Основы статистики

Фиксация совокупности признаков изучаемого объекта с упорядочиванием их в определенную числовую систему. Классификация измерительных шкал. Построение частотного ряда. Функции плотности вероятности. Нахождение моды и медианы в дискретном вариационном ряду.

Рубрика Экономика и экономическая теория
Вид шпаргалка
Язык русский
Дата добавления 12.02.2012
Размер файла 1,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

5. Определить эмпирическое значение L по формуле:

где Ti - сумма рангов по данному условию;

j - порядковый номер, приписанный данному условию в упорядоченной последовательности условий.

6. По Ta6A.VIII Приложения 1 определить критические значения L для данного количества испытуемых п и данного количества условий с. Если Lэмп равен критическому значению или превышает его, тенденция достоверна.

Бил №17

Первоначальное значение термина "корреляции" - взаимная связь (Oxford Advanced Learner's Dictionary of Current English, 1982). Когда говорят о корреляции, используют термины "корреляционная связь" и "корреляционная зависимость".

Корреляционная связь - это согласованные изменения двух признаков или большего количества признаков (множественная корреляционная связь). Корреляционная связь отражает тот факт, что изменчивость одного признака находится в некотором соответствии с изменчивостью другого (Плохинский Н.А., 1970, с. 40). "Стохастическая связь имеется тогда, когда каждому из значений одной случайной величины соответствует специфическое (условное) распределение вероятностей значений другой величины, и наоборот, каждому из значений этой другой величины соответствует специфическое (условное) распределение вероятностей значений первой случайной величины" (Суходольский Г.В., 1972, с. 178).

Корреляционная зависимость - это изменения, которые вносят значения одного признака в вероятность появления разных значений другого признака.

Оба термина - корреляционная связь и корреляционная зависимость - часто используются как синонимы. Между тем, согласованные изменения признаков и отражающая это корреляционная связь между ними может свидетельствовать не о зависимости этих признаков между собой, а зависимости обоих этих признаков от какого-то третьего признака или сочетания признаков, не рассматриваемых в исследовании.

Учитывая, что термин "зависимость" явно или неявно подразумевает влияние, лучше пользоваться более нейтральным термином "корреляционная связь".

Корреляционные связи различаются по форме, направлению и степени (силе).

По форме корреляционная связь может быть прямолинейной или криволинейной. Прямолинейной может быть, например, связь между количеством тренировок на тренажере и количеством правильно решаемых задач в контрольной сессии. Криволинейной может быть, например, связь между уровнем мотивации и эффективностью выполнения задачи (см. Рис. 6.1). При повышении мотивации эффективность выполнения задачи сначала возрастает, затем достигается оптимальный уровень мотивации, которому соответствует максимальная эффективность выполнения задачи; дальнейшему повышению мотивации сопутствует уже снижение эффективности.

По направлению корреляционная связь может быть положительной ("прямой") и отрицательной ("обратной"). При положительной прямолинейной корреляции более высоким значениям одного признака соответствуют более высокие значения другого, а более низким значениям одного признака - низкие значения другого. При отрицательной корреляции соотношения обратные.

При положительной корреляции коэффициент корреляции имеет положительный знак, например r=+0,207, при отрицательной корреляции - отрицательный знак, например r=--0,207.

Степень, сила или теснота корреляционной связи определяется по величине коэффициента корреляции.

Сила связи не зависит от ее направленности и определяется по абсолютному значению коэффициента корреляции. Максимальное возможное абсолютное значение коэффициента корреляции r=1,00; минимальное r=0.

Используется две системы классификации корреляционных связей по их силе: общая и частная. Общая классификация корреляционных связей (по Ивантер Э.В., Коросову А.В., 1992):

1) сильная, или тесная при коэффициенте корреляции r>0,70;

2) средняя при 0,50<r<0,69;

3) умеренная при 0,30<r<0,49;

4) слабая при 0,20<r<0,29;

5) очень слабая при r<0,19.

Частная классификация корреляционных связей:

1) высокая значимая корреляция при г, соответствующем уровню статистической значимости р<0,01;

2) значимая корреляция при г, соответствующем уровню статистической значимости р<0,05;

3) тенденция достоверной связи при г, соответствующем уровню статистической значимости р<0,10;

4) незначимая корреляция при г, не достигающем уровня статистической значимости .

Две эти классификации не совпадают. Первая ориентирована только на величину коэффициента корреляции, а вторая определяет, какого уровня значимости достигает данная величина коэффициента корреляции при данном объеме выборки. Чем больше объем выборки, Тем меньшей величины коэффициента корреляции оказьюается достаточно, чтобы корреляция была признана дортоверной. В результате при Малом объеме выборки может оказаться так, что сильная корреляция окажется недостоверной. В то же время при больших объемах выборки Даже слабая корреляция может оказаться достоверной.

Обычно принято ориентироваться на вторую классификацию, поскольку она учитывает объем выборки. Вместе с тем, необходимо помнить, что сильная, или высокая, корреляция - это корреляция с коэффициентом r>0,70, а не просто корреляция высокого уровня значимости.

Бил №18 Коэффициент линейной корреляции Пирсона

Наиболее распространенный коэффициент корреляции. Предназначен для расчета силы и направления линейной зависимости между переменными исследования.

Смысл коэффициента линейной корреляции.

Коэффициент линейной корреляции отражает меру линейной зависимости между двумя переменными. Предполагается, что переменные измерены в интервальной шкале либо в шкале отношений.

Если представить две переменные на координатном поле , то каждая пара значений будет отображать координаты точки в этом поле. Чем ближе точки к усредненной прямой, тем выше коэффициент корреляции

Коэффициент корреляции будет положительным числом, когда при повышении X происходит повышение Y (прямопропорциональная связь), отрицательным при обратнопропорциональной связи.

Формула

Общая формула:

Где xi и yi - сравниваемые количественные признаки, n - число сравниваемых наблюдений, ?x и ?y - стандартные отклонения в сопоставляемых рядах.

Бил№20. Коэффициент ранговой корреляции rs Спирмена

Назначение рангового коэффициента корреляции

Метод ранговой корреляции Спирмена позволяет определить тесноту (силу) и направление корреляционной связи между двумя признаками или двумя профилями {иерархиями) признаков.

Описание метода

Для подсчета ранговой корреляции необходимо располагать двумя рядами значений, которые могут быть проранжированы. Такими рядами значений могут быть:

1) два признака, измеренные в одной и той же группе испытуемых;

2) две индивидуальные иерархии признаков, выявленные у двух испытуемых по одному и тому же набору признаков (например, личностные профили по 16-факторному опроснику Р. Б. Кеттелла, иерархии ценностей по методике Р. Рокича, последовательности предпочтений в выборе из нескольких альтернатив и др.);

3) две групповые иерархии признаков;

4) индивидуальная и групповая иерархии признаков.

Вначале показатели ранжируются отдельно по каждому из признаков. Как правило, меньшему значению признака начисляется меньший ранг.

Гипотезы

Возможны два варианта гипотез. Первый относится к случаю 1, второй - к трем остальным случаям.

Первый вариант гипотез

H0: Корреляция между переменными А и Б не отличается от нуля.

H1: Корреляция между переменными А и Б достоверно отличается от нуля.

Второй вариант гипотез

H0: Корреляция между иерархиями А и Б не отличается от нуля.

H1: Корреляция между иерархиями А и Б достоверно отличается от нуля.

Ограничения коэффициента ранговой корреляции

1. По каждой переменной должно быть представлено не менее 5 наблюдений. Верхняя граница выборки определяется имеющимися таблицами критических значений (Табл.XVI Приложения 1), а именно N?40.

2. Коэффициент ранговой корреляции Спирмена rs при большом количестве одинаковых рангов по одной или обеим сопоставляемым переменным дает огрубленные значения. В идеале оба коррелируемых ряда должны представлять собой две последовательности несовпадающих значений. В случае, если это условие не соблюдается, необходимо вносить поправку на одинаковые ранги

АЛГОРИТМ 20

Расчет коэффициента ранговой корреляции Спирмена rs.

1. Определить, какие два признака или две иерархии признаков будут участвовать в сопоставлении как переменные А и В.

2. Проранжировать значения переменной А, начисляя ранг 1 наименьшему значению, в соответствии с правилами ранжирования (см. п.2.3). Занести ранги в первый столбец таблицы по порядку номеров испытуемых или признаков.

3. Проранжировать значения переменной В, в соответствии с теми же правилами. Занести ранги во второй столбец таблицы по порядку номеров испытуемых или признаков.

4. Подсчитать разности d между рангами А и В по каждой строке таблицы и занести в третий столбец таблицы.

5. Возвести каждую разность в квадрат: d2 . Эти значения занести в четвертый столбец таблицы.

6. Подсчитать сумму квадратов ?d2.

7. При наличии одинаковых рангов рассчитать поправки:

где а - объем каждой группы одинаковых рангов в ранговом ряду А;

b - объем каждой группы одинаковых рангов в ранговом ряду В.

8. Рассчитать коэффициент ранговой корреляции г5 по формуле:

а) при отсутствии одинаковых рангов

б) при наличии одинаковых рангов

где ?d2 - сумма квадратов разностей между рангами*

Та и Tb, - поправки на одинаковые ранги;

N - количество испытуемых или признаков, участвовавших в ранжировании.

9. Определить по Табл. XVI Приложения 1 критические значения гs для данного N. Если rs превышает критическое значение или по крайней мере равен ему, корреляция достоверно отличается от 0.

Бил №22

Назначения критерия

Критерий ?2 применяется в двух целях;

1) для сопоставления эмпирического распределения признака с теоре­тическим - равномерным, нормальным или каким-то иным;

2) для сопоставления двух, трех или более эмпирических распределе­ний одного и того же признака1.

Описание критерия

Критерий ?2 отвечает на вопрос о том, с одинаковой ли частотой встречаются разные значения признака в эмпирическом и теоретическом распределениях или в двух и более эмпирических распределениях.

Преимущество метода состоит в том, что он позволяет сопоставлять распределения признаков, представленных в любой шкале, начиная от шкалы наименований.В самом простом случае альтернативного распределения "да - нет", "допустил брак - не допустил брака", "решил задачу - не решил задачу" и т. п. мы уже можем применить критерий ?2.

Схема применения критерия для сопоставления двух эмпирических распределений.

Размещено на Allbest.ru


Подобные документы

  • Понятие моды и медианы как типичных характеристик, порядок и критерии их определения. Нахождение моды и медианы в дискретном и интервальном вариационном ряду. Квартили и децили как дополнительные характеристики вариационного статистического ряда.

    контрольная работа [22,0 K], добавлен 11.09.2010

  • Преобразование эмпирического ряда в дискретный и интервальный. Определение средней величины по дискретному ряду с использованием ее свойств. Расчет по дискретному ряду моды, медианы, показателей вариации (дисперсия, отклонение, коэффициент осцилляции).

    контрольная работа [689,8 K], добавлен 17.04.2011

  • Методические рекомендации для решения задач по общей теории статистики. Формулы для вычисления моды. Расчет медианы для интервального ряда. Определение средней арифметической простой, средней геометрической. Расчет индекса структурных сдвигов.

    методичка [101,6 K], добавлен 22.03.2010

  • Интервальный ряд распределения банков по объему прибыли. Нахождение моды и медианы полученного интервального ряда распределения графическим методом и путем расчетов. Расчет характеристик интервального ряда распределения. Вычисление средней арифметической.

    контрольная работа [150,6 K], добавлен 15.12.2010

  • Затраты на рабочую силу как объект статистического изучения. Применение индексного метода. Нахождение моды и медианы интервального ряда распределения графическим методом и путем расчетов. Расчет характеристик ряда распределения, средней арифметической.

    курсовая работа [920,1 K], добавлен 04.05.2013

  • Определение для вариационного ряда: средней арифметической, дисперсии, моды, медианы, относительных показателей вариации. Проведение смыкания рядов динамики c использованием коэффициента сопоставимости. Вычисление агрегатных индексов цен и стоимости.

    контрольная работа [23,0 K], добавлен 29.01.2011

  • Формулы определения средних величин интервального ряда - моды, медианы, дисперсии. Расчет аналитических показателей рядов динамики по цепной и базисной схемам, темпов роста и прироста. Понятие сводного индекса себестоимости, цен, затрат и товарооборота.

    курсовая работа [218,5 K], добавлен 27.02.2011

  • Группировка единиц наблюдения статистической совокупности по факторному признаку. Расчет средних значений, моды и медианы, показателей вариации. Направление связи между факторной и результативной переменными. Определение вероятности ошибки выборки.

    контрольная работа [634,5 K], добавлен 19.05.2014

  • Показатели признака вариации в ряду. Среднее квадратическое отклонение, линейное отклонение, дисперсия, коэффициент вариации. Нижняя граница модального интервала и его величина. Медиана дискретного вариационного ряда. Определение моды и медианы.

    лабораторная работа [30,8 K], добавлен 21.12.2012

  • Построение статистического ряда распределения организаций. Графическое определение значения моды и медианы. Теснота корреляционной связи с использованием коэффициента детерминации. Определение ошибки выборки среднесписочной численности работников.

    контрольная работа [82,0 K], добавлен 19.05.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.