Методы социально-экономического прогнозирования

Методы прогнозирования (предсказания, экстраполяции), используемые в социально-экономической области. Простейшие методы восстановления используемых для прогнозирования зависимостей. Подходы к управлению рисками. Экспертные методы прогнозирования.

Рубрика Экономика и экономическая теория
Вид лекция
Язык русский
Дата добавления 12.09.2013
Размер файла 46,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Обычно можно выделить множество допустимых управляющих воздействий, описываемое с помощью соответствующего множества параметров управления. Тогда указанная выше возможность влиять на те характеристики риска, которые определяют степень достижения цели, формализуется как выбор значения управляющего параметра. При этом управляющий параметр может быть числом, вектором, быть элементом конечного множества или иметь более сложную математическую природу.

Основная проблема - корректная формулировка цели управления рисками. Поскольку существует целый спектр различных характеристик риска (например, если потери от риска моделируются случайной величиной), то оптимизация управления риском сводится к решению задачи многокритериальной оптимизации. Например, естественной является задача одновременной минимизации среднего ущерба (математического ожидания ущерба) и разброса ущерба (дисперсии ущерба).

Как известно, для любой многокритериальной задачи целесообразно рассмотреть множество решений (т.е. значений параметра управления), оптимальных по Парето. Эти решения оптимальны в том смысле, что не существует возможных решений, которые бы превосходили бы Парето-оптимальные решения одновременно по всем критериям. Точнее, превосходили бы хотя бы по одному критерию, а по остальным были бы столь же хорошими. Теория Парето - оптимальных решений хорошо развита (см., например, монографию [19]).

Ясно, что для практической реализации надо выбирать одно из Парето - оптимальных решений. Как выбирать? Разработан целый спектр подходов, из которых выбор может быть сделан только субъективным образом. Таким образом, снова возникает необходимость применения методов экспертных оценок.

Эксперты могут выбирать непосредственно из множества Парето - оптимальных решений, если оно состоит лишь из нескольких элементов. Или же они могут выбирать ту или иную процедуру сведения многокритериальной задачи к однокритериальной.

Как пытаются решать многокритериальные задачи? Один из подходов - выбрать т.н. «главный критерий», по которому проводить оптимизацию, превратив остальные критерии в ограничения. Например, минимизировать средний ущерб, потребовав, чтобы дисперсия ущерба не превосходила заданной величины.

Иногда задача многокритериальной оптимизации допускает декомпозицию. Найдя оптимальное значение для главного критерия, можно рассмотреть область возможных значений для остальных критериев, выбрать из них второй по важности и оптимизировать по нему, и т.д.

Что же делают эксперты? Они выбирают главный критерий (или упорядочивают критерии по степени важности), задают численные значения ограничений, иногда точность или время вычислений.

Второй основной подход - это свертка многих критериев в один интегральный и переход к оптимизации по одному критерию. Например, рассматривают линейную комбинацию критериев. Строго говоря, метод «главного критерия» - один из вариантов свертки, в котором вес главного критерия равен 1, а веса остальных - 0. Построение свертки, в частности, задание весов, целесообразно осуществлять экспертными методами.

Используют также методы, основанные на соображениях устойчивости (наиболее общий подход к изучению устойчивости рассмотрен в монографии [12]). При этом рассматривают область значений управляющих параметров, в которых значение оптимизируемого одномерного критерия (главного параметра или свертки) отличается от оптимального не более чем на некоторую заданную малую величину. Такая область может быть достаточно обширной. Например, если в линейном программировании одна из граней многогранника, выделенного ограничениями, почти параллельна плоскости равных значений оптимизируемого критерия, то вся эта грань войдет в рассматриваемую область. В выделенной области можно провести оптимизацию другого параметра, и т.д. При таком подходе эксперты выбирают допустимое отклонение для основного критерия, выделяют второй критерий, задают ограничения и т.д.

Отметим, что рассмотренные выше вероятностно-статистические подходы к оцениванию рисков предполагают использование в качестве критериев таких характеристик случайной величины, как математическое ожидание, медиана, квантили, дисперсия и др. Эти характеристики определяются функцией распределения случайного ущерба, соответствующего рассматриваемому риску. При практическом использовании этого подхода перечисленные характеристики оцениваются по статистическим данным. Они оцениваются по выборке, состоящей из наблюденных величин ущерба. Согласно правилам главы 4 при этом необходимо вычислять доверительные интервалы, содержащие оцениваемые теоретические характеристики с заданной доверительной вероятностью. Таким образом, критерий, на использовании которого основана оптимизация, всегда определен лишь с некоторой точностью, а именно, лишь с точностью до полудлины доверительного интервала. Таким образом, мы приходим к постановке, рассмотренной в предыдущем абзаце.

Необходимо обратить внимание на существенное изменение ситуации в области вычислительной оптимизации за последние 40 лет. Если в 1960-е годы из-за маломощности тогдашних компьютеров большое значение имела разработка быстрых методов счета, то в настоящее время внимание переносится на постановки задач и интерпретацию результатов. По нашим наблюдениям, это объясняется не только наличием различных программных продуктов по оптимизации, но и тем, что почти любую практическую задачу оптимизации можно решить простейшими методами типа переборных (перебирая возможные значения управляющих параметров с маленьким шагом), либо методом случайного поиска, поскольку быстродействие современных компьютеров позволяет это сделать.


Используемая литература

1.  Бестужев-Лада И.В. Окно в будущее: Современные проблемы социального прогнозирования. - М.: Мысль, 1970. - 269 с.

2.  Гаврилец Ю.Н. Социально-экономическое планирование: Системы и модели. - М.: Экономика, 1974. - 174 с.

3.  Загоруйко Н.Г. Эмпирическое предсказание. - Новосибирск: Наука, 1979. - 124 с.

4.  Нейлор Т. Машинные имитационные эксперименты с моделями экономических систем. - М.: Мир, 1975.

5.  Сидельников Ю.В. Теория и организация экспертного прогнозирования. - М.: ИМЭМО АН СССР, 1990. - 196 с.

6.  Тейл Г. Эконометрические прогнозы и принятие решений. - М.: Статистика, 1971. - 488 с.

7.  Френкель А.А. Математические методы анализа динамики и прогнозирования производительности труда. - М.: Экономика, 1972. - 190 с.

8.  Четыркин Е.М. Статистические методы прогнозирования. - М.: Статистика, 1977.

9.  Янч Э. Прогнозирование научно-технического прогресса. - М.: Прогресс, 1990. - 568 с.

10.  Орлов А.И. Задачи оптимизации и нечеткие переменные. - М.: Знание, 1980. - 64 с.

11.  Жихарев В.Н., Орлов А.И. Законы больших чисел и состоятельность статистических оценок в пространствах произвольной природы. - В сб.: Статистические методы оценивания и проверки гипотез. Межвузовский сборник научных трудов. - Пермь: Изд-во Пермского государственного университета, 1998. С.65-84.

12.  Орлов А.И. Устойчивость в социально-экономических моделях. - М.: Наука, 1979. - 296 с.

13.  Орлов А.И. Сценарии социально-экономического развития России до 2007 г. - Журнал «Обозреватель-Observer». 1999. No.10 (117). С.47-50.

14.  Пиндайк Р., Рубинфельд Д. Микроэкономика. - М.: "Экономика" - "Дело", 1992.

15.  Орлов А.И. О перестройке статистической науки и ее применений - Вестник статистики, 1990, № 1, с.65-71.

16.  Макконнелл К.Р., Брю С.Л. Экономикс: Принципы, проблемы и политика. В 2 т.: Пер. с англ. 11-го изд. - М.: Республика, 1992.

17.  Первозванский А.А., Первозванская Т.Н. Финансовый рынок: расчет и риск. - М.: Инфра-М, 1994.

18.  Четыркин Е.М. Методы экономических расчетов. - М.: Гамма, 1992.

19.  Подиновский В.В., Ногин В.Д. Парето-оптимальные решения многокритериальных задач. - М.: Наука, 1982.

Размещено на Allbest.ru


Подобные документы

  • Прогноз как форма научного предвидения и основные подходы к исследованию объекта прогнозирования. Наука о принципах, методах и средствах научного прогнозирования – прогностика. Методология прогнозирования развития социально-экономической системы страны.

    реферат [54,0 K], добавлен 26.02.2009

  • Теория прогнозирования и планирования экономики. Классификация прогнозов и планов. Курса действий над управляемой системой как цель экономического планирования. Простые и комплексные методы прогнозирования. Методы экстраполяции и экспертных оценок.

    контрольная работа [86,7 K], добавлен 16.04.2009

  • Классификация методов прогнозирования. Характеристика поискового и нормативного прогнозов. Сущность и цель методов экстраполяции и методов информационного моделирования. Сущность интуитивных методов прогнозирования и особенности экспертных оценок.

    реферат [20,4 K], добавлен 10.01.2012

  • Роль прогнозирования в США. Процесс разработки макроэкономических прогнозов в Соединенных Штатах. Антикризисная программа США. Основные методы прогнозирования, используемые на государственном уровне в США. Модель круговых потоков в закрытой экономике.

    реферат [42,7 K], добавлен 15.05.2010

  • Рассмотрение прогноза показателей социально-экономического развития России. Обобщение методов планирования и прогнозирования в экономике. Изучение применения методов планирования и прогнозирования на макроуровне. Прогноз развития сектора экономики.

    курсовая работа [44,5 K], добавлен 26.08.2017

  • Методы экстраполяции и моделирования как формализованные методы прогнозирования. Прогноз динамики изменения объема выпускаемой продукции предприятия за счет получения краткосрочного кредита под оборотные активы, финансовой устойчивости предприятия.

    контрольная работа [106,3 K], добавлен 24.02.2010

  • Характеристика понятий экономического роста и динамики общественного производства. Анализ объектов прогнозирования экономического роста: макроэкономические цели, показатели и счета. Изучение методики и системы прогнозирования национальной экономики в РФ.

    курсовая работа [55,5 K], добавлен 04.04.2011

  • Теоретические аспекты прогнозирования и планирования на предприятии. Классификация прогнозов и планов на предприятии, основных методов осуществления прогнозирования и планирования. Практическая реализация выбранного метода планирования и прогнозирования.

    курсовая работа [234,6 K], добавлен 07.10.2014

  • Понятие социально-экономической системы и методы ее прогнозирования. Прогнозирование динамики ВРП и численности населения Беларуси методами разработки сценария и экстраполяции. Анализ социально-экономического развития России и Беларуси в 2004-2007 годах.

    курсовая работа [158,2 K], добавлен 22.11.2009

  • Классификация основных видов и методов прогнозирования. Фактографические и статистические методы. Историческая и математическая аналогия. Практическое применение методов прогнозирования на примере группы компаний ООО "Аэроэкспресс", экстраполяция.

    курсовая работа [713,1 K], добавлен 16.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.