Обобщенный метод наименьших квадратов

Цели применения к преобразованным данным обобщенного метода наименьших квадратов. Регрессионные модели с переменной структурой (фиктивные переменные). Анализ применения фиктивных переменных для функции спроса. Уравнение регрессии с фиктивными переменными.

Рубрика Экономика и экономическая теория
Предмет Эконометрика
Вид лекция
Язык русский
Прислал(а) incognito
Дата добавления 25.04.2015
Размер файла 105,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Сущность и применение метода наименьших квадратов для однофакторной линейной регрессии. Нахождение коэффициента эластичности для указанной модели в заданной точке X и его экономический анализ. Прогноз убыточности на основании линейной регрессии.

    контрольная работа [47,3 K], добавлен 15.06.2009

  • Характеристика двухшагового метода наименьших квадратов для решения систем эконометрических уравнений. Способы оценки неизвестных параметров регрессионных моделей по выборочным данным. Знакомство с особенностями системы эконометрических уравнений.

    курсовая работа [593,8 K], добавлен 04.06.2015

  • Изучение понятий общей эконометрики. Сущность классической и обобщенной моделей линейной регрессии. Анализ методов наименьших квадратов, временных рядов и системы одновременных уравнений. Многомерная регрессия: мультиколлинеарность, фиктивные переменные.

    книга [26,6 M], добавлен 19.05.2010

  • Общий вид искомой модели, нахождению структурных коэффициентов. Ранг матрицы системы, число эндогенных переменных, достаточное условие индентифицируемости системы. Применение косвенного метода наименьших квадратов, выражение переменные через отклонения.

    контрольная работа [33,1 K], добавлен 15.10.2009

  • Основы построения регрессионных моделей: метод наименьших квадратов; двухмерная линейная концепция корреляционного и регрессионного анализа. Показатели статистической обработки информации: дисперсия, математическое ожидание и стандартное отклонение.

    контрольная работа [80,8 K], добавлен 27.11.2012

  • Основы линейного регрессионного анализа. Особенности использования функции Кобба-Дугласа. Применение множественной линейной регрессии. Сущность метода наименьших квадратов. Пути избегания ложной корреляции. Проверка значимости коэффициентов регрессии.

    реферат [101,8 K], добавлен 31.10.2009

  • Порядок проведения проверки статистических гипотез. Проверка однородности результатов эксперимента в целях исключения грубых ошибок. Расчет теоретических частот для нормального распределения. Уравнение линейной регрессии и метод наименьших квадратов.

    курсовая работа [349,5 K], добавлен 09.01.2011

  • Методика оценки вероятности банкротства в модели Альтмана. Расчет индекса кредитоспособности применительно к российским условиям. Параметры уравнения регрессии методом наименьших квадратов. Оценка адекватности финансовых политик состояниям экономики.

    курсовая работа [74,6 K], добавлен 08.01.2010

  • Статистический метод исследования влияния нескольких независимых переменных на зависимую переменную, определение их вклада в ее вариацию. Связь между несколькими независимыми переменными. Цели регрессионного анализа. Уравнение многомерной регрессии.

    презентация [122,6 K], добавлен 17.12.2012

  • Временной ряд и его основные элементы. Автокорреляция уровней временного ряда и выявление структуры. Моделирование тенденции временного ряда. Метод наименьших квадратов. Приведение уравнения тренда к линейному виду. Оценка параметров уравнения регрессии.

    контрольная работа [95,7 K], добавлен 25.02.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.