Сероводород и адаптация растений к действию абиотических стрессоров
Сероводород как один из ключевых газотрансмиттеров в растительных и животных клетках. Защитные реакции растений при действии стресс-факторов. Пути синтеза сероводорода, его функциональное взаимодействие с другими сигнальными посредниками и фитогормонами.
Рубрика | Экология и охрана природы |
Вид | статья |
Язык | русский |
Дата добавления | 09.10.2020 |
Размер файла | 586,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Сероводород является участником трансдукции сигналов ключевых фитогормонов, задействованных в адаптивных процессах: АБК, ЖАК и салициловой кислоты [8, 9]. С другой стороны, H2S может индуцировать синтез ЖАК [75] и активировать экспрессию гена COI1, кодирующего рецептор жасмоната [9].
Функциональное взаимодействие со многими сигнальными посредниками и фитогормонами, по-видимому, обусловливает участие сероводорода в формировании перекрестной устойчивости растений к стрессорам различной природы [12]. Сероводород оказывает выраженное активирующее влияние на адаптивные процессы, обусловливающие неспецифическую устойчивость растений к стрессорам, в частности, на экспрессию генов антиоксидантных ферментов и на накопление полифункциональных низкомолекулярных соединений с защитными эффектами, например вторичных метаболитов. Эти эффекты сероводорода позволяют рассматривать его доноры в качестве соединений, перспективных для применения в растениеводстве [92]. Однако их использование пока ограничивается недостаточной изученностью механизмов действия сероводорода и отсутствием технологически «удобных» доноров. Наиболее популярный донор сероводорода NaHS, как уже отмечалось, быстро разлагается и вызывает резкое и кратковременное повышение содержания H2S в клетках. В то же время органические доноры сероводорода, используемые в фармакологии, пока являются дорогими и малодоступными для применения в растениеводстве. Более успешным оказалось практическое применение сероводорода в технологии хранения сельскохозяйственной продукции. Так, использование NaHS при хранении плодов и ягод препятствует их созреванию и старению, способствует сохранению пула антиоксидантов, в частности, аскорбиновой кислоты, фенольных соединений, флавоноидов [12, 93]. Также сероводород может быть использован для продления жизни срезанных цветков [10]. В целом, несомненно, что дальнейшее изучение эффектов сероводорода позволит, с одной стороны, глубже понять механизмы адаптации и, вероятно, скорректировать представления о действии уже достаточно изученных стресс-протекторов, с другой - создать теоретические основы для новых подходов в агробиотехнологиях.
Литература
1. He H., He L. The role of carbon monoxide signaling in the responses of plants to abiotic stresses // Nitric Oxide. 2014. Vol. 42. PP. 40-43.
2. Yamasaki H., Cohen M.F. Biological consilience of hydrogen sulfide and nitric oxide in plants: Gases of primordial earth linking plant, microbial and animal physiologies // Nitric Oxide. 2016. Vol. 55-56. PP. 91-100.
3. Singh S., Kumar V, Kapoor D., Kumar S., Singh S., Dhanjal D.S., Datta S., Samuel J., Dey P., Wang S., Prasad R., Singh J. Revealing on hydrogen sulfide and nitric oxide signals co-ordination for plant growth under stress conditions // Physiologia Plantarum. 2019.
4. Сукманский О.И, Реутов В.П. Газотрансмиттеры: физиологическая роль и участие в патогенезе заболеваний // Успехи физиологических наук. 2016. Т. 47, № 3. С. 30-58.
5. Rennenberg H. The fate excess of sulfur in higher plants // Annual Review of Plant Physiology. 1984. Vol. 35. PP. 121-153.
6. Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed // Physiological Reviews. 2012. Vol. 92, № 2. PP. 791-896.
7. Li Z.G. Hydrogen sulfide: a multifunctional gaseous molecule in plants // Russian J Plant Physiology. 2013. Vol. 60, № 6. PP. 733-740.
8. Li Z.-G., Min X., Zhou Z.-H. Hydrogen sulfide: A signal molecule in plant crossadaptation // Frontiers in Plant Science. 2016. Vol. 7, № 1621.
9. Li H., Li M., Wei X., Zhang X., Xue R., Zhao Y, Zhao H. Transcriptome analysis of drought-responsive genes regulated by hydrogen sulfide in wheat (Triticum aestivum L.) leaves // Molecular Genetics and Genomics. 2017. Vol. 292, № 5. PP 1091-1110.
10. Zhang H., Hu S.-L., Zhang Z.-J., Hu L.-Y, Jiang C.-X., Wei Z.-J., Liu J., Wang H.-L., Jiang S.-T. Hydrogen sulfide acts as a regulator of flower senescence in plants // Postharvest Biology and Technology. 2011. Vol. 60, № 3. PP. 251-257.
11. Li Z.-G., Gong M., Liu P. Hydrogen sulfide is a mediator in H2O2-induced seed germination in Jatropha curcas // Acta Physiologiae Plantarum. 2012. Vol. 34, № 6. PP. 2207-2213.
12. Ziogas V., Molassiotis A., Fotopoulos V., Tanou G. Hydrogen sulfide: A potent tool in postharvest fruit biology and possible mechanism of action // Frontiers in Plant Science. 2018. Vol. 9. P 1375.
13. Shi H., Ye T., Han N., Bian H., Liu X., Chan Z. Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis // Journal of Integrative Plant Biology. 2015. Vol. 57, № 7. PP. 628-640.
14. Banerjee A., Tripathi D.K., Roychoudhury A. Hydrogen sulphide trapeze: environmental stress amelioration and phytohormone crosstalk // Plant Physiology and Biochemistry. 2018. Vol. 132. PP. 46-53.
15. Romero L.C., Garda I., Gotor C. L-cysteine desulfhydrase 1 modulates the generation of the signaling molecule sulfide in plant cytosol // Plant Signaling & Behavior. 2013. Vol. 8, № 5. PP. 4621-4634.
16. Riemenschneider A., Wegele R., Schmidt A., Papenbrock J. Isolation and characterization of a D-cysteine desulfhydrase protein from Arabidopsis thaliana // The FEBS Journal. 2005. Vol. 272, № 5. PP. 1291-1304.
17. Guo H., Xiao T., Zhou H., Xie Y., Shen W. Hydrogen sulfide: a versatile regulator of environmental stress in plants // Acta Physiologiae Plantarum. 2016. Vol. 38. P 16.
18. Li Z.G. Chapter thirteen - Analysis of some enzymes activities of hydrog
19. Wirtz M., Hell R. Functional analysis of the cysteine synthase protein complex from plants: structural, biochemical and regulatory properties // Journal of Plant Physiology. 2006. Vol. 163, № 3. PP. 273-286.
20. Zhang H. Hydrogen Sulfide in Plant Biology // Signaling and Communication in Plants. Lamattina L and Garcia-Mata C., editors. Vol. Gasotransmitters in Plants. The Rise of a New Paradigm in Cell Signaling. Baluska F., series editor. Switzerland : Springer International Publishing, 2016. PP 23-51.
21. Lisjak M., Teklic T., Wilson I.D. Whiteman M., Hancock J.T. Hydrogen sulfide: environmental factor or signalling molecule? // Plant Cell & Environment. 2013. Vol. 36, № 9. PP. 1607-1616.
22. Hancock J.T. Hydrogen sulfide and environmental stresses // Environmental and Experimental Botany. 2019. Vol. 161. PP. 50-56.
23. Gruhlke M.C. Reactive Sulfur Species A New Player in Plant Physiology? // Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism, Signaling and Defense Mechanisms / eds Hasanuzzaman M. et al. John Wiley & Sons Ltd., 2019. Vol. 2. PP. 715-728.
24. Колупаев Ю.Е., Карпец Ю.В., Кабашникова Л.Ф. Антиоксидантная система растений: клеточная компартментация, защитные и сигнальные функции, механизмы регуляции (обзор) // Прикладная биохимия и микробиология. 2019. Т 55, № 5. С. 419-440.
25. Cuevasanata E., Lange M., Bonanata J., Coitino E.L., Ferrer-Sueta G., Filipovic M.R., Alvarez B. Reaction of hydrogen sulphide with disulfide and sulfenic acid to form the strongly nucleophilic persulfide // The Journal of Biological Chemistry. 2015. Vol. 290, № 45. PP. 26866-26880. doi: 10.1074/jbc.M115.672816
26. Liu Z., Li Y, Cao C.,-Liang S., Ma Y.,-Liu X., Pei Y The role of H2S in low temperature- induced cucurbitacin C increases in cucumber // Plant Molecular Biology. 2019. Vol. 99, № 6. PP. 535-544.
27. Shan C., Zhang S., Ou X. The roles of H2S and H2O2 in regulating AsA-GSH cycle in the leaves of wheat seedlings under drought stress // Protoplasma. 2018. Vol. 255, № 4. PP. 1257-1262.
28. Колупаев Ю.Е., Фирсова Е.Н., Ястреб Т.О., Луговая А.А. Участие ионов кальция и активных форм кислорода в индуцировании антиоксидантных ферментов и теплоустойчивости растительных клеток донором сероводорода // Прикладная биохимия и микробиология. 2017. Т 53, № 5. С. 502-509.
29. Kolupaev Yu.E., Firsova E.N., Yastreb Т.О. Induction of plant cells heat resistance by hydrogen sulfide donor is mediated by H2O2 generation with participation of NADPH oxidase and superoxide dismutase // The Ukrainian Biochemical Journal. 2017. Vol. 89, № 4. PP. 34-42.
30. Wang L., Hou Z., Hou L., Zhao F., Liu X. H2S induced by H2O2 mediates drought-induced stomatal closure inArabidopsis thaliana // Chinese Bulletin of Botany. 2012. Vol. 47, № 3. PP. 217-225.
31. Ma Y, Zhang W., Niu J., Ren Y., Zhang F. Hydrogen sulfide may function downstream of hydrogen peroxide in salt stress-induced stomatal closure in Vicia faba // Functional Plant Biology. 2019. Vol. 46, № 2. PP. 136-145.
32. Li Z.G., Yi X.Y, Li YT. Effect of pretreatment with hydrogen sulfide donor sodium hydrosulfide on heat tolerance in relation to antioxidant system in maize (Zea mays) seedlings // Biologia. 2014. Vol. 69, № 8. PP. 1001-1009.
33. Shan C.J., Zhang S.L., Li D.F., Zhao YZ., Tian X.L., Zhao X.L., Wu YX., Wei X.Y, Liu R.Q. Effects of exogenous hydrogen sulfide on the ascorbate and glutathione metabolism in wheat seedlings leaves under water stress // Acta Physiologiae Plantarum. 2011. Vol. 33. PP. 2533-2540.
34. Hancock J.T., Whiteman M. Hydrogen sulfide and cell signaling: Team player or referee? // Plant Physiology and Biochemistry. 2014. Vol. 78. PP. 37-42.
35. Li Q., Lancaster J.R. Chemical foundations of hydrogen sulfide biology // Nitric Oxide. 2013. Vol. 35. PP. 21-34.
36. Carballal S., Trujillo M., Cuevasanta E., Bartesaghi S., Mцller M.N., Folkes L.K., Garda- Bereguiain M.A., Gutierrez-Merino C., Wardman P., Denicola A., Radi R., Alvarez B. Reactivity of hydrogen sulfide with peroxynitrite and other oxidants of biological interest // Free Radical Biology and Medicine. 2011. Vol. 50, № 1. PP. 196-205.
37. Whiteman M., Li L., Kostetski I., Chu S.H., Siau J.L., Bhatia M., Moore P.K. Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide // Biochemical and Biophysical Research Communications. 2006. Vol. 343, № 1. PP. 303-310.
38. Hancock J.T., Henson D., Nyirenda M., Desikan R., Harrison J., Lewis M., Hughes J., Neill S.J. Proteomic identification of glyceraldehyde 3-phosphate dehydrogenase as an inhibitory target of hydrogen peroxide in Arabidopsis // Plant Physiology and Biochemistry. 2005. Vol. 43, № 9. PP. 828-835.
39. Aroca A., Schneider M., Scheibe R., Gotor C., Romero L.C. Hydrogen sulfide regulates the cytosolic/nuclear partitioning of glyceraldehyde-3-phosphate dehydrogenase by enhancing its nuclear localization // Plant and Cell Physiology. 2017. Vol. 58, № 6. PP. 983-992.
40. Wang Y, Li L., Cui W., Xu S., Shen W., Wang R. Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway // Plant and Soil. 2012. Vol. 351, № 1-2. PP. 107-119.
41. Singh V.P., Singh S., Kumar J., Prasad S.M. Hydrogen sulfide alleviates toxic effects of arsenate in pea seedlings through up-regulation of the ascorbate-glutathione cycle: possible involvement of nitric oxide // Journal of Plant Physiology. 2015. Vol. 181. PP. 20-29.
42. Kolupaev Yu.E., Karpets Yu.V, Beschasniy S.P., Dmitriev A.P. Gasotransmitters and their role in adaptive reactions of plant cells // Cytology and Genetics. 2019. Vol. 53, № 5. PP. 392-406.
43. Liang Y, Zheng P., Li S., Li K., Xu H. Nitrate reductase-dependent NO production is involved in H2S-induced nitrate stress tolerance in tomato via activation of antioxidant enzymes // Scientia Horticulturae. 2018. Vol. 229. PP. 207-214.
44. Li Z.G., Yang S.Z., Long W.B., Yang G.X., Shen Z.Z. Hydrogen sulfide may be a novel downstream signal molecule in nitric oxide-induced heat tolerance of maize (Zea mays L.) seedlings // Plant, Cell & Environment. 2013. Vol. 36. № 8. PP. 1564-1572.
45. Kaur N., Gupta A.K. Signal transduction pathways under abiotic stresses in plant // Current Science. 2005. Vol. 88, № 11. PP. 1771-1780.
46. Kolupaev Yu.E., Karpets Yu.V, Dmitriev A.P. Signal mediators in plants in response to abiotic stress: calcium, reactive oxygen and nitrogen species // Cytology and Genetics. 2015. Vol. 49, № 5. PP. 338-348.
47. Li Z.G., Long W.B., Yang S.Z., Wang Y.C., Tang J.H., Wen L., Zhu B.Yu., Min X. Endogenous hydrogen sulfide regulated by calcium is involved in thermotolerance in tobacco Nicotiana tabacum L. suspension cell cultures // Acta Physiologiae Plantarum. 2015. Vol. 37 : 219.
48. Fang H., Liu Z., Long Y, Liang Y, Jin Z., Zhang L., Liu D., Li H., Zhai J., Pei Y. The Ca2+/calmodulin2-binding transcription factor TGA3 elevates LCD expression and H2S production to bolster Cr6+ tolerance in Arabidopsis // The Plant Journal. 2017. Vol. 91, № 6. PP. 1038-1050.
49. Valivand M., Amooaghaie R., Ahadi A. Interplay between hydrogen sulfide and calcium/ calmodulin enhances systemic acquired acclimation and antioxidative defense against nickel toxicity in zucchini // Environmental and Experimental Botany. 2019. Vol. 158. PP. 40-50.
50. Fang H.H., Pei Y.X., Tian B.H., Zhang L.P., Qiao Z.J., Liu Z.Q. Ca2+ participates in H2S induced Cr6+ tolerance in Setaria italica // Chinese Journal of Cell Biology. 2014. Vol. 36, № 6. PP. 758-765.
51. Jin Z., Xue S., Luo Y, Tian B., Fang H., Li H., Pei Y Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis // Plant Physiology and Biochemistry. 2013. Vol. 62. PP. 41-46.
52. Chen X., Chen Q., Zhang X., Li R., Jia Y, Ef A.A., Jia A., Hu L., Hu X. Hydrogen sulfide mediates nicotine biosynthesis in tobacco (Nicotiana tabacum) under high temperature conditions // Plant Physiology and Biochemistry. 2016. Vol. 104. PP. 174-179.
53. Shan C., Zhang S., Zhou Y. Hydrogen sulfide is involved in the regulation of ascorbate- glutathione cycle by exogenous ABA in wheat seedling leaves under osmotic stress // Cereal Research Communications. 2017. Vol. 45, № 3. PP. 411-420.
54. Shan C., Wang T., Zhou Y., Wang W. Hydrogen sulfide is involved in the regulation of ascorbate and glutathione metabolism by jasmonic acid in Arabidopsis thaliana // Biologia Plantarum. 2018. Vol. 62, № 1. PP. 188-193.
55. Tian B., Zhang Y, Jin Z., Liu Z., Pei Y Role of hydrogen sulfide in the methyl jasmonate response to cadmium stress in foxtail millet // Frontiers in Bioscience (Landmark). 2017. Vol. 22. PP. 530-538.
56. Li Z.-G., Xie L.-R., Li X.-J. Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize (Zea mays L.) seedlings // Journal of Plant Physiology. 2015. Vol. 177. PP. 121-127.
57. Li Q., Wang Z., Zhao Y, Zhang X., Zhang S., Bo L., Wang Y, Ding Y, An L. Putrescine protects hulless barley from damage due to UV-B stress via H2S- and H2O2-mediated signaling pathways // Plant Cell Reports. 2016. Vol. 35, № 5. PP. 1155-1168.
58. Pal M., Szalai G., Janda T. Speculation: Polyamines are important in abiotic stress signaling // Plant Science. 2015. Vol. 237. PP. 16-23.
59. Fu P.N., Wang W.J., Hou L.X., Liu X. Hydrogen sulfide is involved in the chilling stress response in Vitis vinifera L. // Acta Societatis Botanicorum Poloniae. 2013. Vol. 82, № 4. PP. 295-302.
60. Du X., Jin Z., Liu D., Yang G., Pei Y Hydrogen sulfide alleviates the cold stress through MPK4 in Arabidopsis thaliana // Plant Physiology and Biochemistry. 2017. Vol. 120. PP. 112-119.
61. Jin Z.P., Shen J.J., Qiao Z.J., Yang G.D., Wang R., Pei YX. Hydrogen sulfide improves drought resistance in Arabidopsis thaliana // Biochemical and Biophysical Research Communications. 2011. Vol. 414, № 3. PP. 481-486.
62. Lai D.W., Mao Y., Zhou H., Li F., Wu M., Zhang J., He Z., Cui W., Xie Y Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativa // Plant Science. 2014. Vol. 225. PP. 117-129.
63. Janicka M., Reda M., Czyzewska K., Kabala K. Involvement of signalling molecules NO, H2O2 and H2S in modification of plasma membrane proton pump in cucumber roots subjected to salt or low temperature stress // Functional Plant Biology. 2018. Vol. 45, № 4. PP. 428-439.
64. Wang H., Ji F., Zhang Y, Hou J., Liu W., Huang J., Liang W. Interactions between hydrogen sulphide and nitric oxide regulate two soybean citrate transporters during the alleviation of aluminium toxicity // Plant, Cell & Environment. 2019. Vol. 42, № 8. PP. 2340-2356.
65. Li L., Whiteman M., Guan Y.Y, Neo K.L., Cheng Y, Lee S.W., Zhao Y, Baskar R., Tan C.H., Moore P.K. Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide // Circulation. 2008. Vol. 117. PP. 2351-2360.
66. Fox B., Schantz J.T., Haigh R., Wood M.E., Moore P.K., Viner N., Spencer J.P, Winyard P.G.,Whiteman M. Inducible hydrogen sulfide synthesis in chondrocytes and mesenchymal progenitor cells: is H2S a novel cytoprotective mediator in the inflamed joint? // Journal of Cellular and Molecular Medicine. 2012. Vol. 16, № 4. PP. 896-910.
67. Lisjak M., Srivastava N., Teklic T., Civale L., Lewan-dowski K.,Wilson I., Wood M.E., Whiteman M., Hancock J.T. A novel hydrogen sulphide donor causes stomatal opening and reduces nitric oxide accumulation // Plant Physiology and Biochemistry. 2010. Vol. 48, № 12. PP. 931-935.
68. Christou A., Manganaris G.A., Papadopoulos I., Fotopoulos V. Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways // Journal of Experimental Botany. 2013. Vol. 64, № 7. PP. 1953-1966.
69. Shi H., Ye T., Chan Z. Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass (Cynodon dactylon (L). Pers.) // Plant Physiology and Biochemistry. 2014. Vol. 74. PP. 99-107
70. Shi H., Ye T., Chan Z. Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L.). Pers.) // Plant Physiology and Biochemistry. 2013. Vol. 71. PP. 226-234.
71. Колупаев Ю.Е., Горелова Е.И., Ястреб Т.О., Рябчун Н.И., Кириченко В.В. Стресс- протекторные реакции проростков пшеницы и ржи при индуцировании устойчивости к низким температурам донором сероводорода // Физиология растений. 2019. Т. 66, № 4. С. 277-285.
72. Kolupaev Yu.E., Horielova E.I., Yastreb T.O., Popov Yu.V, Ryabchun N.I. Phenylalanine ammonialyase activity and content of flavonoid compounds in wheat seedlings at the action of hypothermia and hydrogen sulfide donor // The Ukrainian Biochemical Journal. 2018. Vol. 90, № 6. PP. 12-20. h
73. Чжан Ш., Ван М.И., Ху Л.Я., Ван С.Ш., Ху К.Д., Бао Л.И., Ло И.П. Сероводород стимулирует прорастание семян пшеницы при осмотическом стрессе // Физиология растений. 2010. Т 57, № 4. С. 571-579.
74. Колупаев Ю.Е., Фирсова Е.Н., Ястреб Т.О., Рябчун Н.И., Кириченко В.В. Влияние донора сероводорода на состояние антиоксидантной системы и устойчивость растений пшеницы к почвенной засухе // Физиология растений. 2019. Т 66, № 1. С. 26-34.
75. Chen J., Shang Y.T., Wang W.H., Chen X.Y., He E.M., Zheng H.L., Shangguan Z. Hydrogen sulfide-mediated polyamines and sugar changes are involved in hydrogen sulfide-induced drought tolerance in Spinacia oleracea seedlings // Frontiers in Plant Science. 2016. Vol. 7. Р. 1173.
76. Ye S.C., Hu L.Y, Hu K.D., Li Y-H., Yan H., Zhang XQ, Zhang H. Hydrogen sulfide stimulates wheat grain germination and counteracts the effect of oxidative damage caused by salinity stress // Cereal Research Communications. 2015. Vol. 43, № 2. PP. 213-224.
77. Kharbech O., Houmani H., Chaoui A., Corpas F.J. Alleviation of Cr(VI)-induced oxidative stress in maize (Zea mays L.) seedlings by NO and H2S donors through differential organ- dependent regulation of ROS and NADPH-recycling metabolisms // Journal of Plant Physiology. 2017. Vol. 219. PP. 71-80.
78. Синькевич М.С., Дерябин А.Н., Трунова Т.И. Особенности окислительного стресса у растений картофеля с измененным углеводным метаболизмом // Физиология растений. 2009. Т 56, № 2. С. 186-192.
79. Шевякова Н.И., Бакулина Е.А., Кузнецов Вл.В. Антиоксидантная роль пролина у галофита хрустальной травки при действии засоления и параквата, инициирующих окислительный стресс // Физиология растений. 2009. Т. 56, № 5. С. 736-742.
80. Luo Z., Li D., Du R., Mou W. Hydrogen sulfide alleviates chilling injury of banana fruit by enhanced antioxidant system and proline content // Scientia Horticulturae. 2015. Vol. 183. PP. 144-151.
81. Khlestkina E.K. The adaptive role of flavonoids: emphasis on cereals // Cereal Research Communications. 2013. Vol. 41. PP. 185-198.
82. da-Silva C.J., Modolo L.V Hydrogen sulfide: a new endogenous player in an old mechanism of plant tolerance to high salinity // Acta Botanica Brasilica. 2018. Vol. 32. PP. 150-160.
83. Huang Z.-Q., Shao-Can Y.L. Hu L.-Y, Hu D. Hydrogen sulfide promotes wheat grain germination under cadmium stress // Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 2016. Vol. 86, № 4. PP. 887-895.
84. Jin Z., Wang Z., Ma Q., Sun L., Zhang L., Liu Z., Liu D., Hao X., Pei Y. Hydrogen sulfide mediates ion fluxes inducing stomatal closure in response to drought stress in Arabidopsis thaliana // Plant and Soil. 2017. Vol. 419, № 1-2. PP. 141-152.
85. Scuffi D., Nietzel T., Di Fino L.M., Meyer A.J., Lamattina L., Schwarzlander M., Laxalt A.M., Garda-Mata C. Hydrogen sulfide increases production of NADPH oxidase- dependent hydrogen peroxide and phospholipase D-derived phosphatidic acid in guard cell signaling // Plant Physiology. 2018. Vol. 176, № 3. PP. 2532-2542.
86. Lisjak M., Teklic T., Wilson I.D., Wood M.E., Whiteman M., Hancock J.T. Hydrogen sulfide effects on stomatal apertures // Plant Signaling & Behavior. 2011. Vol. 6, № 10. PP. 1444-1446. Honda K., Yamada N., Yoshida R., Ihara H., Sawa T., Akaike T., Iwai S. 8-Mercapto-Cyclic GMP mediates hydrogen sulfide-induced stomatal closure in Arabidopsis // Plant Cell Physiol. 2015. Vol. 56, № 8. PP. 1481-1489.
87. Wang L., Ma X., Che Y., Hou L., Liu X., Zhang W. Extracellular ATP mediates H2S- regulated stomatal movements and guard cell K+ current in a H2O2-dependent manner in Arabidopsis // Science Bulletin. 2015. Vol. 60, № 4. PP. 419-427.
88. Yastreb T.O., Kolupaev Yu.E., Havva E.N., Shkliarevskyi M.A., Dmitriev A.P. Calcium and components of lipid signaling in implementation of hydrogen sulfide influence on state of stomata in Arabidopsis thaliana // Cytology and Genetics. 2019. Vol. 53, № 2. PP. 99-105.
89. Corpas F.J., Gonzalez-Gordo S., Canas A., Palma J.M. Nitric oxide (NO) and hydrogen sulfide (H2S) in plants: Which is first? // Journal of Experimental Botany. 2019. Vol. 70, № 17. PP. 4391-4404. Li Z.G., Luo L.J., Sun YF. Signal crosstalk between nitric oxide and hydrogen sulfide may be involved in hydrogen peroxide induced thermotolerance in maize seedlings // Russian Journal of Plant Physiology. 2015. Vol. 62, № 4. PP. 507-514.
90. Kolupaev Yu.E., Karpets Yu.V., Yastreb Т.О. Induction of wheat plant resistance to stressors by donors of nitric oxide and hydrogen sulfide // Wheat Production in Changing Environments, eds. Hasanuzzaman M. et al. Singapore : Springer Nature Pte Ltd., 2019. PP. 521-556.
91. Aghdam M.S., Mahmoudi R., Razavi F., Rabiei V, Soleimani A. Hydrogen sulfide treatment confers chilling tolerance in hawthorn fruit during cold storage by triggering endogenous H2S accumulation, enhancing antioxidant enzymes activity and promoting phenols accumulation // Scientia Horticulturae. 2018. Vol. 238. PP. 264-271.
References
1. He H, He L. The role of carbon monoxide signaling in the responses of plants to abiotic stresses. Nitric Oxide. 2014;42:40-43.
2. Yamasaki H, Cohen MF. Biological consilience of hydrogen sulfide and nitric oxide in plants: Gases of primordial earth linking plant, microbial and animal physiologies. Nitric Oxide. 2016;55-56:91-100.
3. Singh S, Kumar V, Kapoor D, Kumar S, Singh S, Dhanjal DS, Datta S, Samuel J, Dey P, Wang S, Prasad R, Singh J. Revealing on hydrogen sulfide and nitric oxide signals coordination for plant growth under stress conditions. Physiologia Plantarum. 2019.
4. Sukmanskiy OI, Reutov VP. Gasotransmitters: Physiological role and involvement in the pathogenesis of the diseases. Uspekhi fiziologicheskikh nauk. 2016;47(3):30-58.
5. In RussianRennenberg H. The fate excess of sulfur in higher plants. Annual Review of Plant Physiology. 1984;35:121-153.
6. Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiological Reviews. 2012;92(2):791-896.
7. Li ZG. Hydrogen sulfide: a multifunctional gaseous molecule in plants. Russian J Plant Physiology. 2013;60(6):733-740. Li ZG, Min X, Zhou ZH. Hydrogen sulfide: A signal molecule in plant cross-adaptation. Frontiers in Plant Science. 2016;7:1621.
8. Li H, Li M, Wei X, Zhang X, Xue R, Zhao Y, Zhao H. Transcriptome analysis of drought-responsive genes regulated by hydrogen sulfide in wheat (Triticum aestivum L.) leaves. Molecular Genetics and Genomics. 2017;292(5):1091-1110.
9. Zhang H, Hu SL, Zhang ZJ, Hu LY, Jiang CX, Wei ZJ, Liu J, Wang HL, Jiang ST. Hydrogen sulfide acts as a regulator of flower senescence in plants. Postharvest Biology and Technology. 2011;60(3):251-257. Li ZG, Gong M, Liu P. Hydrogen sulfide is a mediator in H2O2-induced seed germination in Jatropha curcas. Acta Physiologiae Plantarum. 2012;34(6):2207-2213.
10. Ziogas V, Molassiotis A, Fotopoulos V, Tanou G. Hydrogen sulfide: A potent tool in postharvest fruit biology and possible mechanism of action. Frontiers in Plant Science. 2018;9:1375.
11. Shi H, Ye T, Han N, Bian H, Liu X, Chan Z. Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis. J of Integrative Plant Biology. 2015;57(7):628-640.
12. Banerjee A, Tripathi DK, Roychoudhury A. Hydrogen sulphide trapeze: environmental stress amelioration and phytohormone crosstalk. Plant Physiology and Biochemistry. 2018;132:46-53.
13. Romero LC, Garda I, Gotor C. L-cysteine desulfhydrase 1 modulates the generation of the signaling molecule sulfide in plant cytosol. Plant Signaling & Behavior. 2013;8(5):4621- 4634.
14. Riemenschneider A, Wegele R, Schmidt A, Papenbrock J. Isolation and characterization of a D-cysteine desulfhydrase protein from Arabidopsis thaliana. The FEBS J. 2005;272(5):1291-1304.
15. Guo H, Xiao T, Zhou H, Xie Y, Shen W. Hydrogen sulfide: A versatile regulator of environmental stress in plants. Acta Physiologiae Plantarum. 2016;38:16.
16. Li ZG. Chapter thirteen - Analysis of some enzymes activities of hydrogen sulfide metabolism in plants. Methods Enzymology. 2015;555:253-269.
17. Wirtz M, Hell R. Functional analysis of the cysteine synthase protein complex from plants: structural, biochemical and regulatory properties. J Plant Physiology. 2006;163(3):273- 286.
18. Zhang H. Hydrogen sulfide in plant biology. In: Signaling and Communication in Plants. Lamattina L and Garcia-Mata C editors. Vol. Gasotransmitters in Plants. The Rise of a New
Paradigm in Cell Signaling. Baluska F, series editor. Switzerland: Springer International Publishing; 2016. pp. 23-51.
19. Lisjak M, Teklic T, Wilson ID, Whiteman M, Hancock JT. Hydrogen sulfide: environmental factor or signalling molecule? Plant Cell & Environment. 2013;36(9):1607-1616.
20. Hancock JT. Hydrogen sulfide and environmental stresses. Environmental and Experimental Botany. 2019;161:5056
21. Gruhlke MC. Reactive sulfur species a new player in plant physiology? In: Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism, Signaling and Defense Mechanisms. Vol. 2. Hasanuzzaman M, Fotopoulos V, Nahar K and Fujita M, editors. John Wiley & Sons Ltd.; 2019. pp. 715-728.
22. Kolupaev YuE, Karpets YuV, Kabashnikova LF. Antioxidative system of plants: Cellular compartmentalization, protective and signaling functions, mechanisms of regulation (Review). Applied Biochemistry and Microbiology. 2019;55(5):441-459.
23. Cuevasanata E, Lange M, Bonanata J, Coitino EL, Ferrer-Sueta G, Filipovic MR, Alvarez B. Reaction of hydrogen sulphide with disulfide and sulfenic acid to form the strongly nucleophilic persulfide. The J Biological Chemistry. 2015;290(45):26866-26880.
24. Liu Z, Li Y, Cao C,-Liang S, Ma Y,-Liu X, Pei Y The role of H2S in low temperature- induced cucurbitacin C increases in cucumber. Plant Molecular Biology. 2019;99(6):535- 544.
25. Shan C, Zhang S, Ou X. The roles of H2S and H2O2 in regulating AsA-GSH cycle in the leaves of wheat seedlings under drought stress. Protoplasma. 2018;255(4):1257-1262.
26. Kolupaev YuE, Firsova EN, Yastreb TO, Lugovaya AA. The participation of calcium ions and reactive oxygen species in the induction of antioxidant enzymes and heat resistance in plant cells by hydrogen sulfide donor. Applied Biochemistry and Microbiology. 2017;53(5):573-579. Kolupaev Yu, Firsova EN, Yastreb TO. Induction of plant cells heat resistance by hydrogen sulfide donor is mediated by H2O2 generation with participation of NADPH oxidase and superoxide dismutase. The Ukrainian Biochemical J. 2017;89(4):34-42.
27. Wang L, Hou Z, Hou L, Zhao F, Liu X. H2S induced by H2O2 mediates drought-induced stomatal closure in Arabidopsis thaliana. Chinese Bulletin of Botany. 2012;47(3):217-225.
28. Ma Y, Zhang W, Niu J, Ren Y, Zhang F. Hydrogen sulfide may function downstream of hydrogen peroxide in salt stress-induced stomatal closure in Vicia faba. Functional Plant Biology. 2019;46(2):136-145.
29. Li ZG, Yi XY, Li YT. Effect of pretreatment with hydrogen sulfide donor sodium hydrosulfide on heat tolerance in relation to antioxidant system in maize (Zea mays) seedlings. Biologia. 2014;69(8):1001-1009.
30. Shan CJ, Zhang SL, Li DF, Zhao YZ, Tian XL, Zhao XL, Wu YX, Wei XY, Liu RQ. Effects of exogenous hydrogen sulfide on the ascorbate and glutathione metabolism in wheat seedlings leaves under water stress. Acta Physiologiae Plantarum. 2011;33:2533-2540.
31. Hancock JT, Whiteman M. Hydrogen sulfide and cell signaling: Team player or referee? Plant Physiology and Biochemistry. 2014;78:37-42.
32. Li Q, Lancaster JR. Chemical foundations of hydrogen sulfide biology. Nitric Oxide. 2013;35:21-34.
33. Carballal S, Trujillo M, Cuevasanta E, Bartesaghi S, Mцller MN, Folkes LK, Garda- Bereguiain MA, Gutiйrrez-Merino C, Wardman P, Denicola A, Radi R, Alvarez B.
Reactivity of hydrogen sulfide with peroxynitrite and other oxidants of biological interest. Free Radical Biology and Medicine. 2011;50(1):196-205.
34. Whiteman M, Li L, Kostetski I, Chu SH, Siau JL, Bhatia M, Moore PK. Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochemical and Biophysical Research Communications. 2006;343(1):303-310.
35. Hancock JT, Henson D, Nyirenda M, Desikan R, Harrison J, Lewis M, Hughes J, Neill SJ. Proteomic identification of glyceraldehyde 3-phosphate dehydrogenase as an inhibitory target of hydrogen peroxide in Arabidopsis. Plant Physiology and Biochemistry. 2005;43(9):828-835.
36. Aroca A, Schneider M, Scheibe R, Gotor C, Romero LC. Hydrogen sulfide regulates the cytosolic/nuclear partitioning of glyceraldehyde-3-phosphate dehydrogenase by enhancing its nuclear localization. Plant and Cell Physiology. 2017;58(6):983-992.
37. Wang Y, Li L, Cui W, Xu S, Shen W, Wang R. Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway. Plant and Soil. 2012;351(1-2):107-119.
38. Singh VP, Singh S, Kumar J, Prasad SM. Hydrogen sulfide alleviates toxic effects of arsenate in pea seedlings through up-regulation of the ascorbate-glutathione cycle: Possible involvement of nitric oxide. J Plant Physiology. 2015;181:20-29.
39. Kolupaev YuE, Karpets YuV, Beschasniy SP, Dmitriev AP Gasotransmitters and their role in adaptive reactions of plant cells. Cytology and Genetics. 2019;53(5);392-406.
40. Liang Y, Zheng P, Li S, Li K, Xu H. Nitrate reductase-dependent NO production is involved in H2S-induced nitrate stress tolerance in tomato via activation of antioxidant enzymes. Scientia Horticulturae. 2018;229:207-214. Li ZG, Yang SZ, Long WB, Yang GX, Shen ZZ. Hydrogen sulfide may be a novel downstream signal molecule in nitric oxide-induced heat tolerance of maize (Zea mays L.) seedlings. Plant, Cell & Environment. 2013;36(8):1564-1572.
41. Kaur N, Gupta AK. Signal transduction pathways under abiotic stresses in plant. Current Science. 2005;88(11):1771-1780.
42. Kolupaev YuE, Karpets YuV, Dmitriev AP. Signal mediators in plants in response to abiotic stress: Calcium, reactive oxygen and nitrogen species. Cytology and Genetics. 2015;49(5):338-348.
43. Li ZG, Long WB, Yang SZ, Wang YC, Tang JH, Wen L, Zhu BYu, Min X. Endogenous hydrogen sulfide regulated by calcium is involved in thermotolerance in tobacco Nicotiana tabacum L. suspension cell cultures. Acta Physiologiae Plantarum. 2015;37: 219.
44. Fang H, Liu Z, Long Y, Liang Y, Jin Z, Zhang L, Liu D, Li H, Zhai J, Pei Y. The Ca2+/ calmodulin2-binding transcription factor TGA3 elevates LCD expression and H2S production to bolster Cr6+ tolerance in Arabidopsis. The Plant J. 2017;91(6):1038-1050.
45. Valivand M, Amooaghaie R, Ahadi A. Interplay between hydrogen sulfide and calcium/ calmodulin enhances systemic acquired acclimation and antioxidative defense against nickel toxicity in zucchini. Environmental and Experimental Botany. 2019;158:40-50.
46. Fang HH, Pei YX, Tian BH, Zhang LP, Qiao ZJ, Liu ZQ. Ca2+ participates in H2S induced Cr6+ tolerance in Setaria italica. Chinese J Cell Biology. 2014;36(6.):758-765.
47. Jin Z, Xue S, Luo Y, Tian B, Fang H, Li H, Pei Y. Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis. Plant Physiology and Biochemistry. 2013;62:41-46. Chen X, Chen Q, Zhang X, Li R, Jia Y, Ef AA, Jia A, Hu L, Hu X. Hydrogen sulfide mediates nicotine biosynthesis in tobacco (Nicotiana tabacum) under high temperature conditions. Plant Physiology and Biochemistry. 2016;104:174-179.
48. Shan C, Zhang S, Zhou Y Hydrogen sulfide is involved in the regulation of ascorbate-glutathione cycle by exogenous ABA in wheat seedling leaves under osmotic stress. Cereal Research Communications. 2017;45(3):411-420.
49. Shan C, Wang T, Zhou Y, Wang W. Hydrogen sulfide is involved in the regulation of ascorbate and glutathione metabolism by jasmonic acid in Arabidopsis thaliana. Biologia Plantarum. 2018;62(1):188-193. Tian B, Zhang Y, Jin Z, Liu Z, Pei Y. Role of hydrogen sulfide in the methyl jasmonate response to cadmium stress in foxtail millet. Frontiers in Bioscience (Landmark). 2017;22:530-538.
50. Li ZG, Xie LR, Li XJ. Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize (Zea mays L.) seedlings. J Plant Physiology. 2015;177:121-127.
51. Li Q, Wang Z, Zhao Y, Zhang X, Zhang S, Bo L, Wang Y, Ding Y, An L. Putrescine protects hulless barley from damage due to UV-B stress via H^S- and H2O2-mediated signaling pathways. Plant Cell Reports. 2016;35(5):1155-1168.
52. Pal M, Szalai G, Janda T. Speculation: Polyamines are important in abiotic stress signaling. Plant Science. 2015;237:16-23.
53. Fu PN, Wang WJ, Hou LX, Liu X. Hydrogen sulfide is involved in the chilling stress response in Vitis vinifera L. Acta Societatis Botanicorum Poloniae. 2013;82(4):295-302.
54. Du X, Jin Z, Liu D, Yang G, Pei Y. Hydrogen sulfide alleviates the cold stress through MPK4 in Arabidopsis thaliana. Plant Physiology and Biochemistry. 2017;120:112-119.
55. Jin ZP, Shen JJ, Qiao ZJ, Yang GD, Wang R, Pei YX. Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochemical and Biophysical Research Communications. 2011;414(3):481-486. Lai DW, Mao Y, Zhou H, Li F, Wu M, Zhang J, He Z, CuiW, Xie Y. Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativa. Plant Science. 2014;225:117-129.
56. Janicka M, Reda M, Czyzewska K, Kabala K. Involvement of signalling molecules NO, H2O2 and H2S in modification of plasma membrane proton pump in cucumber roots subjected to salt or low temperature stress. Functional Plant Biology. 2018;45(4):428-439.
57. Wang H, Ji F, Zhang Y, Hou J, Liu W, Huang J, Liang W. Interactions between hydrogen sulphide and nitric oxide regulate two soybean citrate transporters during the alleviation of aluminium toxicity. Plant, Cell & Environment. 2019;42(8):2340-2356.
58. Li L, Whiteman M, Guan YY, Neo KL, Cheng Y, Lee SW, Zhao Y, Baskar R, Tan CH, Moore PK. Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): New insights into the biology ofhydrogen sulfide. Circulation. 2008;117:2351- 2360.
59. Fox B, Schantz IT, Haigh R, Wood ME, Moore PK, Viner N, Spencer IP, Winyard PG, Whiteman M. Inducible hydrogen sulfide synthesis in chondrocytes and mesenchymal progenitor cells: Is H2S a novel cytoprotective mediator in the inflamed joint? J Cellular and Molecular Medicine. 2012;16(4):896-910.
60. Lisjak M, Srivastava N, Teklic T, Civale L, Lewan-dowski K, Wilson I, Wood ME, Whiteman M, Hancock IT. A novel hydrogen sulphide donor causes stomatal opening and reduces nitric oxide accumulation. Plant Physiology and Biochemistry. 2010;48(12):931- 935.
61. Christou A, Manganaris GA, Papadopoulos I, Fotopoulos V. Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways. J Experimental Botany. 2013;64(7):1953-1966. Shi H, Ye T, Chan Z. Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass (Cynodon dactylon (L). Pers.). Plant Physiology and Biochemistry. 2014(7):4 99-107.
62. Shi H, Ye T, Chan Z. Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L.). Pers.). Plant Physiology and Biochemistry. 2013;71:226-234.
63. Kolupaev YuE, Horielova EI, Yastreb TO, Ryabchun NI, Kirichenko VV. Stress-protective responses of wheat and rye seedlings whose chilling resistance was induced with a donor of hydrogen sulfide. Russian J Plant Physiology. 2019;66(4):540-547.
64. Kolupaev YuE, Horielova EI, Yastreb TO, Popov YuV, Ryabchun NI. Phenylalanine ammonialyase activity and content of flavonoid compounds in wheat seedlings at the action of hypothermia and hydrogen sulfide donor. The Ukrainian Biochemical J. 2018;90(6):12- 20.
65. Zhang H, Wang MI, Hu LY, Wang SH, Hu KD, Bao LI, Luo JP. Hydrogen sulfide promotes wheat seed germination under osmotic stress. Russian J Plant Physiology. 2010;57(4):532- 539.
66. Kolupaev YuE, Firsova EN, Yastreb TO, Ryabchun NI, Kirichenko VV. Effect of hydrogen sulfide donor on antioxidant state of wheat plants and their resistance to soil drought. Russian J Plant Physiology. 2019;66(1):59-66.
67. Chen I, Shang YT, Wang WH, Chen XY, He EM, Zheng HL, Shangguan Z. Hydrogen sulfide-mediated polyamines and sugar changes are involved in hydrogen sulfide-induced drought tolerance in Spinacia oleracea seedlings. Frontiers in Plant Science. 2016. 7:1173.
68. Ye SC, Hu LY, Hu KD, Li YH, Yan H, Zhang XQ, Zhang H. Hydrogen sulfide stimulates wheat grain germination and counteracts the effect of oxidative damage caused by salinity stress. Cereal Research Communications. 2015;43(2):213-224.
69. Kharbech O, Houmani H, Chaoui A, Corpas FI. Alleviation of Cr(VI)-induced oxidative stress in maize (Zea mays L.) seedlings by NO and H2S donors through differential organ- dependent regulation of ROS and NADPH-recycling metabolisms. J Plant Physiology. 2017;219:71-80.
70. Sin'kevich MS, Deryabin AN, Trunova TI. Characteristics of oxidative stress in potato plants with modified carbohydrate metabolism. Russian J Plant Physiology. 2009;56(2):168-174.
71. Shevyakova NI, Bakulina EA, Kuznetsov VlV. Proline antioxidant role in the common ice plant subjected to salinity and paraquat treatment inducing oxidative stress. Russian J Plant Physiology. 2009;56(5):663-669.
72. Luo Z, Li D, Du R, Mou W. Hydrogen sulfide alleviates chilling injury of banana fruit by enhanced antioxidant system and proline content. Scientia Horticulturae. 2015;183:144- 151.
73. Khlestkina EK. The adaptive role of flavonoids: emphasis on cereals. Cereal Research Communications. 2013;41:185-198.
74. da-Silva CJ, Modolo LV Hydrogen sulfide: a new endogenous player in an old mechanism of plant tolerance to high salinity. Acta Botanica Brasilica. 2018;32:150-160. doi:
75. Huang ZQ, Shao-Can YL, Hu LY, Hu D. Hydrogen sulfide promotes wheat grain germination under cadmium stress. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 2016:86(4):887-895.
76. Jin Z, Wang Z, Ma Q, Sun L, Zhang L, Liu Z, Liu D, Hao X, Pei Y Hydrogen sulfide mediates ion fluxes inducing stomatal closure in response to drought stress in Arabidopsis thaliana. Plant and Soil. 2017;419(1-2 ):141-152.
77. Scuffi D, Nietzel T, Di Fino LM, Meyer AJ, Lamattina L, Schwarzlдnder M, Laxalt AM, Garda-Mata C. Hydrogen sulfide increases production of NADPH oxidase-dependent hydrogen peroxide and phospholipase D-derived phosphatidic acid in guard cell signaling. Plant Physiology. 2018;176(3):2532-2542.
78. Lisjak M, Teklic T, Wilson ID, Wood ME, Whiteman M., Hancock JT. Hydrogen sulfide effects on stomatal apertures. Plant Signaling & Behavior. 2011;6(10):1444-1446.
79. Honda K, Yamada N, Yoshida R, Ihara H, Sawa T, Akaike T, Iwai S, 8-Mercapto-Cyclic GMP mediates hydrogen sulfide-induced stomatal closure in Arabidopsis. Plant Cell Physiology. 2015;56(8):1481-1489.
80. Wang L, Ma X, Che Y, Hou L, Liu X, Zhang W. Extracellular ATP mediates H2S-regulated stomatal movements and guard cell K+ current in a H2O2-dependent manner in Arabidopsis. Science Bulletin. 2015;60(4):419-427.
81. Yastreb TO, Kolupaev YuE, Havva EN, Shkliarevskyi MA, Dmitriev AP. Calcium and components of lipid signaling in implementation of hydrogen sulfide influence on state of stomata in Arabidopsis thaliana. Cytology and Genetics. 2019;53(2):99-105.
82. Corpas FJ, Gonzalez-Gordo S, Canas A, Palma JM. Nitric oxide (NO) and hydrogen sulfide (H2S) in plants: Which is first? J Experimental Botany. 2019;70(17):4391-4404.
83. Li ZG, Luo LJ, Sun YF. Signal crosstalk between nitric oxide and hydrogen sulfide may be involved in hydrogen peroxide induced thermotolerance in maize seedlings. Russian J Plant Physiology. 2015;62(4):507-514.
84. Kolupaev YuE, Karpets YuV, Yastreb TO. Induction of wheat plant resistance to stressors by donors of nitric oxide and hydrogen sulfide. In: Wheat Production in Changing Environments. Hasanuzzaman M, Nahar K and Hossain A, editors. Singapore: Springer Nature Pte Ltd.; 2019. pp. 521-556.
85. Aghdam MS, Mahmoudi R, Razavi F, Rabiei V, Soleimani A. Hydrogen sulfide treatment confers chilling tolerance in hawthorn fruit during cold storage by triggering endogenous H2S accumulation, enhancing antioxidant enzymes activity and promoting phenols accumulation. Scientia Horticulturae. 2018;238:264-271.
Размещено на Allbest.ru
Подобные документы
Признаки устойчивости к стрессу. Воздействие антропогенных стрессоров на морфологическую структуру, на характер распространения растений и динамику популяций беспозвоночных животных. Главные антропогенные загрязнители воздуха. Гербициды, как стрессоры.
контрольная работа [186,8 K], добавлен 05.02.2011Токсины и их классификация. Ядовитые животные. Взаимодействие зоотоксинов и организма. Фармакокинетика и фармадинамика. Токсикологическая классификация ядовитых растений. Первая помощь и профилактика при растительных отравлениях. Охрана ядовитых растений.
курсовая работа [96,4 K], добавлен 19.04.2013Влажность как один из абиотических факторов, адаптация к нему организмов. Основные показатели влажности. Сезонное распределение влаги. Экологические группы растений по отношению к водному режиму. Законы экологии Коммонера. Расчет предотвращенного ущерба.
контрольная работа [34,4 K], добавлен 05.02.2013Проектирование заключительной стадии утилизации сероводорода из серосодержащих газов вторичной переработки нефти - абсорбции и десорбции сероводорода моноэтаноламином. Отходы, образующиеся в технологической схеме. Материальный баланс. Расчет оборудования.
курсовая работа [468,1 K], добавлен 09.01.2017Механизмы формирования устойчивости растений. Типы отношений растений к температуре. Особенности проявления стрессовых реакций у растений, вызывающие их факторы. Засухоустойчивость и устойчивость к перегреву. Устойчивость растений к низким температурам.
курсовая работа [243,5 K], добавлен 04.12.2014Среды обитания и экологические факторы. Воздушная и водная среды, растение и тяжелые металлы. Адаптация растений к загрязнению атмосферы. Биотические и абиотические факторы. Влияние температуры и света на растение. Влияние растений на окружающую среду.
реферат [3,5 M], добавлен 19.06.2010Изучение редких видов растений и животных Краснодарского края и Кубани, анализ причин их исчезновения и охраны. Характеристика назначения и видов флоры и фауны Кавказского биосферного заповедника. Методы восстановления редких видов животных и растений.
реферат [2,7 M], добавлен 23.08.2010Биотические (факторы живой природы), внутривидовое и межвидовое взаимодействие организмов. Действие основных прямодействующих абиотических факторов: температура, свет и влажность. Экологические группы растений в зависимости от требований к водному режиму.
презентация [2,7 M], добавлен 03.08.2016Специфические химические вещества, содержащиеся в атмосферном воздухе городских поселений. Определение концентраций аммиака, сероводорода, оксида азота в атмосфере. Степень опасности данных загрязнителей, их свойства и возможное влияние на человека.
курсовая работа [62,0 K], добавлен 08.08.2011Главная причина вымирания животных и растений. Радикальные изменения среды обитания животных. Охотничий промысел в запрещенных местах. Уничтожение природы в целях защиты сельскохозяйственной продукции. Антропогенное воздействие гидроэлектростанций.
презентация [964,1 K], добавлен 10.09.2014