Статистика как наука о количественной и качественной стороне явлений
Метод и основные категории статистики. Задачи и направления реформирования данной науки в России. Средние величины, показатели вариации и экономические индексы. Изучение динамики. Статистические методы исследования связи социально-экономических явлений.
Рубрика | Экономика и экономическая теория |
Вид | курс лекций |
Язык | русский |
Дата добавления | 24.05.2010 |
Размер файла | 258,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Комбинированная выборка может быть двухступенчатой. При этом генеральная совокупность сначала разбивается на группы. Затем производят отбор групп, а внутри последних осуществляется отбор отдельных единиц.
Тема 7. Статистическое изучение динамики
План
7.1 Понятие о рядах динамики
7.2 Правила построения рядов динамики
7.3 Показатели анализа ряда динамики
7.4 Методы анализа основной тенденции развития в рядах динамики
7.5 Экстраполяция в рядах динамики и прогнозирование
7.1 Понятие о рядах динамики
Основная цель статистического изучения динамики коммерческой деятельности состоит в выявлении и измерении закономерностей их развития во времени. Это достигается посредством построения и анализа статистических рядов динамики.
Рядами динамики называются статистические данные, отображающие развитие изучаемого явления во времени. В каждом ряду динамики имеются два основных элемента: показатель времени t; соответствующие им уровни развития изучаемого явления у. В качестве показаний времени в рядах динамики выступают либо определенные даты (моменты) времени, либо отдельные периоды (годы, кварталы, месяцы, сутки).
Уровни рядов динамики отображают количественную оценку (меру) развития во времени изучаемого явления. Они могут выражаться абсолютными, относительными или средними величинами.
В зависимости от характера изучаемого явления уровни рядов динамики могут относиться или к определенным датам (моментам) времени, или к отдельным периодам. В соответствии с этим, ряды динамики подразделяются на моментные и интервальные.
Моментные ряды динамики отображают состояние изучаемых явлений на определенные даты (моменты) времени.
Особенностью моментного ряда динамики является то, что в его уровни могут входить одни и те же единицы изучаемой совокупности. Так, основная часть персонала фирмы N, составляющая списочную численность на 1.01.1994г., продолжающая работать в течение данного года, отображена в уровнях последующих периодов. Поэтому при суммировании уровней моментного ряда динамики может возникнуть повторный счет.
Интервальные ряды динамики отображают итоги развития (функционирования) изучаемых явлений за отдельные периоды (интервалы) времени.
Особенностью интервального ряда динамики является то, что каждый его уровень складывается из данных за более короткие интервалы времени. Например, суммируя товарооборот за первые три месяца года, получают его объем за I квартал, а сумма товарооборота четырех кварталов дает объем товарооборота за год и т.д.
Ряды динамики могут быть полными и неполными.
Полный ряд - ряд динамики, в котором одноименные моменты времени или периоды времени строго следуют один за другим в календарном порядке или равноотстоят друг от друга.
Неполный ряд динамики - ряд, в котором уровни зафиксированы в неравноотстоящие моменты или периоды времени.
7.2 Правила построения рядов динамики
Приведение рядов динамики в сопоставимый вид.
Ряды динамики, изучающие изменение статистического показателя, могут охватывать значительный период времени, на протяжении которого могут происходить события, нарушающие сопоставимость отдельных уровней ряда динамики (изменение методологии учета, изменение цен и т.д.).
Для того, чтобы анализ ряда был объективен, необходимо учитывать события, приводящие к несопоставимости уровней ряда и использовать приемы обработки рядов для приведения их в сопоставимый вид.
Наиболее характерные случаи несопоставимости уровней ряда динамики:
Территориальные изменения объекта исследования, к которому относится изучаемый показатель (изменение границ городского района, пересмотр административного деления области и т.д.).
Разновеликие интервалы времени, к которым относится показатель. Так, например, в феврале - 28 дней, в марте - 31 день, анализируя изменения показателя по месяцам, необходимо учитывать разницу в количестве дней.
Изменение даты учета. Например, численность поголовья скота в разные годы могла определяться по состоянию на 1 января или на 1 октября, что в данном случае приводит к несопоставимости.
Изменение методологии учета или расчета показателя.
Изменение цен.
Изменение единиц измерения.
Определение среднего уровня ряда динамики.
В качестве обобщенной характеристики уровней ряда динамики служит средний уровень ряда динамики . В зависимости от типа ряда динамики используются различные расчетные формулы.
Интервальный ряд абсолютных величин с равными периодами (интервалами времени):
Моментный ряд с равными интервалами между датами:
Моментный ряд с неравными интервалами между датами:
где - уровни ряда, сохраняющиеся без изменения на протяжении интервала времени .
7.3 Показатели анализа ряда динамики
Показатели изменения уровней ряда динамики.
Одним из важнейших направлений анализа рядов динамики является изучение особенностей развития явления за отдельные периоды времени.
С этой целью для динамических рядов рассчитывают ряд показателей:
К - темпы роста;
- абсолютные приросты;
- темпы прироста.
Темп роста - относительный показатель, получающийся в результате деления двух уровней одного ряда друг на друга. Темпы роста могут рассчитываться как цепные, когда каждый уровень ряда сопоставляется с предшествующим ему уровнем: , либо как базисные, когда все уровни ряда сопоставляются с одним и тем же уровнем , выбранным за базу сравнения: . Темпы роста могут быть представлены в виде коэффициентов либо в виде процентов.
Абсолютный прирост - разность между двумя уровнями ряда динамики, имеет ту же размерность, что и уровни самого ряда динамики. Абсолютные приросты могут быть цепными и базисными, в зависимости от способа выбора базы для сравнения:
цепной абсолютный прирост - ;
базисный абсолютный прирост - .
Для относительной оценки абсолютных приростов рассчитываются показатели темпов прироста.
Темп прироста - относительный показатель, показывающий, на сколько процентов один уровень ряда динамики больше (или меньше) другого, принимаемого за базу для сравнения.
Базисные темпы прироста: .
Цепные темпы прироста: .
и - абсолютный базисный или цепной прирост;
- уровень ряда динамики, выбранный за базу для определения базисных абсолютных приростов;
- уровень ряда динамики, выбранный за базу для определения i-го цепного абсолютного прироста.
Существует связь между темпами роста и прироста:
К = К - 1 или К = К - 100 % (если темпы роста определены в процентах).
Если разделить абсолютный прирост (цепной) на темп прироста (цепной) за соответствующий период, получим показатель, называемый - абсолютное значение одного процента прироста: .
Определение среднего абсолютного прироста, средних темпов роста и прироста.
По показателям изменения уровней ряда динамики (абсолютные приросты, темпы роста и прироста), полученным в результате анализа исходного ряда, могут быть рассчитаны обобщающие показатели в виде средних величин - средний абсолютный прирост, средний темп роста, средний темп прироста.
Средний абсолютный прирост может быть получен по одной из формул:
или ,
где n - число уровней ряда динамики;
- первый уровень ряда динамики;
- последний уровень ряда динамики;
- цепные абсолютные приросты.
Средний темп роста можно определить, пользуясь формулами:
где n - число рассчитанных цепных или базисных темпов роста;
- уровень ряда, принятый за базу для сравнения;
- последний уровень ряда;
- цепные темпы роста (в коэффициентах);
- первый базисный темп роста;
- последний базисный темп роста.
Между темпами прироста и темпами роста К существует соотношение = К - 1, аналогичное соотношение верно и для средних величин.
7.4 Методы анализа основной тенденции развития в рядах динамики
Определение в рядах динамики общей тенденции развития.
Определение уровней ряда динамики на протяжении длительного периода времени обусловлено действием ряда факторов, которые неоднородны по силе и направлению воздействия, оказываемого на изучаемое явление.
Рассматривая динамические ряды, пытаются разделить эти факторы на постоянно действующие и оказывающие определяющее воздействие на уровни ряда, формирующие основную тенденцию развития, и случайные факторы, приводящие к кратковременным изменениям уровней ряда динамики. Наиболее важна при анализе ряда динамики его основная тенденция развития, но часто по одному лишь внешнему виду ряда динамики ее установить невозможно, поэтому используют специальные методы обработки, позволяющие показать основную тенденцию ряда. Методы обработки используются как простые, так и достаточно сложные. Простейший способ обработки ряда динамики, применяемый с целью установления закономерностей развития - метод укрупнения интервалов.
Суть метода в том, чтобы от интервалов, или периодов времени, для которых определены исходные уровни ряда динамики, перейти к более продолжительным периодам времени и посмотреть, как уровни ряда изменяются в этом случае.
Другой способ определения тенденции в ряду динамики -- метод скользящих средних. Суть метода заключается в том, что фактические уровни ряда заменяются средними уровнями, вычисленными по определённому правилу, например:
-- исходные или фактические уровни ряда динамики заменяются средними уровнями:
В результате получается сглаженный ряд, состоящий из скользящих пятизвенных средних уровней . Между расположением уровней и устанавливается соответствие:
-- -- -- -- ,
сглаженный ряд короче исходного на число уровней , где k - число уровней, выбранных для определения средних уровней ряда.
Сглаживание методом скользящих средних можно производить по четырём, пяти или другому числу уровней ряда, используя соответствующие формулы для усреднения исходных уровней.
Полученные при этом средние уровни называются четырёхзвенными скользящими средними, пятизвенными скользящими средними и т.д.
При сглаживании ряда динамики по чётному числу уровней выполняется дополнительная операция, называемая центрированием, поскольку, при вычислении скользящего среднего, например по четырём уровням, относится к временной точке между моментами времени, когда были зафиксированы фактические уровни и . Схема вычислений и расположений уровней сглаженного ряда становится сложнее:
... -- исходные уровни;
-- -- ... -- сглаженные уровни;
-- -- ... -- центрированные сглаженные уровни;
.
Метод скользящих средних не позволяет получить численные оценки для выражения основной тенденции в ряду динамики, давая лишь наглядное графическое представление.
Наиболее совершенным способом определения тенденции развития в ряду динамики является метод аналитического выравнивания. При этом методе исходные уровни ряда динамики заменяются теоретическими или расчетными , которые представляют из себя некоторую достаточно простую математическую функцию времени, выражающую общую тенденцию развития ряда динамики. Чаще всего в качестве такой функции выбирают прямую, параболу, экспоненту и др.
Например, ,
где - коэффициенты, определяемые в методе аналитического выравнивания;
- моменты времени, для которых были получены исходные и соответствующие теоретические уровни ряда динамики, образующие прямую, определяемую коэффициентами .
Расчет коэффициентов ведется на основе метода наименьших квадратов:
Если вместо подставить (или соответствующее выражение для других математических функций), получим:
Это функция двух переменных (все и известны), которая при определенных достигает минимума. Из этого выражения на основе знаний, полученных в курсе высшей математики об экстремуме функций n переменных, получают значения коэффициентов .
Для прямой:
где n -- число моментов времени, для которых были получены исходные уровни ряда .
Если вместо абсолютного времени выбрать условное время таким образом, чтобы , то записанные выражения для определения упрощаются:
7.5 Экстраполяция в рядах динамики и прогнозирование
Определение в рядах внутригодовой динамики.
Многие процессы хозяйственной деятельности, торговли, сельского хозяйства и других сфер человеческой деятельности подвержены сезонным изменениям, например, продажа мороженого, потребление электроэнергии, производство молока, сахара, продажа сельхозпродукции и др.
Для анализа рядов динамики, подверженных сезонным изменениям, используются специальные методы, позволяющие установить и описать особенности изменения уровней ряда. Прежде, чем использовать методы изучения сезонности, необходимо подготовить данные, приведённые в сопоставимый вид, за несколько лет наблюдения по месяцам или кварталам. Изменения сезонных колебаний производится с помощью индексов сезонности. В зависимости от существующих в ряду динамики тенденций используются различные правила построения индексов.
1. Ряд динамики не имеет общей тенденции развития, либо она не велика.
Индекс сезонности: ,
где -- средний уровень ряда, полученный в результате осреднения уровней ряда за одноимённые периоды времени (например, средний уровень января за все годы наблюдения);
-- общий средний уровень ряда за всё время наблюдения.
Вывод о наличии или отсутствия в ряду динамики ярко выраженной тенденции может производиться, например, при помощи метода укрупнения интервалов.
2. Ряд динамики имеет общую тенденцию, и она определена либо методом скользящего среднего, либо методом аналитического выравнивания.
Индекс сезонности ,
где -- исходные уровни ряда:
-- уровни ряда, полученные в результате определения скользящих средних для тех же периодов времени, что и исходные уровни:
I -- номер месяца или квартала, для которого определяется индекс сезонности:
n -- число лет наблюдения за процессом.
В случае, если тенденция развития определялась методом аналитического выравнивания, расчетная формула получения индексов сезонности совершенно аналогична предыдущей, но вместо -- уровней, полученных методом скользящих средних, используются -- полученные методом аналитического выравнивания.
Тема 8. Экономические индексы
План
8.1 Индексы и их классификация
8.2 Общие индексы количественных и качественных показателей
8.3 Базисные и цепные индексы
8.4 Индексы дефляторы
8.5 Индексный метод анализа факторов динамики
8.1 Индексы и их классификация
Понятие индексов. В статистике под индексом понимается относительная величина (показатель), выражающая изменение сложного экономического явления во времени, в пространстве или по сравнению с планом. В связи с этим различают динамические, территориальные индексы, а также индексы выполнения плана.
Многие общественные явления состоят из непосредственно несопоставимых явлений, поэтому основной вопрос - это вопрос сопоставимости сравниваемых явлений.
К какому бы экономическому явлению ни относились индексы, чтобы рассчитать их, необходимо сравнивать различные уровни, которые относятся либо к различным периодам времени, либо к плановому заданию, либо к различным территориям. В связи с этим различают базисный период (период, к которому относится величина, подвергаемая сравнению) и отчетный период (период, к которому относится сравниваемая величина). При исчислении важно правильно выбрать период, принимаемый за базу сравнения.
Индексы могут относиться либо к отдельным элементам сложного экономического явления, либо ко всему явлению в целом.
Индивидуальные индексы. Показатели, характеризующие изменение более или менее однородных объектов, входящих в состав сложного явления, называются индивидуальными индексами - ix.
p - цена q - количество t - время T - численность f - з/п F - фонд з/п S - посевная площадь y - урожайность z - себестоимость
Индекс получает название по названию индексируемой величины.
В большинстве случаев в числителе стоит текущий уровень, а в знаменателе - базисный уровень. Исключением является индекс покупательной способности рубля.
Индексы измеряются либо в виде процентов (%), либо в виде коэффициентов.
Сводные индексы. Сложные явления, для которых рассчитывается сводный индекс, отличаются той особенностью, что элементы, их составляющие, неоднородны и, как правило, несоизмеримы друг с другом. Поэтому сопоставление простых сумм этих элементов невозможно. Сопоставимость может быть достигнута различными способами:
сложные явления могут быть разбиты на такие простые элементы, которые в известной степени являются однородными;
сравнение по стоимости, без разбиения на отдельные элементы.
Цель теории индексов - изучение способов получения относительных величин, используемых для расчета общего изменения ряда разнородных явлений.
Товар |
Базисный |
Отчетный |
|
1 |
|||
2 |
|||
. . . |
|||
n |
|||
Индекс стоимости товарооборота
Индекс цены товарооборота
Индекс физического объема товарооборота
Проблема выбора весов
8.2 Общие индексы количественных и качественных показателей
Если индексируемой величиной является качественный признак, то вес принимается на уровне текущего периода.
Если же индексируемой величиной является количественный признак, то вес принимается на уровне базисного периода.
Сводные индексы в агрегатной форме позволяют нам измерить не только относительное изменение отдельных элементов изучаемого явления и явления в целом в текущем периоде по сравнению с базисным, но и абсолютное изменение.
8.3 Базисные и цепные индексы
Цепные и базисные индексы с постоянными и переменными весами
Цепные индексы:
Сумма произведений индивидуальных цепных индексов дает базисный индекс за соответствующий период.
Базисные индексы:
Частное от деления последующего базисного индекса на предыдущий индекс дает нам цепной индекс за соответствующий период.
Преимущество сводных индексов с постоянными весами состоит в том, что их можно сравнивать между собой, а также получать цепные индексы из базисных и наоборот.
Для индексов с переменными весами такое правило не сохраняется.
С постоянными весами рассчитываются индексы физического объема продукции, а с переменными весами - индексы цен, себестоимости, производительности труда.
8.4 Индексы дефляторы
Индекс дефлятора используется для перевода значений стоимостных показателей за отчетный период в стоимостные измерители базисного периода.
Для построения индекса дефлятора можно использовать индексы с переменными весами.
Индексы постоянного состава, переменного состава и структурных сдвигов
В тех случаях, когда мы анализируем изменение во времени сравниваемой продукции, мы можем поставить вопрос о том, как в различных условиях (на различных участках) меняются составляющие индекса (цена, физический объем, структура производства или реализации отдельных видов продукции). В связи с этим строятся индексы постоянного состава, переменного состава, структурных сдвигов.
Индекс постоянного (фиксированного) состава по своей форме тождественен агрегатному индексу.
Объединение |
Базисный |
Отчетный |
|||
p0 |
q0 |
p0 |
q0 |
||
1 |
15 |
5000 |
11 |
20000 |
|
2 |
18 |
10000 |
13 |
15000 |
Цена по обоим предприятиям изменилась на 27,2 %.
Этот индекс не учитывает изменение объема продажи продукции на различных рынках в текущем и базисном периодах.
Индекс переменного состава используется для характеристики изменения средней цены в текущем и базисном периодах.
Территориальные индексы
В статистике существует необходимость сопоставления уровней экономических явлений в пространстве. Для расчета значений используются территориальные индексы. Для их исчисления соответствующие показатели по всем видам продукции умножаются на количество продукции, произведенной во всей области.
8.5 Индексный метод анализа факторов динамики
Индексный метод.
Статистические индексы.
Важное значение в статистических исследованиях коммерческой деятельности имеет индексный метод. Полученные на основе этого метода показатели используются для характеристики развития анализируемых показателей во времени, по территории, изучения структуры и взаимосвязей, выявления роли факторов в изменении сложных явлений.
Индексы широко применяются в экономических разработках государственной и ведомственной статистики.
Статистический индекс -- это относительная величина сравнения сложных совокупностей и отдельных их единиц. При этом под сложной понимается такая статистическая совокупность, отдельные элементы которой непосредственно не подлежат суммированию.
Например, ассортимент продовольственных товаров состоит из товарных разновидностей, первичный учет которых на производстве и в оптовой торговле ведется в натуральных единицах измерения: молоко -- в литрах, мясо -- в центнерах, яйцо -- в штуках, консервы -- в условных банках и т.д. Для определения общего объема производства и реализации продовольственных товаров суммировать данные учета разнородных товарных масс в натуральных измерителях нельзя. Не подлежат непосредственному суммированию и данные о количестве произведенных и реализованных различных видов непродовольственных товаров. Было бы, например, бессмысленно для получения общего объема реализации суммировать данные о продаже тканей (в метрах), костюмов (в штуках), обуви (в парах) и т.д.
В этих сложных статистических совокупностях единицами наблюдения являются товары с различными потребительскими свойствами. Данные о натурально -- вещественной форме реализации отдельных товарных разновидностей непосредственному суммированию не подлежат. Для получения в сложных статистических совокупностях обобщающих (суммарных) величин прибегают к индексному методу.
Основой индексного метода при определении изменений в производстве и обращении товаров является переход от натурально -- вещественной формы выражения товарных масс к стоимостным (денежным) измерителям. Именно посредством денежного выражения стоимости отдельных товаров устраняется их несравнимость как потребительских стоимостей и достигается единство.
Индивидуальные и общие индексы.
В зависимости от степени охвата подвергнутых обобщению единиц изучаемой совокупности индексы подразделяются на индивидуальные (элементарные) и общие.
Индивидуальные индексы характеризуют изменения отдельных единиц статистической совокупности. Так, например, если при изучении оптовой реализации продовольственных товаров определяются изменения в продаже отдельных товарных разновидностей, то получают индивидуальные (однотоварные) индексы.
Общие индексы выражают сводные (обобщающие) результаты совместного изменения всех единиц, образующих статистическую совокупность. Пример, показатель изменения объема реализации товарной массы продуктов питания по отдельным периодам будет общим индексом физического объема товарооборота.
Важной особенностью общих индексов является то, что они обладают синтетическими и аналитическими свойствами.
Синтетические свойства индексов состоят в том, что посредством индексного метода производится соединение (агрегирование) в целом разнородных единиц статистической совокупности.
Аналитические свойства индексов состоят в том, что посредством индексного метода определяется влияние факторов на изменение изучаемого показателя.
Для определения индекса надо произвести сопоставление не менее двух величин. При изучении динамики социально-экономических явлений сравниваемая величина (числитель индексного отношения) принимается за текущий (или отчетный) период, а величина, с которой производится сравнение -- за базисный период.
Основным элементом индексного отношения является индексируемая величина. Под индексируемой величиной понимается значение признака статистической совокупности, изменение которой является объектом изучения. Так, при изучении изменения цен индексируемой величиной является цена единицы товара p. При изучении изменения физического объема товарной массы в качестве индексируемой величины выступают данные о количестве товаров в натуральных измерителях q. Стоимость продукции обозначается через s.
Индивидуальные индексы принято обозначать i, а общие индексы -- I.
Знак внизу справа означает период:
-- базисный,
-- отчетный.
Агрегатные индексы.
Основной формой общих индексов являются агрегатные индексы.
Достижение в сложных статистических совокупностях сопоставимости разнородных единиц осуществляется введением в индексные отношения специальных сомножителей индексируемых величин. Такие сомножители называются соизмерителями. Они необходимы для перехода от натуральных измерителей разнородных единиц статистической совокупности к однородным показателям. При этом в числителе и знаменателе общего индекса изменяется лишь значение индексируемой величины, а их соизмерители являются постоянными величинами.
В качестве соизмерителей индексируемых величин выступают тесно связанные с ними экономические показатели: цены, количество и др.
Произведение каждой индексируемой величины на соизмеритель образует в индексном отношении определённые экономические категории.
Пример.
Товар |
Ед. изм. |
I период |
II период |
Индивидуальные индексы |
||||
цена за единицу товара, руб. |
кол-во |
цена за единицу товара, руб. |
кол-во, |
цен |
физич-го объёма |
|||
А |
т |
20 |
7 500 |
25 |
9500 |
1,25 |
1,27 |
|
Б |
м |
30 |
2 000 |
30 |
2500 |
1,0 |
1,25 |
|
В |
шт. |
15 |
1 000 |
10 |
1500 |
0,67 |
1,5 |
При определении по данным таблицы статистических индексов первый период принимается за базисный, в котором цена единицы товара принимается , а количество -- .
Второй период принимается за текущий (или отчетный), в котором цена единицы товара обозначается , а количество -- .
Индивидуальные индексы показывают, что в текущем периоде по сравнению с базисным цена на товар А повысилась на 25%, на товар Б осталась без изменения, а на товар В снизилась на 33%. Количество реализации товара А возросло на 27%, товара Б -- на 25%, а товара В -- на 50%.
При определении общего индекса цен в агрегатной форме в качестве соизмерителя индексируемых величин и могут приниматься данные о количестве реализации товаров в текущем периоде . При умножении на индексируемые величины в числителе индексного отношения образуется значение , сумма стоимости продажи товаров в текущем периоде по ценам того же текущего периода. В знаменателе индексного отношения образуется значение , т.е. сумма стоимости продажи товаров в текущем периоде по ценам базисного периода.
Агрегатная формула такого общего индекса цен имеет следующий вид:
= (1)
Расчёт агрегатного индекса цен по данной формуле предложил немецкий экономист Г. Пааше, поэтому он называется индексом Пааше.
Применяем формулу для расчёта агрегатного индекса цен по данным табл.1:
числитель индексного отношения
=25 * 9 500 + 30 * 2 500 + 10 * 1 500 = 327 500 руб.
знаменатель индексного отношения
= 20 * 9 500 + 30 * 2 500 + 15 * 1 500 = 287 500 руб.
Полученные значения подставляем в формулу 1:
= или 113,9%
Применение формулы 1 показывает, что по данному ассортименту товаров в целом цены повысились в среднем на 13,9%.
При другом способе определения агрегатного индекса цен в качестве соизмерителя индексируемых величин и могут применяться данные о количестве реализации товаров в базисном периоде . При этом умножение на индексируемые величины в числителе индексного отношения образует значение , т.е. сумму стоимости продажи товаров в базисном периоде по ценам текущего периода.
В знаменателе индексного отношения образуется значение , т.е. сумма стоимости продажи товаров в базисном периоде по ценам того же базисного периода.
Агрегатная формула такого общего индекса имеет вид:
= (2)
Расчёт общего индекса цен по данной формуле предложил немецкий экономист Э. Ласпейрес, и получил название индекса Ласпейреса.
Применяем формулу для расчёта агрегатного индекса цен по данным табл.1:
числитель индексного отношения
= 25 * 7 500 + 30 * 2 000 + 10 * 1000 = 257 500 руб.
знаменатель индексного отношения
= 20 * 7 500 + 30 * 2 000 + 15 * 1 000 = 225 000 руб.
Полученные значения подставляем в формулу 2:
=или 114,4%
Применение формулы 2 показывает, что по данному ассортименту товаров в целом цены повысились в среднем на 14,4%.
Таким образом, выполненные по формулам 1 и 2 расчёты имеют разные показания индексов цен. Это объясняется тем, что индексы Пааше и Ласпейреса характеризуют различные качественные особенности изменения цен.
Индекс Пааше характеризует влияние изменения цен на стоимость товаров, реализованных в отчётном периоде. Индекс Ласпейреса показывает влияние изменения цен на стоимость количества товаров, реализованных в базисном периоде.
Другим важным видом общих индексов, которые широко применяются в статистике, являются агрегатные индексы физического объёма товарной массы.
При определении агрегатного индекса физического объёма товарной массы в качестве соизмерителей индексируемых величин и могут применяться неизменные цены базисного периода . При умножении на индексируемые величины в числителе индексного отношения образуются значение , т.е. сумма стоимости товарной массы текущего периода в базисных ценах. В знаменателе -- , т.е. сумма стоимости товарной массы базисного периода в ценах того же базисного периода.
Агрегатная форма общего индекса имеет следующий вид:
= (3)
Поскольку, в числителе формулы 3 содержится сумма стоимости реализации товаров в текущем периоде по неизменным (базисным) ценам, а в знаменателе -- сумма фактической стоимости товаров, реализованных в базисном периоде в тех же неизменных (базисных) ценах, то данный индекс является агрегатным индексом товарооборота в сопоставимых (базисных) ценах.
Используем формулу 3 для расчёта агрегатного индекса физического объёма реализации товаров по данным табл.1:
числитель индексного отношения
= 9 500 * 20 + 2 500 * 30 + 1 500 * 15 = 287 500 руб.
знаменатель индексного отношения
= 7 500 * 20 + 2 000 * 30 + 1 000 * 15 = 225 000 руб.
Полученные значения подставляем в формулу 3:
= или 127,8%
Применение формулы 3 показывает, что по данному ассортименту товаров в целом прирост физического объёма реализации в текущем периоде составил в среднем 27,8%.
Агрегатный индекс физического объёма товарооборота может определяться посредством использования в качестве соизмерителя индексируемых величин и цен текущего периода .
Агрегатная формула общего индекса будет иметь вид:
= (4)
числитель индексного отношения
= 9 500 * 25 + 2 500 * 30 + 1 500 * 10 = 327 500 руб.
знаменатель индексного отношения
= 7 500 * 25 + 2 000 * 30 + 1 000 * 10 = 257 500 руб.
Полученные значения подставляем в формулу 4:
= или 127,2%
Применение формулы 4 показывает, что по данному ассортименту товаров в целом прирост физического объёма реализации в текущем периоде составил в среднем 27,2%.
Аналогичным образом производится расчёт индекса себестоимости, при этом сравниваются суммы затрат в производстве в отчётном периоде (-- числитель индекса) с суммой затрат в производстве на продукцию отчётного периода по себестоимости базисного периода (-- знаменатель).
Индексы с постоянными и переменными весами.
При изучении динамики коммерческой деятельности приходится производить индексные сопоставления более чем за два периода.
Поэтому индексные величины могут определяться как на постоянной, так и на переменной базах сравнения. При этом, если задача анализа состоит в получении характеристик изменения изучаемого явления во всех последующих периодах по сравнению с начальным, то вычисляются базисные индексы. Например, сопоставление объёма розничного товарооборота II, III и IV кварталов с I кварталом.
Но если требуется охарактеризовать последовательно изменения изучаемого явления из периода в период, то вычисляются цепные индексы. Например, при изучении объёма розничного товарооборота по кварталам года сопоставляют товарооборот II квартала c I, III -- cо II и IV -- с III кварталом.
В зависимости от задачи исследования и характера исходной информации базисные и цепные индексы исчисляются как индивидуальные, так и общие.
Способы расчёта индивидуальных базисных и цепных индексов аналогичны расчёту относительных величин динамики. Общие индексы в зависимости от их вида вычисляются с переменными и постоянными весами -- соизмерителями.
Используя индексный ряд за несколько периодов, можно получить динамику стоимости продукции и динамику товарооборота в неизменных ценах, т.е. в ценах какого - то одного прошлого периода. Такие индексные ряды называются индексами с постоянными весами. Для них действует правило: произведение цепных индексов даёт индекс базисный.
Средние индексы.
Всякий агрегатный индекс может быть преобразован в средний арифметический из индивидуальных индексов. Для этого индексируемая величина отчётного периода, стоящая в числителе агрегатного индекса, заменяется произведением индивидуального индекса на индексируемую величину базисного периода.
Так, индивидуальный индекс цен равен , откуда .
Следовательно, преобразование агрегатного индекса цен в средний арифметический имеет вид:
==
Аналогично индекс себестоимости равен , откуда , следовательно, ==,
Аналогично индекс физического объёма продукции (товарооборота) равен , откуда , следовательно, ==
Расчеты недостающих индексов с помощью индексных систем.
Многие экономические индексы тесно связаны между собой и образуют индексные системы. Так, индекс цен связан с индексом физического объема товарооборота или физического объема продукции, образуя следующую индексную систему:
или
Произведение индекса цен на индекс физического объема товарооборота или продукции дает индекс физического объема товарооборота в фактических ценах, или индекс стоимости продукции.
Индекс себестоимости промышленной продукции связан с индексом физического объема продукции по себестоимости, образуя следующую индексную систему:
или
Произведение индекса себестоимости продукции на индекс физического объема дает индекс затрат в производстве.
Используя индексы системы, можно по двум известным индексам найти третий, неизвестный.
Тема 9. Статистические методы изучения взаимосвязи социально-экономических явлений
План
9.1 Стохастико-детерминированный характер социально-экономических явлений и связи между ними
9.2 Статистические методы моделирования связи
9.1 Стохастико-детерминированный характер социально-экономических явлений и связи между ними
Изучение статистической связи.
Изучение взаимосвязей на рынке товаров и услуг -- важнейшая функция работников коммерческих служб: менеджеров, коммерсантов, экономистов. Особую актуальность это приобретает в условиях развивающейся рыночной экономики. Изучение механизма рыночных связей, взаимодействия спроса и предложения, влияние объема и состава предложения товаров на объем и структуру товарооборота, формирование товарных запасов, издержек обращения, прибыли и других качественных показателей имеет первостепенное значение для прогнозирования конъюнктуры рынка, рациональной организации торговых процессов и решения многих вопросов успешного ведения бизнеса.
Статистика призвана изучать коммерческую деятельность с количественной стороны. Это осуществляется с помощью соответствующих приемов и методов статистики и математики.
Статистические показатели коммерческой деятельности могут состоять между собой в следующих основных видах связи: балансовой, компонентной, факторной и др.
Балансовая связь -- характеризует зависимость между источниками формирования ресурсов (средств) и их использованием.
-- остаток товаров на начало отчетного периода;
-- поступление товаров за период;
-- выбытие товаров в изучаемом периоде;
-- остаток товаров на конец отчетного периода.
Левая часть формулы характеризует предложение товаров
, а правая часть -- использование товарных ресурсов .
Компонентные связи показателей коммерческой деятельности характеризуются тем, что изменение статистического показателя определяется изменением компонентов, входящих в этот показатель, как множители:
В статистике коммерческой деятельности компонентные связи используются в индексном методе. Например, индекс товарооборота в фактических ценах представляет произведение двух компонентов -- индекса товарооборота в сопоставимых ценах и индекса цен , т.е.
.
Важное значение компонентной связи состоит в том, что она позволяет определять величину одного из неизвестных компонентов:
или
Факторные связи характеризуются тем, что они проявляются в согласованной вариации изучаемых показателей. При этом одни показатели выступают как факторные, а другие -- как результативные.
Факторные связи могут рассматриваться как функциональные и корреляционные.
При функциональной связи изменение результативного признака всецело зависит от изменения факторного признака :
При корреляционной связи изменение результативного признака не всецело зависит от факторного признака , а лишь частично, так как возможно влияние прочих факторов :
.
Примером корреляционной связи показателей коммерческой деятельности является зависимость сумм издержек обращения от объема товарооборота. В этой связи, помимо факторного признака -- объема товарооборота , на результативный признак (сумму издержек обращения ) влияют и другие факторы, в том числе и не учтенные . Поэтому корреляционные связи не являются полными (тесными) зависимостями.
Характерной особенностью корреляционных связей является то, что они проявляются не в единичных случаях, а в массе.
При статистическом изучении корреляционной связи показателей коммерческой деятельности перед статистикой ставятся следующие основные задачи:
1) проверка положений экономической теории о возможности связи между изучаемыми показателями и придание выявленной связи аналитической формы зависимости;
2) установление количественных оценок тесноты связи, характеризующих силу влияния факторных признаков на результативные.
Для того, чтобы установить, есть ли зависимость между величинами, используются многообразные статистические методы, позволяющие определить, во-первых -- какие связи; во-вторых -- тесноту связи (в одном случае она сильная, устойчивая, в другом -- слабая); в-третьих -- форму связи (т.е. формулу, связывающую величину и).
В процессе изучения связи надо учитывать, что мы используем математический аппарат, но всегда надо иметь теоретические обоснования той связи, которую пытаются показать.
9.2 Статистические методы моделирования связи
Переходим к методам изучения статистической связи.
Наиболее простой способ иллюстрации зависимости между двумя величинами -- построение таблиц, показывающих, как при изменении одной величины меняется другая.
Пример.
Производство молока в год. тыс. тонн. |
Выработка продукции на 1 работающего, тыс. руб. |
|
до 31 |
34,2 |
|
31 -- 50 |
37,3 |
|
51 и выше |
42,7 |
Таблица показывает лишь согласованность в изменении двух величин, наличие связи. Но она не определяет ни тесноту связи, ни форму этой связи.
Для того чтобы ответить на эти вопросы, необходимо использовать специальные статистические методы. Среди них есть очень простые и менее точные, более сложные и более точные. Но все они имеют один и тот же смысл.
Один из простых показателей тесноты корреляционной зависимости -- показатель корреляции рангов. Разберем порядок вычисления этого показателя на примере.
Изучается товарооборот и суммы издержек обращения по ряду магазинов (в тыс. руб.). Данные представлены таблицей 1.
№ магазина |
Товарооборот |
Издержки обращения |
|
1 |
480 |
30 |
|
2 |
510 |
25 |
|
3 |
530 |
31 |
|
4 |
540 |
28 |
|
5 |
570 |
29 |
|
6 |
590 |
32 |
|
7 |
620 |
36 |
|
8 |
640 |
36 |
|
9 |
650 |
37 |
|
10 |
660 |
38 |
Из таблицы видно, что с ростом товарооборота растут и издержки обращения. График еще раз это подтверждает.
Но в ряде случаев увеличение товарооборота ведет и к уменьшению издержек обращения, поскольку, помимо двух названных величин, в реальном процессе торговли участвуют и другие факторы, которые в рассмотрение не включены и носят случайный характер. Рассмотрим критерий тесноты связи, названный показателем корреляции рангов. От величин абсолютных перейдем к рангам по такому правилу: самое меньшее значение -- ранг 1, затем 2 и т.д. Если встречаются одинаковые значения, то каждое из них заменяется средним. Итак:
Товарооборот |
Издержки |
|
1 |
4 |
|
2 |
1 |
|
3 |
5 |
|
4 |
2 |
|
5 |
3 |
|
6 |
6 |
|
7 |
7,5 |
|
8 |
7,5 |
|
9 |
9 |
|
10 |
10 |
Построим разности между рангами и возведем их в квадрат.
1. Если ранги совпадают, то ясно, что сумма их квадратов равна 0.
Связь полная, прямая.
2. Ранги образуют обратную последовательность
1 10
2 9 В этом случае
3 8
. . Связь полная, обратная.
10 1
3. Среднее значение из двух крайних означает полное отсутствие связи:
4. Показатель корреляции рангов:
Показатель показывает, как отличается полученная при наблюдении сумма квадратов разностей между рангами от случая отсутствия связи.
Проанализируем показатель корреляции рангов.
1. Связь полная и прямая, и
2. Связь полная и обратная, и
3. Все остальные значения лежат между -1 и +1.
Построим показатель корреляции рангов для нашего примера:
Товарооборот (ранг) |
Издержки (ранг) |
|||
1 |
4 |
-3 |
9 |
|
2 |
1 |
1 |
1 |
|
3 |
5 |
-2 |
4 |
|
4 |
2 |
2 |
4 |
|
5 |
3 |
2 |
4 |
|
6 |
6 |
0 |
0 |
|
7 |
7,5 |
-0,5 |
0,25 |
|
8 |
7,5 |
0,5 |
0,25 |
|
9 |
9 |
0 |
0 |
|
10 |
10 |
0 |
0 |
|
Полученный показатель свидетельствует о достаточно тесной связи между товарооборотом и издержками.
Для определения тесноты корреляционной связи применяется коэффициент корреляции.
Коэффициент корреляции изменяется от -1 до +1 и показывает тесноту и направление корреляционной связи.
Если отклонения по и по от среднего совпадают и по знаку, и по величине, то это полная прямая связь, то =+1.
Если полная обратная связь, то =-1.
Если связь отсутствует, то =0.
Наиболее удобной формулой для расчета коэффициента корреляции является:
(1)
Коэффициент корреляции можно рассчитать и по другой формуле:
(2), где
и
Пример
Товарооборот (х) |
Издержки обращения (у) |
||||
480 |
30 |
230400 |
900 |
14400 |
|
510 |
25 |
260100 |
625 |
12750 |
|
530 |
31 |
280900 |
961 |
16430 |
|
540 |
28 |
291600 |
784 |
15120 |
|
570 |
29 |
324900 |
841 |
16530 |
|
590 |
32 |
348100 |
1024 |
18880 |
|
620 |
36 |
384400 |
1296 |
22320 |
|
640 |
36 |
409600 |
1296 |
23040 |
|
650 |
37 |
422500 |
1369 |
24050 |
|
660 |
38 |
435600 |
1444 |
25080 |
|
Все необходимые данные для определения коэффициента корреляции есть в таблице, их лишь остается подставить в необходимую формулу.
В ряде случаев возникает необходимость установления статистической связи между признаками, не имеющими количественного выражения.
Пример
На предприятии работает группа станков. В силу организационно-технических причин, периодически возникают простои. Было проведено 133 наблюдения за работой станков на протяжении дня , при этом в 59 случаях были отмечены простои, соответственно в 74 случаях их не было. После рационализаторского предложения, направленного на уменьшение простоев, вновь было проведено наблюдение, но уже за 66 станками. При этом в 27 случаях были отмечены простои, в 39 -- нет. В данном случае сопоставляются два признака, причем альтернативных.
1 признак -- наличие или отсутствие рационального предложения;
2 признак -- наличие или отсутствие простоев.
Ни тот, ни другой признак нельзя выразить числено. Поэтому введем следующие обозначения.
Первый признак (х): -- наличие рационального предложения (1), отсутствие -- (0).
Второй признак (у): -- отсутствие простоев (1), наличие простоев (0).
Наши наблюдения представим таблицей:
66 |
133 |
199 |
||
0 |
27 |
74 |
101 |
|
1 |
39 |
59 |
98 |
|
y/x |
1 |
0 |
Для центральной части таблицы введем специальные обозначения
c |
d |
|
a |
b |
коэффициент корреляции (коэффициент ассоциации). Он так же меняется от -1 до +1 и для нашего примера равен:
Очень маленький коэффициент. Показывает, что связь между рациональным предложением и уменьшением числа простоев очень мала. Конечно, простои уменьшились, но не настолько эффективно, как бы этого хотелось.
Подобные документы
Предмет, метод и организация статистики - науки, изучающей количественную сторону массовых явлений и процессов в неразрывной связи с их качественной стороной. Причинность, регрессия, корреляция, как основные статистические методы выявления взаимосвязи.
учебное пособие [3,8 M], добавлен 05.02.2011Предмет и метод статистической науки. Методология наблюдения, статистическая сводка, группировка, таблицы и графики, показатели и средние величины. Показатели вариации, выборочное наблюдение. Корреляционно-регрессионный анализ. Экономические индексы.
лекция [1,2 M], добавлен 02.01.2014Предмет и метод статистики. Группировка и ряд распределения. Абсолютные, относительные, средние величины, показатели вариации. Выборочное наблюдение, ряды динамики. Основы корреляционного и регрессионного анализа. Статистика населения и рынка труда.
методичка [2,2 M], добавлен 16.02.2011Предмет и метод статистики. Сущность и основные аспекты статистического наблюдения. Ряды распределения. Статистические таблицы. Абсолютные величины. Показатели вариации. Понятие о статистических рядах динамики. Сопоставимость в рядах динамики.
шпаргалка [31,9 K], добавлен 26.01.2009Анализ обобщающих показателей и закономерностей социально-экономических явлений и процессов в конкретных условиях места и времени. Описание количественной стороны массовых социально-экономических явлений, отражаемых посредством показателей статистики.
контрольная работа [761,6 K], добавлен 22.01.2015Средние величины и показатели вариации. Агрегатные индексы физического объёма товарной массы. Группировка статистических данных. Индивидуальные и сводный индексы себестоимости единицы продукции. Показатели ряда динамики. Расчёт стоимости основных средств.
контрольная работа [306,8 K], добавлен 04.06.2015Основные категории и понятия теории статистики. Ряды динамики и их применение в анализе социально-экономических явлений. Сводка и группировка статистических данных. Общая характеристика системы национальных счетов. Статистика рынка товаров и услуг.
курс лекций [68,4 K], добавлен 08.08.2009Статистика как общественная наука, изучающая количественную сторону массовых общественных явлений с целью выявления их особенностей и закономерностей развития. Понятия, предмет, задачи, система статистических показателей. Организация статистики в России.
реферат [16,8 K], добавлен 04.06.2010Понятие и уровни статистики, связь с другими науками. Ее категории: единица, показатель, совокупность варьирующих явлений, атрибутивные и количественные признаки, закономерность изменения массовых явлений и процессов. Стадии статистических исследований.
презентация [104,5 K], добавлен 16.03.2014Географическое положение и экономический потенциал Сочинской таможни. Средние величины и показатели вариации. Сопоставления уровней социально-экономических явлений во времени. Ряды динамики. Анализ динамики внешней торговли в зоне деятельности таможни.
курсовая работа [63,9 K], добавлен 22.11.2013