Статистика
История, пути и направления статистической науки. Виды таблиц в зависимости от разработки подлежащего. Организация государственной статистики. Сущность средних величин. Задачи статистики в области рядов динамики. Математические свойства дисперсий.
Рубрика | Экономика и экономическая теория |
Вид | курс лекций |
Язык | русский |
Дата добавления | 09.12.2009 |
Размер файла | 95,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
3. Средний темп роста Изменение (рост) социально-экономических явлений происходит по правилу сложных процентов. Средняя геометрическая из годовых темпов роста равна: 4. Средний темп прироста Выявление основной тенденции развития динамических рядов Существует два подхода: механическое и аналитическое выравнивание.
Механическое выравнивание:
Выявление основной тенденции может быть осуществлено графически.
Способ укрупнения интервалов.
Метод скользящей средней.
Рассмотрим подробнее последний метод. Итак, смысл аналитического выравнивания методом скользящей средней состоит в том, что он позволяет сглаживать случайные колебания в уровнях развития явления во времени. Поэтому период охватываемой средней постоянно меняется.
Период осреднения как правило выбирается равным временному периоду, в течение которого начинается и заканчивается цикл развития какого-либо явления.
Пример расчета пятилетней скользящей средней:
Год |
у |
Скользящая средняя |
|
1990 |
10,9 |
- |
|
91 |
9,7 |
- |
|
92 |
13,1 |
11,40 |
|
93 |
11,1 |
11,98 |
|
94 |
12,2 |
12,78 |
|
95 |
13,8 |
12,82 |
|
96 |
13,7 |
13,26 |
|
97 |
13,3 |
13,24 |
|
98 |
12,8 |
- |
|
99 |
12,6 |
- |
У этого метода есть ряд недостатков:
в зависимости от периода осреднения мы теряем 1,2,3 и более уровней ряда;
подсчитанные нами показатели не относятся ни к какому конкретному периоду времени.
Из-за этого не представляется возможным осуществлять прогнозирование развития изучаемых явлений.
Скользящая средняя может быть рассчитана и как взвешенная.
Методы аналитического выравнивания. Это наиболее эффективные методы выравнивания. Имеют конечный вид функции времени (уравнения времени). Возможно выравнивание по прямой, по гиперболе, по параболе 2-го или 3-го порядка.
Задача состоит в том, чтобы подобрать для конкретного ряда динамики такую логарифмическую кривую, которая бы наиболее точно отображала черты фактической динамики. Решение этой задачи часто связано с методом наименьших квадратов, т.к. наилучшим считается такое приближение выровненных данных к эмпирическим, при которых сумма квадратов их отклонений является минимальной: Техника аналитического выравнивания по прямой имеет наиболее простое выражение.
Система уравнений упрощается, если значение подобрать таким образом, чтобы т.е. перенести начало отсчета в середину рассматриваемого периода.
Годы |
Студентов |
t |
t2 |
yt |
yt |
|
1986 |
98,4 |
-4 |
16 |
-393,6 |
94,8 |
|
87 |
97,9 |
-3 |
9 |
-293,7 |
96,0 |
|
88 |
97,2 |
-2 |
4 |
-194,7 |
97,2 |
|
89 |
95,7 |
-1 |
1 |
-95,7 |
98,4 |
|
90 |
95,0 |
0 |
0 |
0 |
99,6 |
|
91 |
99,2 |
1 |
1 |
99,2 |
100,6 |
|
92 |
102,4 |
2 |
4 |
204,8 |
102,0 |
|
93 |
104,0 |
3 |
9 |
312,0 |
103,2 |
|
94 |
106,2 |
4 |
16 |
424,8 |
104,4 |
|
896,0 |
0 |
60 |
73,4 |
896,4 |
10.6 Прогнозирование и интерполяция
Прогнозирование (экстраполяция) - это определение будущих размеров экономического явления.
Интерполяция - это определение недостающих показателей уровней ряда.
Наиболее простым методом прогнозирования является расчет средних характеристик роста (средний абсолютный прирост, средний темп роста и т.д.) и перенесение их на будущие даты. Прогнозирование на основе аналитического выравнивания является наиболее распространенным методом.
Тема 11. Статистическое измерение связи
11.1 Задачи статистики в изучении связи. Взаимосвязанные признаки и их классификация
Задачи статистики состоят в выявлении связи, определении ее направления и ее измерении. Наиболее же общая задача - это прогнозирование и регулирование социально-экономических явлений на основе полученных представлений о связях между явлениями.
Статистика рассматривает экономический закон как существенную и устойчивую связь между определенными явлениями и процессами. Познавая связи, статистика познает законы. А их знание позволяет управлять общественным развитием. Основой изучения связей является качественный анализ.
Различают два вида признаков:
Факторные - те, которые влияют на изменение других процессов.
Результативные - те, которые изменяются под воздействием других признаков.
11.2 Виды и формы связей, различаемые в статистике
В статистике связи классифицируются по степени их тесноты. Исходя из этого различают функциональную (полную) и статистическую (неполную, корреляционную) связь.
Функциональная связь - такая связь, при которой значение результативного признака целиком определяется значением факторного (например, площадь круга) . Она полностью сохраняет свою силу и проявляется во всех случаях наблюдения и для всех единиц наблюдения. Каждому значению факторного признака соответствует одно или несколько определенных значений результативного признака.
Для корреляционной связи характерно то, что одному и тому же значению факторного признака может соответствовать сколько угодно различных значений результативного признака. Здесь связь проявляется лишь при достаточно большом количестве наблюдений и лишь в форме средней величины.
По направлению изменений факторного и результативного признака различают связь прямую и обратную.
Прямая связь - такая связь, при которой с изменением значений факторного признака в одну сторону, в ту же сторону меняется и результативный признак.
Обратная связь - такая связь, при которой с увеличением (уменьшением) факторного признака происходит уменьшение (увеличение) результативного признака.
По аналитическому выражению выделяются две основные формы связи:
прямолинейная (выражается уравнением прямой) ;
криволинейная (описывается уравнениями кривых линий - гипербол, парабол, степенных функций) .
11.3 Методы изучения связей
Описательные (механические) методы
К ним относятся: (1) метод приведения параллельных рядов,
(2) балансовый метод,
(3) графический метод,
(4) метод аналитической группировки.
Наибольший эффект достигается при комбинировании нескольких методов.
(1) Метод приведения параллельных рядов
Приводится ряд данных по одному признаку и параллельно с ним - по другому признаку, связь с которым предполагается. По вариации признака в первом и втором ряду судят о наличии связи признаков. Такой метод позволяет вывести только направление связи, но не измерить ее.
(2) Балансовый метод
Взаимосвязь может быть также охарактеризована с помощью балансов.
Пример: межрайонная связь.
Р-н приб. Р-н отпр. |
А |
Б |
В |
Г |
Итого отправлено |
|
А |
20 |
100 |
80 |
60 |
260 |
|
Б |
50 |
30 |
40 |
70 |
190 |
|
В |
40 |
60 |
25 |
80 |
205 |
|
Г |
100 |
50 |
90 |
35 |
275 |
|
Итого прибыло |
210 |
240 |
235 |
245 |
930 |
(3) Графический метод
Может использоваться как самостоятельно, так и совместно с другими методами.
Если конкретные данные перенести на график, то полученное изображение называется полем корреляции. На оси абсцисс откладывается значение факторного признака, а на оси ординат - результативного. Каждая единица, обладающая определенным значением факторного и результативного признака, обозначается точкой.
Беспорядочное расположение говорит об отсутствии связи. Наоборот, чем сильнее связь, тем теснее точки группируются вокруг определенной линии.
(4) Метод аналитической группировки
Сначала выбираются два признака: факторный и результативный. По факторному признаку производится группировка, а по результативному - подсчет средних или относительных величин.
Путем сопоставления характера изменений значений факторного и результативного признака можно сделать вывод о наличии связи и ее направлении. При помощи метода аналитической группировки можно сделать вывод и о тесноте связи.
Пример: среднегодовая з/п работников-текстильщиков в 1849 г.
Группы предприятий по числу работников |
З/п в рублях |
|
более 1000 |
219 |
|
501- 1000 |
204 |
|
101 - 500 |
198 |
|
51 - 100 |
188 |
|
24 - 50 |
192 |
|
менее 20 |
164 |
Аналитические методы
Это основные методы изучения связи. Они делятся на непараметрические и параметрические.
Непараметрические
Их еще называют ранговыми методами. Они связаны с расчетами различных коэффициентов. Применяются как отдельно, так и совместно с параметрическими. Особенно эффективны непараметрические методы, когда необходимо измерить связь между качественными признаками. Они проще в вычислении и не требуют никаких предположений о законе распределения исходных статистических данных, т.к. при их расчете оперируют не самими значениями признаков, а их рангами, частотами, знаками и т.д.
Коэффициент Фехнера (коэффициент совпадения знаков)
x |
y |
|
x1 x2 x3 . . . xn |
y1 y2 y3 . . . yn |
|
х = хi - х |
y = yi - y |
|
- + + - + + - |
+ + - - + - + |
Расчет основан на применении первых степеней отклонений значений признака от среднего уровня ряда двух связанных признаков.
i = |
кол-во совпадений - кол-во несовпадений |
|
общее количество отклонений |
i = |
3 - 4 |
= - |
1 |
|
7 |
7 |
Коэффициент совпадения знаков может принимать значения от -1 до +1. Чем ближе значение коэффициента к |1|, тем связь более тесная. Знак коэффициента говорит о направлении, величина - о силе связи.
Коэффициенты ассоциации и контингенции Используются для измерения связи между двумя качественными признаками, состоящими только из двух групп.
..... |
..... |
Итого |
||
..... |
a |
b |
a + b |
|
..... |
d |
c |
c + d |
|
Итого |
a + c |
b + d |
a + b+ c+ d |
|
Оценка Посещение |
Неудовлетв. |
Положит. |
Итого |
|
Посещали |
86 |
14 |
100 |
|
Не посещали |
22 |
28 |
50 |
|
Итого |
108 |
42 |
150 |
- коэфф. ассоциации;
- коэфф. контингенции.
Коэффициент контингенции всегда меньше коэффициента ассоциации. Связь считается подтвержденной, если или .
Коэффициент Спирмана (ранговый коэффициент) Рассчитывается по следующей формуле:
.
№ п/п |
Себестоимость единицы прод. |
Средняя з/п |
Ранги |
di = Rz - Rf |
di2 |
||
Rz |
Rf |
||||||
1. |
68,8 |
168,5 |
3 |
6 |
-3 |
9 |
2. |
70,2 |
158,7 |
5 |
1 |
4 |
16 |
|
3. |
71,4 |
171,7 |
7 |
8 |
-1 |
1 |
|
4. |
78,5 |
183,9 |
10 |
10 |
0 |
0 |
|
5. |
66,9 |
160,4 |
2 |
2 |
0 |
0 |
|
6. |
69,7 |
165,2 |
4 |
5 |
-1 |
1 |
|
7. |
72,3 |
175,0 |
8 |
9 |
-1 |
1 |
|
8. |
77,5 |
170,4 |
9 |
7 |
2 |
4 |
|
9. |
65,2 |
162,7 |
1 |
3 |
-2 |
4 |
|
10. |
70,7 |
163,0 |
6 |
4 |
2 |
4 |
|
Итого |
40 |
Коэффициент Спирмана может принимать значения от -1 до +1, причем чем ближе значение коэффициента к |1|, тем связь более тесная. Знак коэффициента говорит о направлении связи.
Непараметрические Главным параметрическим методом является корреляционный. Он заключается в нахождении уравнения связи, в котором результативный признак зависит только от интересующего нас фактора (или нескольких факторов) . Все прочие факторы, также влияющие на результат, принимаются за постоянные средние.
Удобной формой изучения связи является корреляционная таблица. В этой таблице одни признаки располагаются по строкам, а другие - в колонках. Числа, стоящие на пересечении строк и колонок, показывают, сколько раз встречается данное значение факторного признака с данным значением результативного.
Рассмотрим следующую схему:
К-во станков Час. прод. |
3-5 |
5-7 |
7-9 |
9-11 |
fy |
|
10-15 |
5 |
5 |
||||
15-20 |
2 |
4 |
2 |
8 |
||
20-25 |
6 |
1 |
7 |
|||
25-30 |
6 |
6 |
||||
30-35 |
2 |
2 |
4 |
|||
fx |
7 |
10 |
11 |
2 |
30 |
По такой таблице можно сделать выводы (1) о том, существует ли связь, (2) о ее направлении и (3) о ее интенсивности (при условии существования связи) .
В указанных уравнениях величина результативного признака представляет собой функцию только одного фактора х. Все прочие факторы приняты за постоянную и выражены параметром а0.
Таким образом, при выравнивании фактические значения у заменяются значениями, вычисленными по уравнению. Поскольку все факторы, определяющие у, являются постоянными средними величинами, постольку и выровненные значения (ух) являются средними величинами () .
Параметры а1 (а в уравнении параболы и а2) называются коэффициентами регрессии. В корреляционном анализе эти параметры показывают меру, в которой изменяется у при изменении х на одну единицу.
При линейной зависимости коэффициент регрессии а1 называется также коэффициентом пропорциональности. Он положителен при прямой зависимости, отрицателен - при обратной.
Параметр же а0 показывает влияние на результативный фактор множества неучтенных факторов.
Уравнение регрессии имеет большую ценность, поскольку позволяют экстраполировать показатели связи за пределы исследованных данных.
Корреляционное отношение для выровненных значений результативного признака рассчитывается так же, как и для значений, полученных на основе группировок.
В этом случае вся вариация результативного признака за счет всех факторов обозначается Вариация результативного признака за счет всех факторов, кроме х, равна Вариация за счет интересующего нас фактора х равна разности Дисперсия, характеризующая величину вариации за счет фактора х, может быть рассчитана непосредственно как Отсюда Данное корреляционное отношение применяется во всех случаях изучения связи для оценки ее тесноты независимо от формы связи (прямолинейной или криволинейной) .
Для прямолинейной связи может быть преобразовано в специальный линейный коэффициент корреляции Значение его колеблется от -1 до +1. Знак говорит о направлении, а величина - о тесноте связи.
Тема 12. Выборочный метод
12.1 Основы выборочного метода
Выборочное наблюдение - одно из наиболее современных видов статистического наблюдения. Выборочное наблюдение - это такое наблюдение, при котором обследованию подвергается часть единиц изучаемой совокупности, отобранных на основе научно разработанных принципов, обеспечивающих получение достаточного количества достоверных данных, для того чтобы охарактеризовать всю совокупность в целом.
Средние и относительные показатели, полученные на основе выборочных данных, должны достаточно полно воспроизводить или репрезентатировать соответствующие показатели совокупности в целом.
Логика выборочного наблюдения
определение объекта и целей выборочного наблюдения;
выбор схема отбора единиц для наблюдения;
расчет объема выборки;
проведение случайного отбора установленного числа единиц из генеральной совокупности;
наблюдение отобранных единиц по установленной программе;
расчет выборочных характеристик в соответствии с программой выборочного наблюдения;
определение ошибки, ее размера;
распространение выборочных данных на генеральную совокупность;
анализ полученных данных.
Основные преимущества
Выборочное наблюдение можно осуществить по более широкой программе.
Выборочное наблюдение более дешевое с точки зрения затрат на его проведение.
Выборочное наблюдение можно организовать тогда и в тех случаях, когда отчетностью мы воспользоваться не можем.
Основные недостатки
Полученные данные всегда содержат в себе ошибку, о результатах наблюдения можно судить лишь с определенной степенью достоверности. Но по сравнению с другими видами наблюдения это достоинство выборочного метода.
Для его проведения требуются квалифицированные кадры.
Вся совокупность единиц, из которых производится отбор, называется генеральной. Совокупность единиц отобранных называется выборочной.
Для генеральной совокупности - Для выборочной совокупности - Обычно частота обозначается как, а относительная численность единиц выборочной совокупности, обладающая данным признаком, называется частостью -. Если численность единиц выборочной совокупности обозначить через, то получим:.
12.2 Ошибки выборки
Чтобы оценить степень точности выборочного наблюдения, необходимо оценить величину ошибок, которые могут возникнуть в процессе проведения выборочного наблюдения.
Основное внимание уделяется случайным ошибкам репрезентативности.
12.3 Средняя ошибка выборки
Мерой колеблемости возможных значений выборочной средней является средний квадрат отклонений вариантов выборочной средней от генеральной, взвешенной по их вероятностям, т.е. дисперсия выборочной средней.
Отсюда видно, что средняя ошибка выборки прямо пропорциональна среднему квадратическому отклонению и обратно пропорциональна квадратному корню из численности выборки.
Если выборка используется для определения доли признака, то средняя ошибка выборки определяется по следующей формуле: Когда значение и значение неизвестны, то значение принимается равным.
12.4 Предельная ошибка выборки
Средняя ошибка выборки используется для определения возможных отклонений показателей выборочной совокупности от соответствующих показателей генеральной совокупности.
С определенной вероятностью можно утверждать, что эти отклонения не превысят заданной величины, которая называется предельной ошибкой выборки.
Предельная ошибка связана со следующим равенством: - коэффициент, зависящий от вероятности, с которой можно гарантировать определенные размеры предельной ошибки выборки. Применительно к выборочному методу из теоремы Черышева следует, что с увеличением значений величина вероятности быстро приближается к единице.
t |
p |
|
1 |
0,683 |
|
2 |
0,954 |
|
3 |
0,997 |
|
4 |
0,999936 |
|
: |
: |
В связи с этим, увеличивая численность выборки, можно отклонение выборочной средней от генеральной довести до сколь угодно малых размеров, причем этот результат можно гарантировать с вероятностью сколь угодно близкой к единице.
12.5 Основные виды выборки, способы отбора
Какой бы способ отбора мы не применяли, на последнем этапе в любом случае надо обеспечить случайную выборку, для того чтобы уменьшить размер выборки. Вид выборки определятся способом отбора единиц, подвергающихся наблюдению.
Выборочная совокупность может быть образована либо путем последовательного отбора единиц, либо путем последовательного отбора групп.
Если перед отбором совокупность разбивается на отдельные группы, из которых затем производится индивидуальный отбор, то такая выборка называется типической, районированной, стратифицированной. Если отбирают целые серии и в них проводится сплошное наблюдение, то такая выборка называется серийной, или гнездовой.
Выборка в любом из указанных видов может быть осуществлена путем повторного или бесповторного отбора. Повторный - это такой отбор, при котором каждая единица или серия участвует в отборе столько раз, сколько отбирают единиц или серий. При бесповторном отборе отобранная единица больше не участвует в отборе.
Случайность отбора обеспечивается следующими механизмами:
путем жеребьевки;
путем механической выборки (все единицы совокупности располагаются в определенном порядке, а затем в зависимости от численности выборки отбираются определенные единицы) ;
с помощью таблицы случайных чисел.
В зависимости от процедуры отбора расчет предельной ошибки выборки имеет определенную модификацию.
Предельная ошибка выборки |
|||
Для средней |
Для доли |
||
Повторный отбор |
|||
Бесповторный отбор |
12.6 Примеры задач
Пример 1. Найти среднюю и с вероятностью 0,954 - предельную ошибку среднего бала, если дисперсия успеваемости равна 0,56, а обследованию подвергнуто 100 студентов.
Что произойдет с ошибкой среднего балла, если обследовать 400 студентов? - Ошибка уменьшится в два раза. Это значит, что ошибку 0,06 можно будет гарантировать с вероятностью 0,954.
Пример 2.
Какую ошибку доли отобранных деталей можно ожидать с вероятностью 0,9, если дисперсия равна 0,09, а обследованию подвергнуто 400 деталей?
12.7 Численность выборки
Из формулы предельной ошибки выборки формула для расчета численности выборки: Пример 3. Сколько изделий необходимо отобрать для исчисления процента бракованных с ошибкой не более 2 % при вероятности 0,954, если вариация изучаемого признака максимальная.
Пример 4.
Какое количество станков надо обследовать, чтобы ошибка среднего срока службы не превышала 1 год с вероятностью 0,997, если дисперсия срока службы станка равна 25 годам.
12.8 Повторный групповой отбор
В зависимости от того, отбираются ли единицы или же группы, различают индивидуальный или групповой отбор. При повторном групповом отборе (повторный индивидуальный мы уже рассмотрели) предельная ошибка выборки равна:
Для средней |
Для доли |
|
Пример 5.
По данным выборочного обследования средняя удойность коров на 400 обследованных фермах составила 2200 литров в год. Найти ошибку удойности с вероятностью 0,954, если коэффициент вариации удойности коров между фермами равен 10 %.
Пример 6.
Сколько учебных групп необходимо обследовать, чтобы ошибка среднего балла успеваемости по интересующей нас дисциплине не превышала 0,2 с вероятностью 0,954, если дисперсия оценок между группами равна 0,1.
12.9 Многоступенчатый отбор
Ошибка многоступенчатого отбора в общем виде может быть представлена следующей формулой: Для комбинационного отбора предельная ошибка выборки равна: Пример 7. В результате комбинационной выборки оказалось, что средний процент выполнения норм выработки равен 135 %. Дисперсия признака между предприятиями равна 60, а в среднем для отдельных предприятий - 400. Рассчитать ошибку среднего процента выполнения норм с вероятностью 0,954, если на первой ступени отобрано 100 предприятий, а на второй - 1000 рабочих данной профессии.
12.10 Бесповторный отбор
При бесповторном отборе в формулу вносим коэффициент: Соответствующим образом модифицируем формулу для численности (при бесповторном отборе)
12.11 Определение границ изменения генеральной средней
Пример 8. В результате выборочного наблюдения затраты времени на оформление финансовых документов мы поместили в таблицу.
Затраты времени |
20-22 |
22-24 |
24-26 |
26-28 |
Всего |
|
Число обследований |
67 |
133 |
127 |
73 |
400 |
Определить границы затрат времени на оформление финансовых документов с вероятностью 0,997.
Интервал |
||||||
20-22 |
21 |
67 |
-2 |
-134 |
268 |
|
22-24 |
23 |
133 |
-1 |
-133 |
133 |
|
24-26 |
25 |
127 |
0 |
0 |
0 |
|
26-28 |
27 |
73 |
1 |
73 |
73 |
|
Сумма |
400 |
-194 |
474 |
Таким образом, с вероятностью 0,997 можно утверждать, что время, затраченное на оформление одного финансового документа, равно
Подобные документы
Развитие статистической науки. Предмет статистики, задачи и методология. Структура статистической науки. Организация статистики в Российской Федерации. Общегосударственная и ведомственная статистика. Информационный фонд.
реферат [23,4 K], добавлен 09.10.2006Понятие статистики как науки, предмет и методы ее изучения, основные цели и задачи. Категории статистики и ее показатели, способы представления результатов. Сущность и классификация относительных и средних величин. Понятие ряда динамики и его анализ.
реферат [192,6 K], добавлен 15.05.2009История развития статистики в России. Деятельность видных ученых в развитии статистики как науки. Основные задачи статистики. Общая теория статистики, экономическая статистика, социальная статистика. Отраслевая статистика.
реферат [23,9 K], добавлен 12.12.2006Понятие статистики, ее назначение, уровни, предмет и система. Теоретические основы статистики как отрасли экономической науки, ее категории. Особенности статистической методологии. Современная организация статистики в Российской Федерации и её задачи.
реферат [33,2 K], добавлен 27.01.2011Задачи государственной статистики. Способы получения статистической информации в Беларуси. Определение величины интервала группировки заводов по среднегодовой стоимости производственных фондов. Динамика средних цен и объема продажи на рынках города.
контрольная работа [119,1 K], добавлен 21.06.2015Понятие и предмет статистики, теоретические основы и категории, взаимосвязь с другими науками. Объект и метод изучения статистики. Основные задачи, принципы организации и функции государственной статистики в РФ. Примеры статистической закономерности.
лекция [17,3 K], добавлен 02.03.2012Понятие статистики как науки, история её возникновения и развития. Основные виды хозяйственного учёта и статистическая деятельность в Республике Беларусь. Формула расчета индивидуального индекса цен. Классификация рядов динамики в экономическом анализе.
лекция [388,7 K], добавлен 10.04.2013История происхождения статистики как научной дисциплины. Сущности и свойства статистической совокупности. Понятие, формы организации, виды и документальное сопровождение статистического наблюдения. Описание ошибок регистрации и репрезентативности.
реферат [52,6 K], добавлен 13.11.2010Изучение с количественной стороны массовых явлении и их закономерностей (статистика). Понятия статистической совокупности, наблюдения, группировки, абсолютных и относительных величин, средней арифметической, отклонения, индексов, тренда рядов динамики.
шпаргалка [36,8 K], добавлен 15.12.2009Понятие статистики, пути ее развития, отличительные черты массовых явлений и признаки единиц совокупности. Формы, виды и способы статистического наблюдения. Задачи и виды статистической сводки. Метод группировки, абсолютные и относительные показатели.
реферат [33,9 K], добавлен 20.01.2010