPPE[39,(j+1)] <- mean(abs(1-gdp39.predict/gdp.actual))
MAPPE[40,(j+1)] <- mean(abs(1-gdp40.predict/gdp.actual))
MAPPE[41,(j+1)] <- mean(abs(1-gdp41.predict/gdp.actual))
MAPPE[42,(j+1)] <- mean(abs(1-gdp42.predict/gdp.actual))
MAPPE[43,(j+1)] <- mean(abs(1-gdp43.predict/gdp.actual))
MAPPE[44,(j+1)] <- mean(abs(1-gdp44.predict/gdp.actual))
MAPPE[45,(j+1)] <- mean(abs(1-gdp45.predict/gdp.actual))
MAPPE[46,(j+1)] <- mean(abs(1-gdp46.predict/gdp.actual))
MAPPE[47,(j+1)] <- mean(abs(1-gdp47.predict/gdp.actual))
MAPPE[48,(j+1)] <- mean(abs(1-gdp48.predict/gdp.actual))
MAPPE[49,(j+1)] <- mean(abs(1-gdp49.predict/gdp.actual))
MAPPE[50,(j+1)] <- mean(abs(1-gdp50.predict/gdp.actual))
MAPPE[51,(j+1)] <- mean(abs(1-gdp51.predict/gdp.actual))
MAPPE[52,(j+1)] <- mean(abs(1-gdp52.predict/gdp.actual))
MAPPE[53,(j+1)] <- mean(abs(1-gdp53.predict/gdp.actual))
MAPPE[54,(j+1)] <- mean(abs(1-gdp54.predict/gdp.actual))
MAPPE[55,(j+1)] <- mean(abs(1-gdp55.predict/gdp.actual))
MAPPE[56,(j+1)] <- mean(abs(1-gdp56.predict/gdp.actual))
MAPPE[57,(j+1)] <- mean(abs(1-gdp57.predict/gdp.actual))
MAPPE[58,(j+1)] <- mean(abs(1-gdp58.predict/gdp.actual))
MAPPE[59,(j+1)] <- mean(abs(1-gdp59.predict/gdp.actual))
MAPPE[60,(j+1)] <- mean(abs(1-gdp60.predict/gdp.actual))
MAPPE[61,(j+1)] <- mean(abs(1-gdp61.predict/gdp.actual))
MAPPE[62,(j+1)] <- mean(abs(1-gdp62.predict/gdp.actual))
MAPPE[63,(j+1)] <- mean(abs(1-gdp63.predict/gdp.actual))
MAPPE[64,(j+1)] <- mean(abs(1-gdp64.predict/gdp.actual))
MAPPE[65,(j+1)] <- mean(abs(1-gdp65.predict/gdp.actual))
MAPPE[66,(j+1)] <- mean(abs(1-gdp66.predict/gdp.actual))
MAPPE[67,(j+1)] <- mean(abs(1-gdp67.predict/gdp.actual))
MAPPE[68,(j+1)] <- mean(abs(1-gdp68.predict/gdp.actual))
MAPPE[69,(j+1)] <- mean(abs(1-gdp69.predict/gdp.actual))
MAPPE[70,(j+1)] <- mean(abs(1-gdp70.predict/gdp.actual))
MAPPE[71,(j+1)] <- mean(abs(1-gdp71.predict/gdp.actual))
MAPPE[72,(j+1)] <- mean(abs(1-gdp72.predict/gdp.actual))
MAPPE[73,(j+1)] <- mean(abs(1-gdp73.predict/gdp.actual))
MAPPE[74,(j+1)] <- mean(abs(1-gdp74.predict/gdp.actual))
MAPPE[75,(j+1)] <- mean(abs(1-gdp75.predict/gdp.actual))
MAPPE[76,(j+1)] <- mean(abs(1-gdp76.predict/gdp.actual))
MAPPE[101,(j+1)] <- mean(abs(1-gdp101.predict/gdp.actual))
MAPPE[102,(j+1)] <- mean(abs(1-gdp102.predict/gdp.actual))
MAPPE[103,(j+1)] <- mean(abs(1-gdp103.predict/gdp.actual))
MAPPE[104,(j+1)] <- mean(abs(1-gdp104.predict/gdp.actual))
MAPPE[105,(j+1)] <- mean(abs(1-gdp105.predict/gdp.actual))
MAPPE[106,(j+1)] <- mean(abs(1-gdp106.predict/gdp.actual))
MAPPE[107,(j+1)] <- mean(abs(1-gdp107.predict/gdp.actual))
MAPPE[108,(j+1)] <- mean(abs(1-gdp108.predict/gdp.actual))
MAPPE[109,(j+1)] <- mean(abs(1-gdp109.predict/gdp.actual))
MAPPE[110,(j+1)] <- mean(abs(1-gdp110.predict/gdp.actual))
MAPPE[111,(j+1)] <- mean(abs(1-gdp111.predict/gdp.actual))
MAPPE[112,(j+1)] <- mean(abs(1-gdp112.predict/gdp.actual))
MAPPE[113,(j+1)] <- mean(abs(1-gdp113.predict/gdp.actual))
MAPPE[114,(j+1)] <- mean(abs(1-gdp114.predict/gdp.actual))
MAPPE[115,(j+1)] <- mean(abs(1-gdp115.predict/gdp.actual))
MAPPE[116,(j+1)] <- mean(abs(1-gdp116.predict/gdp.actual))
MAPPE[117,(j+1)] <- mean(abs(1-gdp117.predict/gdp.actual))
MAPPE[118,(j+1)] <- mean(abs(1-gdp118.predict/gdp.actual))
MAPPE[119,(j+1)] <- mean(abs(1-gdp119.predict/gdp.actual))
sPPE[1,(j+1)] <- 1-sum(gdp01.predict)/sum(gdp.actual)
sPPE[2,(j+1)] <- 1-sum(gdp02.predict)/sum(gdp.actual)
sPPE[3,(j+1)] <- 1-sum(gdp03.predict)/sum(gdp.actual)
sPPE[4,(j+1)] <- 1-sum(gdp04.predict)/sum(gdp.actual)
sPPE[5,(j+1)] <- 1-sum(gdp05.predict)/sum(gdp.actual)
sPPE[6,(j+1)] <- 1-sum(gdp06.predict)/sum(gdp.actual)
sPPE[7,(j+1)] <- 1-sum(gdp07.predict)/sum(gdp.actual)
sPPE[8,(j+1)] <- 1-sum(gdp08.predict)/sum(gdp.actual)
sPPE[9,(j+1)] <- 1-sum(gdp09.predict)/sum(gdp.actual)
sPPE[10,(j+1)] <- 1-sum(gdp10.predict)/sum(gdp.actual)
sPPE[11,(j+1)] <- 1-sum(gdp11.predict)/sum(gdp.actual)
sPPE[12,(j+1)] <- 1-sum(gdp12.predict)/sum(gdp.actual)
sPPE[13,(j+1)] <- 1-sum(gdp13.predict)/sum(gdp.actual)
sPPE[14,(j+1)] <- 1-sum(gdp14.predict)/sum(gdp.actual)
sPPE[15,(j+1)] <- 1-sum(gdp15.predict)/sum(gdp.actual)
sPPE[16,(j+1)] <- 1-sum(gdp16.predict)/sum(gdp.actual)
sPPE[17,(j+1)] <- 1-sum(gdp17.predict)/sum(gdp.actual)
sPPE[18,(j+1)] <- 1-sum(gdp18.predict)/sum(gdp.actual)
sPPE[19,(j+1)] <- 1-sum(gdp19.predict)/sum(gdp.actual)
sPPE[20,(j+1)] <- 1-sum(gdp20.predict)/sum(gdp.actual)
sPPE[21,(j+1)] <- 1-sum(gdp21.predict)/sum(gdp.actual)
sPPE[22,(j+1)] <- 1-sum(gdp22.predict)/sum(gdp.actual)
sPPE[23,(j+1)] <- 1-sum(gdp23.predict)/sum(gdp.actual)
sPPE[24,(j+1)] <- 1-sum(gdp24.predict)/sum(gdp.actual)
sPPE[25,(j+1)] <- 1-sum(gdp25.predict)/sum(gdp.actual)
sPPE[26,(j+1)] <- 1-sum(gdp26.predict)/sum(gdp.actual)
sPPE[27,(j+1)] <- 1-sum(gdp27.predict)/sum(gdp.actual)
sPPE[28,(j+1)] <- 1-sum(gdp28.predict)/sum(gdp.actual)
sPPE[29,(j+1)] <- 1-sum(gdp29.predict)/sum(gdp.actual)
sPPE[30,(j+1)] <- 1-sum(gdp30.predict)/sum(gdp.actual)
sPPE[31,(j+1)] <- 1-sum(gdp31.predict)/sum(gdp.actual)
sPPE[32,(j+1)] <- 1-sum(gdp32.predict)/sum(gdp.actual)
sPPE[33,(j+1)] <- 1-sum(gdp33.predict)/sum(gdp.actual)
sPPE[34,(j+1)] <- 1-sum(gdp34.predict)/sum(gdp.actual)
sPPE[35,(j+1)] <- 1-sum(gdp35.predict)/sum(gdp.actual)
sPPE[36,(j+1)] <- 1-sum(gdp36.predict)/sum(gdp.actual)
sPPE[37,(j+1)] <- 1-sum(gdp37.predict)/sum(gdp.actual)
sPPE[38,(j+1)] <- 1-sum(gdp38.predict)/sum(gdp.actual)
sPPE[39,(j+1)] <- 1-sum(gdp39.predict)/sum(gdp.actual)
sPPE[40,(j+1)] <- 1-sum(gdp40.predict)/sum(gdp.actual)
sPPE[41,(j+1)] <- 1-sum(gdp41.predict)/sum(gdp.actual)
sPPE[42,(j+1)] <- 1-sum(gdp42.predict)/sum(gdp.actual)
sPPE[43,(j+1)] <- 1-sum(gdp43.predict)/sum(gdp.actual)
sPPE[44,(j+1)] <- 1-sum(gdp44.predict)/sum(gdp.actual)
sPPE[45,(j+1)] <- 1-sum(gdp45.predict)/sum(gdp.actual)
sPPE[46,(j+1)] <- 1-sum(gdp46.predict)/sum(gdp.actual)
Подобные документы
Расчет основных характеристик рядов динамики показателей денежного обращения в России. Выявление тенденций показателей денежного обращения на основе метода аналитического выравнивания и прогнозирования. Построение динамических регрессионных моделей.
курсовая работа [322,9 K], добавлен 23.10.2014Необходимость применения достоверного прогноза на базе методов и моделей научного прогнозирования для эффективного регулирования экономики. Описание основных методов и моделей экономического прогнозирования, представляющих экономико-политический интерес.
реферат [13,0 K], добавлен 11.04.2010Анализ социально-экономического развития Российской Федерации. Построение экономических моделей. Оценка объектов собственности. Прогнозы развития моделей смешанной экономики. Основные направления развития российской смешанной экономической системы.
курсовая работа [691,9 K], добавлен 26.08.2017Обзор математических моделей финансовых пирамид. Анализ модели динамики финансовых пузырей Чернавского. Обзор модели долгосрочного социально-экономического прогнозирования. Оценка приоритета простых моделей. Вывод математической модели макроэкономики.
курсовая работа [1,7 M], добавлен 27.11.2017Основные понятия прогнозирования и нейронных сетей, описание принципов их работы. Общая характеристика методов прогнозирования. Анализ проблемы организации сбыта на предприятии ООО "Славянка". Прогноз экономических показателей сбыта различными методами.
курсовая работа [1009,1 K], добавлен 18.10.2011Методические рекомендации и задания по установлению общей тенденции развития явления во времени и по определению прогнозных значений ряда динамики на основе выявленного тренда. Составление надежных прогнозов развития социально-экономических явлений.
методичка [64,2 K], добавлен 15.11.2010Анализ системы показателей, характеризующих как адекватность модели, так и ее точность; определение абсолютной и средней ошибок прогноза. Основные показатели динамики экономических явлений, использование средних значений для сглаживания временных рядов.
контрольная работа [16,7 K], добавлен 13.08.2010Задачи, классификация, этапы и принципы прогнозов, сущность системного подхода. Характеристика методов экономического прогнозирования, его информационное обеспечение. Методические приемы использования типовых прогнозов, суть регрессионного анализа.
учебное пособие [2,5 M], добавлен 22.06.2012Составление прогноза показателей производственно-хозяйственной деятельности, определение точности прогнозов, линейные функции. Использование статистических методов анализа, базирующихся на сборе и обработке данных, при описании и анализе информации.
практическая работа [59,2 K], добавлен 16.09.2010Моделирование односекторной экономической системы. Построение графической, статистической и динамической моделей. Графики погашения внешних инвестиций. Моделирование двухсекторной экономической системы. Архитектура системы. Спецификация данных модели.
дипломная работа [1023,8 K], добавлен 16.12.2012