Геологические условия накопления углеводородного сырья с токсическими свойствами компонентов

Выявление условий образования и накопления в недрах углеводородного сырья, обогащенного элементами-примесями обладающими токсическими свойствами. Анализ геохимической трансформации их соединений из потенциально опасных для биоты форм в активную.

Рубрика Экология и охрана природы
Вид автореферат
Язык русский
Дата добавления 28.12.2017
Размер файла 75,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Собственно таким, практическим, путем и выявилась очевидность биоопасности соединений, присутствующих в УВ сырье. При этом многие токсические соединения в нём остаются все еще неопознанными.

В работе собраны, систематизированы сведения о распределении элементов, распространённых в нефти, по степени их токсичности для человека.

Выполнены расчёты и аналитическая сверка их достоверности по концентрированию металлов в продуктах, получаемых из тяжелой сернистой нефти. Показано, что техногенное концентрирование V и Ni в остаточных фракциях тяжелой нефти при их перегонке имитирует природный геохимический процесс накопления этих металлов в тяжелой нефти и природных битумах в зонах гипергенеза. В пределах единой структурной зоны нефте- и битумонакопления часто наблюдается, что содержание смоло-асфальтеновых фракций возрастает от 10-20% (вес.) в средних по плотности нефтях, до 20-35% в тяжелых, 35-60% в мальтах, 60-75% в асфальтах, вплоть до 90-98% в асфальтитах. Соответственно, возрастает в них и содержание металлов, сравнительно с исходным. Но, в отличие от природного, геологически медленного процесса потерь летучих фракций нефти в сравнительно холодной зоне гипергенеза, при ускоренной техногенной высокотемпературной перегонке нефти в ректификационных колоннах на нефтеперегонных заводах и последующей реализации мазутов в топочных системах, основная часть V - до 80% и, видимо, Ni переходят в зольный остаток. Так, в богатых золах Киевской ТЭЦ № 5 содержание V2O5 - 18-20%, в бедных золах газоходов той же ТЭЦ его содержание - 4%. Причем при температурах, превышающих 500-600°С, почти все органические соединения ванадия распадаются, переходя в атмосферу с дымовыми газами, что в еще большей мере повышает их опасность.

Систематизированные в работе сведения о биотоксической активности ряда элементов и их соединений, наиболее распространенных в природном УВ сырье, далеко не исчерпывающи. Приведены только наиболее распространенные и изученные из них. Совершенно очевидно, что в последующем этот перечень пополнится. Но важно еще раз подчеркнуть широкое распространение в УВ сырье и продуктах его переработки значительного числа ПТЭ.

В работе выполнена систематизация современных данных о классах токсикологической опасности и проявления токсических свойств, наиболее распространенных в углеводородном сырье токсоэлементов. Приведены некоторые количественные характеристики уровней их опасности в соответствии с современной номенклатурой. К сожалению, все эти данные далеки от полноценной экологической изученности, к тому же нередко не совпадают в разных источниках. В ряде случаев в таблице приведены сведения о ПДК не для самих элементов, а их соединений, хотя присутствие такого рода соединений в нефти или углях не очевидно. Но мы должны учитывать влияние на среду не только самой нефти, но также и продуктов перегонки и утилизации, а также трансформации в окружающей среде.

Глава 3. Распространённость птэ, свойственных углеводородному сырью, в породах и гидросфере. Условия их накопления в органическом веществе.

Исходным источником поступления всех элементов в земную кору является дифференциация вещества планеты по геосферам, результатом которой и явилось формирование вещественного состава литосферы. Осадочный чехол - это производное самых разных процессов: выветривания, переотложения и преобразований пород литосферы. Эти общепринятые, хотя и очень схематичные, положения мы отмечаем в связи с тем, что исходными при прогнозе распространения интересующих нас элементов в осадочном чехле и его флюидах должны быть данные о составе магматических пород, поскольку именно им свойственны определенные парагенетические ассоциации элементов и минералов в зависимости от типа пород.

Состав магматических пород изучен сравнительно хорошо. Им посвящен самостоятельный раздел петрографии - петрохимия. Вопросы распределения элементов в изверженных породах не входят в задачу нашей работы, но, поскольку они нередко являются первичными источниками ПТЭ в осадочном чехле, в разделе приведены некоторые сведения по их содержанию в магматических породах.

Наибольшие содержания таких биологически активных и, одновременно, токсичных элементов, как V, Ni, Со, Zn, Сu, встречаются в основных и ультраосновных породах. В кислых изверженных породах их значительно меньше, но увеличивается количество радиоактивных элементов.

Вероятно, с точки зрения поисков возможных источников вторичного обогащения ПТЭ осадочных пород, а, соответственно, нефти и природных битумов, в первую очередь необходимо обратить внимание на зоны распространения разрушающихся под воздействием различных причин палео- и современных кор выветривания пород, обогащенных металлами. Прямая связь между содержанием ванадия в породах фундамента и нефти была показана нами для металлоносной группы нефтяных месторождений Волго-Уральской и Маракаибской (Венесуэла) нефтяных провинций, такая связь прослежена для Тимано-Печорской провинции - между Бугровской разломной зоной медно-никелевого оруденения с повышенными содержаниями ванадия, никеля и ряда других металлов с группой металлосодержащих месторождений Северо-Тиманской нефти. Но часто эта парагенетическая связь нарушается из-за различий в последующей геохимической судьбе элементов в осадках в связи с неодинаковой миграционной способностью и других процессов в чехле. Поэтому прямой прогноз не всегда реален.

При рассмотрении источников поступления ПТЭ в состав углеводородов целесообразно разделить их на первичные и вторичные. При этом под первичными мы понимаем те из них, которые накапливались в исходном для УВ органическом веществе, а под вторичными - источники, вторые УВ получали из вмещающей среды за весь период своего онтогенеза. Следовательно, первичными ПТЭ в УВ мы считаем генетически унаследованные УВ от генерирующего их ОВ, а вторичными - полученные со времени образования нефти и газа при их миграции, аккумуляции и разрушении.

Разделение процессов поступления и накопления или потерь ПТЭ углеводородами на два разных этапа необходимо, поскольку это два совершенно разных временных и физико-химических процесса. В ходе первичного этапа формируется ОВ, обогащенное ПТЭ. Оно включает в себя прижизненное накопление биотой потенциальных токсикантов вместе с ранними стадиями диа- и протокатагенеза, когда генерация УВ еще не началась. Вторичный этап начинается со времени генерации УВ из органики, включает в себя первичную и затем вторичную миграцию, охватывая весь ход онтогенеза УВ.

Надо отметить также и различия в состоянии изученности этих процессов. Более обоснованы и изучены первичные процессы и масштабы накопления, несколько менее - вторичные. Последнее, к сожалению, объективно, поскольку ход онтогенеза УВ - это прогнозируемый, а не очевидный процесс.

Поэтому чаще всего выводы приходится делать путем решения обратной, а не прямой задачи, т.е. на основе объективных данных о содержаниях и составе ПТЭ в УВ решать вопрос о возможных источниках их поступления. С той же проблемой сталкиваются в рудопоисковой геологии и во всех других отраслях знаний, объединяемых в естественных, а не точных науках.

Глава 4. Условия накопления птэ в углеводородном сырье

Выполненный анализ фактического материала позволяет использовать определённые, наиболее обоснованные, геолого-геохимические критерии накопления ПТЭ в нефти и газе для прогноза распространения потенциально токсоопасного углеводородного сырья.

В их основе, прежде всего:

*минерагенический облик пород фундамента и чехла, включая обрамления НГБ в палеоэпохи. Масштабы и время последующей постмагматической активности в бассейне. Формы и вещественный состав проявлений в осадочном чехле глубинных процессов - магмо- и вулканогенных, гидротермальных и др.;

*обогащенность органическим веществом и биотоксическими элементами главных пород-генераторов УВ. Преобладающие типы ОВ (гумусовое, сапропелевое), степень его катагенетической преобразованности. Время и интенсивность проявления основных этапов нефтегазогенерации;

*геоструктурная принадлежность НГБ, в которых проходит онтогенез углеводородов, уровень литологической преобразованности пород чехла и степень их тектонической нарушенности.

Не для всех регионов можно корректно реализовать эти критерии, поскольку их изученность не одинакова. Но даже для хорошо разведанных бассейнов процессы онтогенеза, к примеру, всегда остаются дискуссионными.

Кроме того, необходимо учитывать, что на токсоэкологическую обстановку в окружающей среде оказывают и будут оказывать в будущем те НГБ и месторождения, которые лидируют по количественным показателям в добыче, переработке и утилизации углеводородного сырья. Следовательно, анализу необходимо было подвергнуть, прежде всего, разрабатываемые бассейны, богатые ресурсами. В том числе материалы характеризующие состав бренд-смеси добываемой и экспортируемой нефти. На ее основе легко оценить годовую реализацию вместе с нефтью биотоксичных элементов, значительная часть которых рассеивается в окружающей среде при утилизации нефти и продуктов их переработки, причем в наиболее населенных, промышленно освоенных регионах. Так, сравнительно благоприятные по микрокомпонентному составу нефти месторождения Озеберг, в норвежском секторе Северного моря, при добыче нефти 20,47 млн. т в 2000 году поставили при переработке и утилизации в окружающую среду западноевропейских потребителей около 4 тыс. т меди и 43 т кадмия - одного из наиболее высокотоксичных элементов, присутствующих в нефти. И это в течение лишь одного года, хотя, в целом, содержание кадмия в нефти этого месторождения не так уж велико - 2,1 г/т.

Обратим также внимание, что оценки содержания в нефти, к примеру мышьяка, могут быть и заниженными вследствие повышенной летучести этого элемента и частичной его потери при товарной стабилизации нефти.

При экологическом прогнозе важно также учитывать динамичность во времени состава добываемой нефти. Вместе со сменой основных объектов добычи будут меняться и их биотоксичные свойства и, следовательно, состав и масштабы экологического влияния на среду.

К настоящему времени накоплен обширный фактический материал по микрокомпонентному составу нефти, но у него есть существенный дефект-металлоорганические комплексы исследовались, в основном, для тяжелой нефти и битумов. Аналитические данные о содержаниях потенциально токсичных элементов в легкой и средней нефти разрознены и малочисленны, а именно им свойственны наиболее высокие концентрации таких токсикантов, как As, Hg, Со, Cd и др.

Учитывая изложенное, при выборе объектов для анализа основных закономерностей накопления и распространения углеводородного сырья, обогащенного ПТЭ, мы отдадали предпочтение наиболее богатым углеводородными ресурсами НГБ, для которых имеются сведения об их микрокомпонентном составе либо в публикациях, либо они получены в ходе выполненных нами полевых и аналитических исследований.

Среди основных объектов анализа на территории России мы привлекли данные по Волго-Уральской, Прикаспийской, Тимано-Печорской и Западно-Сибирской НГП и, в меньшей мере, по Сибирской платформе, из-за низкой изученности последней. В трех первых из них мы проводили собственные полевые и аналитические исследования, поэтому приведенный по ним материал несколько шире, чем по другим бассейнам. Среди зарубежных - Персидскому, Североморскому, Оринокскому, Маракаибскому, Западно-Канадскому и НГБ Скалистых гор.

Приведены также отдельные данные и по другим бассейнам мира, дополняющие информацию по геохимическим особенностям накопления ПТЭ в нефти и газах. Перечень токсоопасных элементов, реализованный нами в ходе геолого-геохимического анализа, очень разнороден из-за структуры массива фактических данных об их содержаниях в углеводородах. Наиболее значимая часть массива - это сведения о содержаниях S, V, Ni, Zn, в значительно меньшей мере - Cd, Со, As, Hg, Сu, Сr, Мn, U, Мо и совсем малочисленны данные о содержаниях Se, Sb, Sn и других редких и рассеянных токсичных элементов.

Учитывая преимущественное присутствие ртути в виде паров, мы рассмотривали ее распространенность в разделе природных газов, хотя ртуть имеется и в нефти.

Накопление серосодержащих соединений в УВ связано в основном с процессами седименто- и катагенеза в осадочном чехле - это наиболее хорошо изученный вопрос в нефтегазовой геохимии, поэтому он рассмотрен в самом кратком виде.

Глава 5. Основные условия формирования залежей нефтей и газов, обогащенных токсоэлементами и их генетические типы

Источники и механизмы поступления в углеводороды элементов, обладающих потенциально токсическими свойствами, неразрывно связаны со всем их онтогенезом, начиная от прижизненного накопления ПТЭ биотой, ее последующим обогащением в ходе диагенеза в результате сорбции органикой тяжелых элементов и обменных процессов. Этот процесс продолжался и при дальнейшем катагенезе пород и ОВ, включая генерацию УВ, их миграцию, формирование залежей и их последующую эволюцию.

В нефти тяжелые элементы, прочно связанные со смоло-асфальтеновыми фракциями, в основном сохраняются, но их концентрации в залежах могут меняться в любую сторону. Они изменяются при миграционном фракционировании, увеличиваются в результате действия концентрационных механизмов, уменьшаются при повторных импульсах генерации УВ и при поступлении в залежи новых объемов легких фракций нефти и т.п.

Схема обогащения потенциально токсоопасными компонентами природных газов несколько иная. Компоненты газовой смеси накапливаются и сосуществуют в залежах без особой физической и химической взаимосвязи. В ходе миграции, особенно дискретной, они легко фракционируются, отдельные компоненты газовых смесей (H2S, СО2, Н2) вступают в реакции с химически активной для них средой. Они могут растворяться в пластовых водах или выделяться из них, при неравновесных упругостях газа. Так же как и для нефтей, им свойственны изменения состава вместе со сменой среды обитания. В зонах гипергенеза накапливаются инертные компоненты -N2, Аr, Не и другие редкие газы. Газовые смеси, исходно обогащенные H2S, при миграции из сульфатно-карбонатных пород в терригенные, утрачивают H2S полностью или частично, в частности в реакциях с Fe. Пары Hg в охлажденных зонах недр легко сорбируются органикой (ОВ, уголь, горючие сланцы и др.), а в присутствии S переходят в устойчивую минеральную форму - киноварь HgS (Никитовское месторождение в Донбассе и др.).

Хронологически и позиционно выделяются четыре главных этапа формирования химического и микрокомпонентного облика углеводородов:

1.Прижизненное накопление биотой потенциально токсоопасных компонентов в масштабах, соответствующих среде и её видовому составу в эпохе обитания.

2.Диагенетическое и протокатагенетическое преобразование состава ОВ в процессе седиментации, сопровождаемое в восстановительной среде дополнительной сорбцией потенциально токсоопасных компонентов. Последующее катагенетическое преобразование ОВ до достижения недрами температур, обеспечивающих начало генерации УВ.

3.Генерация УВ (жидких, газообразных) соответствующих по основному и микрокомпонентному составу ОВ породам-генераторам и градациям катагенеза.

4.Онтогенез УВ в соответствии со строением и последующей историей геологического развития НГБ. При этом учтем два положения. Первое, что УВ - подвижная субстанция в осадочной среде, физически склонная к активному, преимущественно субвертикальному перемещению. И, второе, что сформировавшиеся залежи - самоорганизующаяся физико-химическая система, подверженная всем тем термодинамическим изменениям, которыми сопровождается геодинамическое развитие НГБ.

Путем детальных геохимических исследований можно, хотя бы в первом приближении, оценить начальные этапы формирования состава и преобразования ОВ в догенерационный для УВ период. Но расшифровка источников и механизмов накопления углеводородами сопутствующих им элементов-примесей в ходе их онтогенеза, остается наиболее уязвимым звеном прогноза, поскольку если первые три этапа преобразования ОВ хотя бы позиционно стабильны, то последний - постгенерационный, динамичен и неопределенен.

Поэтому прямое решение задач прогноза формирования УВ скоплений, обогащенных потенциально токсоопасными компонентами, на основе отслеживания путей миграции и контактов с вмещающей средой может носить скорее гипотетический, прогностический характер, чем объективный. Обратное решение тех же задач, основанное на сопоставлении фактических данных о составе УВ и минерагении вмещающих пород, способно разрешить хотя бы некоторые из вопросов, что и выполнено в работе на примере отдельных НГБ.

Надо также подчеркнуть, что в основу как работы в целом, так и обсуждений закономерностей накопления потенциально токсоопасных компонентов в составе залежей УВ нами положена концепция осадочно-миграционной теории образования залежей углеводородов. Но при решении вопросов их металлогении неизбежно привлечение данных о рудогенезе в осадочном чехле, как стратиформном, так и связанном с мантийными поступлениями, поскольку достаточно очевидно влияние на флюиды чехла глубинных парогазовых смесей с их микрокомпонентной нагрузкой, формирующихся в ходе активизации мантийных процессов в литосфере. Последние, как правило, характеризуются высокими химическим и термодинамическим потенциалами и неизбежно обогащают глубинными компонентами осадочный чехол и его флюиды, включая углеводороды.

Не повторяя общеизвестных и хорошо обоснованных представлений, к примеру, о концентрационных механизмах накопления нефтью V и Ni в ходе гипергенного битумогенеза по схеме: легкие и средние нефти - тяжелые нефти - мальты - асфальты и т.д., в работе рассмотрены, фрагментарно, те показатели и критерии обогащения углеводородов ПТЭ, которые хотя и являются базовыми для их прогноза, но остаются недостаточно изученными и определенными. В их числе, прежде всего, сопоставление времени основного рудогенеза в чехле и времени главной фазы генерации УВ, а также некоторые особенности физико-химических процессов в среде онтогенеза УВ, способствующие накоплению (утрате) потенциально токсоопасных компонентов углеводородами.

Глава 6. Оценка и анализ экологических рисков последствий на территориях, загрязненных токсоопасным ув сырьем, и основы стратегии превентивной защиты окружающей среды

Одна из основных задач этого раздела работы - дифференциация УВ сырья по его реальным токсическим свойствам. Именно здесь сталкиваются две принципиально противостоящие тенденции по решению проблемы защиты окружающей среды от загрязнения - экологическая и экономическая.

Первая начинает обсуждаться лишь в регионах с резко выраженной угрозой здоровью и генофонду человека, т.е. когда медицинская статистика приобретает угрожающие черты. Вторая, в условиях рыночной экономики, главенствует над первой, особенно учитывая значимость углеводородов в современной мировой экономике. В этом противостоянии подходов к законодательной защите прав человека на его жизнестойкость мы должны обозначить те границы параметров токсо-опасности углеводородов, обогащенных ПТЭ, которые позволят избежать неоправданных ограничений при освоении сырья, чреватых, как правило, экономическими потерями, но, одновременно, предотвратить обширные и устойчивые поражения окружающей среды, особенно в густонаселенных промышленно перегруженных регионах.

Из-за недостаточной степени изученности общего микрокомпонентного состава УВ сырья мы вынуждены ограничить оценку его токсоопасных свойств только по наиболее распространенным и изученным в составе углеводородов ПТЭ. Поэтому даже такие высокотоксичные элементы, как Tl, Sn, Sb, In, Мо и другие, остаются за пределами возможностей количественных характеристик, что на данном этапе времени неизбежно. По прямо противоположной причине - высокой степени изученности, вплоть до наличия нормативной базы для оценки рисков, мы не оценивали токсичность отдельных серосодержащих углеводородных соединений.

Проведенные SETAC (Society of Environmental Toxicology and Chemistry, USA) в середине 2000 года в США исследования главных составляющих техногенной нагрузки за 1980-1990-е годы показали, что в основе это тяжелые металлы, полициклические ароматические углеводороды (бенз-а-пирены и пр.) и пестициды. За исключением последних, все они в значительной мере связаны с освоением углеводородного сырья и ТЭК и преобладают поныне.

Как правило, это источники длительного действия и их трудно устранить. Главные объекты поражения среды - почвы, донные осадки, реки, поверхностные и более глубокие воды. К тому же наиболее крупные промышленные предприятия по переработке УВ и их утилизации располагаются в промышленно развитых густонаселенных регионах и их воздействие на среду оказывается смешанным, с широким развитием процессов синергизма, что затрудняет пообъектную дифференциацию их воздействий.

И все же, без идентификации каждого конкретного загрязнителя трудно принимать меры по защите среды и биоты, ее населяющей. Именно в такой комплексной оценке результатов действий разных промышленных объектов в пределах конкретных территорий и состоит анализ рисков.

Среди населенных и промышленно развитых территорий ныне осталось столь мало экологически чистых земель, отвечающих понятию естественного фона, что в последнее десятилетие по технико-экономическим мотивам изменились даже требования к полноте рекультивации земель. Нередко ее ограничивают достижением границы риска, а не природного фона. Необходимо также учитывать, что в регионах активных техногенных загрязнений земель возможно развитие близких к ним естественных биохимических аномалий природного генезиса.

Есть промышленные регионы столь длительного, сложного и многофакторного влияния на среду, что дифференциация даже основных источников поражения биоты становится дискуссионной. Необходим учет данных анализов выбросов по каждому из предприятий и всех параметров их воздействий - состава, масштабов, продолжительности воздействий и прочего, причем с учетом их динамики. К тому же очевидно, что все ТЭК, как главные утилизаторы топливного сырья, всегда вспомогательные предприятия у потребителей. А потребители тепла и энергии, особенно крупные, часто сами являются источниками интенсивного загрязнения среды. В их числе и мегаполисы, а не только промышленные предприятия. Разделить степень участия ТЭК, работающих по соседству на мазутах или углях от промышленных предприятий, порой очень затруднительно. В таких случаях выход один - геолого-геохимическая и медико-биологическая съемка территории, комплексная оценка уровней ее риска для проживания человека и принятия адекватных мер, поскольку нередко экономический доход от предприятий-загрязнителей ниже экологического ущерба от них.

Основная цель современных риск-анализов, согласно многим международным экологическим программам - это разработка рекомендаций по оценке и управлению рисками, связанными с биологическими изменениями среды обитания под воздействием энергетических и промышленных предприятий. Естественно, что выполняться они могут только на основании информации об условиях, составе и масштабах техногенных выбросов, в нашем случае ПТЭ, и также той физико-химической метаморфозе, которую они испытывают при переходе в поверхностные условия, уровней их аккумуляции (рассеяния) в окружающей среде и многого другого.

Важно также подчеркнуть, что основными для регламентации степени токсоопасности УВ сырья должны быть сведения о содержании ПТЭ в сырье в его природном состоянии, полученные при разведке месторождения или на начальной стадии его разработки. Именно на этом этапе можно реально определить экологическую подготовленность месторождения к освоению, прогнозировать последующие изменения токсических свойств сырья при добыче, транспорте, переработке и утилизации, а также рекомендовать состав предупредительных и ограничительных природоохранных мероприятий.

Надо учитывать также и очевидный дефект накопленной к настоящему времени информации по биотоксичности УВ сырья - это случайные, разрозненные виды исследований, выполненные на разных методических и инструментальных основах в разные годы, в разных странах и для разных целей и объектов. Причем это замечание в одинаковой мере относится как к геохимическим (аналитическим) данным, так и к медико-биологическим. Последние в основном изучались для кожных и пищевых контактов или дыхательных в воздушной среде производственных помещений, т.е. для более стационарных условий, чем те, при которых реализуются УВ.

В этом, заключительном разделе работы мы также обратили внимание еще на одно положение, субъективное по сути, но тем труднее его оценивать. Сводится оно к противостоянию нефтяников к формированию токсоэкологически настороженного отношения к углеводородному сырью. В целом позиция эта правильна, поскольку из всех видов топлива углеводороды, особенно газы, наиболее экологичны. Они несравнимо чище по уровням токсичных выбросов углей и безопасней АЭС. Но только в целом, поскольку примерно четверть извлекаемых и реализуемых ныне объёмов нефти обогащены ПТЭ и, особенно, такие техногенные продукты их переработки, как мазуты.

Не учитывать это обстоятельство, как и перспективы возрастания, их доли в общей добыче по мере исчерпания качественных запасов нефти, неосмотрительно и опасно.

Приведем один из примеров такого, возможно, невольного лоббирования "безопасности" нефти из зарубежной практики. В ряде номеров журнала «Oil and Gas» за 1990-е гг. появились данные о высоких содержаниях тяжелых металлов в нефтях, импортируемых в Западную Европу. Завершилась эта полемика статьей "Металлов в сырых нефтях меньше, чем предполагалось".

Авторы статьи предпочли отнести целый ряд токсоопасных элементов, выявленных в нефти, поставляемых на терминалы в Нидерланды, за счет, в основном, их техногенных источников: загрязнение при отборе проб; транспортировке в танкерах; при обессоливании и очистке; перекачках на терминалах и пр. Анализы выполнялись в DOASR в Дельфте (Нидерланды). Отметим тщательность организации пробоотбора, выбора методов и аппаратуры для анализа. Неожиданными оказались только выводы. Так, авторы отмечают, что Cd, Zn и Сu не присущи сырой нефти, а являются результатом загрязнения попутными водами или буровыми растворами в эксплуатационных скважинах. Это полностью противоречит данным о содержаниях этих и других элементов в сырой нефти, приведенными нами в работе, которые никакими техногенными процессами объяснены быть не могут.

Ni, V и, частично, Сr авторы правильно связывают с углеводородной матрицей, хотя предпочитают все же считать Сr неорганической примесью.

Основной вывод авторов состоит в том, что причиной большого разброса данных и высоких их концентраций является захват неорганических соединений из оборудования для отбора проб и контейнеров, хотя сами же отмечают, что пробоотборники были изготовлены из стекла и титана для исключения загрязнения проб. С такого рода заключением, основываясь на всех предшествующих данных, мы, конечно, согласиться, не можем, так же как и с лозунговым стилем названия статьи - "Содержание металлов в нефтях значительно меньше, чем предполагалось" ("Metal contents in crude's mach lower than expected"). Напротив, их возможно больше, чем это указано, поскольку As и Cd как сравнительно подвижные элементы могли быть частично утрачены в ходе подготовительных и транспортных операций, сравнительно с их содержанием в сырой нефти, а V, Ni и Сr, вместе с тяжелыми фракциями, могли частично осесть во время хранения в заводских нефтехранилищах и терминалах и, в конечном счете, снизить свое содержание в импортируемой нефти.

Ещё раз подчеркнём, что мы не рассматриваем выводы авторов как факт лоббирования "экологической чистоты" нефти, поставляемых по импорту в Нидерланды. Нам представляется, что это следствие недостаточной геолого-геохимической изученности разнообразия составов и содержаний тяжелых металлов в нефти разных НГБ мира.

Нередко также, в том числе и в российской практике, реализуются иные пути игнорирования данных о повышенной и высокой токсоопасности ряда сортов нефти или продуктов их переработки - простое умолчание фактов. Причем на технологическом уровне такая информация имеется из-за агрессивности многих ПТЭ, особенно их сернистых соединений к металлоконструкциям и катализаторам. А последующая экологическая безопасность их освоения обосновывается наличием золоулавливателей на крупных ТЭЦ. Это было бы так, если бы они устанавливались повсеместно и выполнялась бы детоксикация золоотвалов. Но этого нет. По сути, вне зависимости от условий переработки и освоения все извлеченные вместе с нефтью из глубин ПТЭ остаются на поверхности и рассеиваются в ней.

Информация, приведенная нами в предыдущих разделах работы, свидетельствует о том, что практически все нефти содержат ПТЭ, но в крайне разном составе и концентрациях. Соответственно не одинакова и степень их влияния на окружающую среду, при освоении и утилизации.

Основные объемы нефти, добываемой ныне в России - это сравнительно экологически благоприятные нефти Западно-Сибирской НГП - 67% от общего объема добычи в РФ, но одновременно с этим надо учитывать, что именно они составляют основу российского экспорта, т.е. реализуются за рубежом, в основном в странах Западной Европы, а не на внутреннем рынке. Настороженность в них вызывает лишь повышенное содержание V, но не в самой нефти, а в мазутах, получаемых из нефтей отдельных месторождений Широтного Приобья. Добываемые ныне газы сеномана Западной Сибири также экологически благоприятны - они бессернистые.

На долю НГП Русской платформы приходится лишь 28,9% от текущей добычи нефти в РФ. Но именно эти нефти наиболее обогащены ПТЭ и реализовались длительное время в основном на внутреннем рынке, причем в самых населенных регионах, где проживает большая часть населения России. Поэтому главное внимание при оценках токсоэкологических рисков и принятии защитных мер надо уделить именно этим регионам, особенно учитывая, что в ближней перспективе роль тяжелых, наиболее обогащенной ПТЭ нефти в их общей добыче в европейских НГБ будет неуклонно возрастать из-за истощения запасов сравнительно экологически качественной нефти

Добыча нефти ведется в пределах европейской части России уже свыше полувека, соответственно и результаты накопления токсоопасных веществ в окружающей среде далеко не безобидны и неизбежно находят отражение в состоянии здоровья ее населения.

Отметим так же - постоянные изменения в федеральном природоохранном законодательстве привели к потере внутренней согласованности различных элементов системы природоохранного регулирования. Ответственными министерствами и ведомствами не проведена ревизия ведомственных нормативно-правовых актов. В результате работа в области государственного управления в сфере охраны окружающей природной среды и обеспечении экологической безопасности РФ практически остановлена. Сравнение фактической насыщенности, аналитических материалов и выводов Государственного Доклада «О состоянии и об охране окружающей среды Российской Федерации в 2007 году» (Минприроды России) и того же доклада за 1997 год - наглядная иллюстрация допущенного отставания в области государственного управления в сфере охраны окружающей природной среды и обеспечении экологической безопасности РФ.

Воспользуемся данными, приведенными в Государственном докладе о состоянии окружающей среды в Российской Федерации в 1998 г. Эти данные, несмотря на их интегральность, т.е. неизбежное смешение загрязнения со стороны ТЭК и промышленных предприятий, снимают возможность любых дискуссий по поводу реальности негативного влияния углеводородов на токсозагрязнения, поскольку по объемам выбросов и регионам распространения они, безусловно, лидируют - 45% всех загрязняющих выбросов в атмосферу принадлежат теплоэнергетике, нефтедобыче, нефтепереработке, газовой промышленности, и этим же отраслям, включая нефтехимию, принадлежит 33% объема загрязнителей в сбросах сточных вод. И только за этими отраслями по масштабам участия в загрязнениях атмосферы следуют цветная и черная металлургия - 36,6%, но они локализованы в пределах промышленных территорий, т.е. легко отслеживаются и оцениваются к тому же локализованы от поселений. Отметим, что для атмосферных выбросов, в частности в теплоэнергетике, учитывались в основном оксиды азота, углерода и сернистый ангидрид. Выброс ПТЭ в воздух не определялся и не оценивался. На крупных предприятиях с отлаженной системой очистки дымовых газов основная их часть сконцентрировалась в золоотвалах, но это изменяет лишь механизм их перехода в окружающую среду, не снижет интенсивности.

По данным Госкомстата РФ (1999), предприятиями нефтедобывающей и перерабатывающей отраслей, вместе с нефтехимией и газовой промышленностью в 1998 г., выброшено в атмосферу 2,8 млн. т загрязняющих веществ (без теплоэнергетики). Причем в 1991 г. суммарный выброс загрязняющих веществ был вдвое выше - 5,66 млн. т, и снизился он не по причине улучшения профилактических мер, а лишь в связи с общим спадом промышленности и добычи нефти в связи с кризисом.

Процитируем из Государственного доклада (1998, с.300): "Из-за недостаточной экономической заинтересованности предприятий, низкого технического уровня применяемых технологий, дефицита средств и современного оборудования переработке и использованию подвергается лишь несколько десятков видов отходов". Добавим при этом, что для тепловых станций, работающих на мазутах, обогащенных тяжелыми металлами, существуют хорошо отработанные и широко применяемые технологии получения V, Ni и др. из зол (Канада, США, Венесуэла и др.) в качестве дополнительного товарного продукта. Причем избытки их производства даже экспортируются и используются в качестве добавок в шихту при выплавке высококачественных легированных сталей. Но в России дефицит ванадия перекрывается за счет импорта и по той же причине, которую мы процитировали выше, у предприятий нет заинтересованности и нет уверенности даже в возврате вложенных средств на это производство, не говоря уже о прибыли.

Естественно, что такое положение и отношение к защите окружающей среды от загрязнения и в первую очередь токсическими элементами соединениями I и II классов опасности не могло не сказаться на ухудшении здоровья населения. По данным ВОЗ, доля вклада в ухудшение здоровья человека за счет загрязненной окружающей среды - не менее 30%. И это в среднем по миру. Естественно, что чем выше уровень загрязнения, тем ниже жизнестойкость человека.

В 1991 году в России жили 148,5 миллионов человек. На 1 мая 2009 г. численность постоянного населения РФ составила, по оценке Росстата - 141,9 млн. человек. Отметим, что в 1990-2006 годы к нам приехало 4,05 миллиона мигрантов и беженцев из бывшего СССР. Только за последний год мы недосчитались почти полмиллиона человек. Особенно существенной убыль населения оказалась в Центральнои и Приволском федеральных округах - 74%.

Прирост наблюдался только в Южном федеральном округе +17228 человек. Лидерами по приросту населения в этом округе и в России в целом являются Республика Дагестан (+30113 человек) и Чеченская Республика (+26819 человек).

Отнести масштабы депопуляции только на долю социально-экономических факторов мы не можем. Значимые масштабы приобрели и прямые и косвенные профзаболевания, т.е. заболевания не только работников, но и населения, проживающего в экологически загрязненных зонах, в связи с распадом служб профилактики и действенного контроля за экологической обстановкой.

Наиболее четко зоны повышенных токсических рисков сказываются на здоровье детей и подростков. Взрослое население РФ прожило основную часть жизни в экологически сравнительно благополучной среде - при менее развитой промышленности и более развитой медпрофилактике в советский период истории государства.

Современное младенчество подвергается влиянию токсикантов в основном на генетическом уровне, отсюда высокий рост врожденных аномалий. А на более старших детях и подростках, с их еще неокрепшей системой адаптации сказалось все вместе - и нарушенная генетика, и ухудшившаяся экологическая обстановка.

В районах повышенного и высокого токсического риска, в том числе связанных с освоением углеводородов, особенно наиболее токсичной их части, резко возрастает заболеваемость и ранняя смертность всех возрастных групп населения. В Пермской области - крупнейшем центре нефтехимической промышленности, работающем на базе нефти Урало-Поволжья, обогащенной ПТЭ, а также химической и металлургической, где главными экологическими факторами влияния на человека являются производные нефти и тяжелые металлы, среди заболеваний лидируют анемии, бронхиальная астма, болезни эндокринной системы и почек, т.е. именно те заболевания, которые наиболее часто сопровождают последствия воздействия тяжелых металлов.

С тем, чтобы исключить возможность интерпретации причин заболеваний детей социально-экономическими, а не экологическими факторами, т.е. не пойти по пути лоббирования интересов промышленников, в таблице 3 приведены отдельные данные полученные Пермским отделением Госэпидемслужбы в ходе контроля содержаний химических веществ в биосредах детей города Березники, с высоко развитой химической и топливной промышленностью.

Таблица 3. Кратность превышения контрольного уровня содержания ПТЭ и химических компонентов в биосредах детей г. Березники.

Химические компоненты

Вид биосреды и патологии у обследованных детей

Респираторные аллергозы

нефропатологии

желудочно-кишечные

эндокринные

волосы

моча

волосы

моча

волосы

моча

волосы

моча

Zn

1.18

-

1.98

-

-

-

1.93

-

Мn

4.06

-

2.69

-

-

-

6.17

-

Сu

-

2.00

1.2

1.85

-

-

1.5

3.23

Ni

6.20

1.69

-

-

-

-

6.76

1.57

Сr

-

3.60

1.71

6.22

-

-

2.29

2.4

Со

6.81

-

16.31

-

-

-

-

-

Рb

-

1.44

-

1.22

-

-

-

-

Н2S

-

8.00

-

24.42

-

17.75

-

-

Сероуглерод

-

8.25

-

7.47

-

42.01

-

-

Фенол

-

-

-

2.76

-

-

-

-

Дополним эту таблицу тем, что детям с изученными аномалиями в здоровье свойственно накопление в организме тяжелых металлов, особенно Ni и Со, справиться с выносом которых они не могут, что способствует их накоплению в волосах. А это не социально-экономический, а экологический фактор.

В целом, перечень сложных нерешенных проблем можно продолжить, но не это важно. Важно учитывать их значимость и хотя бы в первом приближении наметить граничные параметры уровня опасности УВ сырья, обогащенного ПТЭ, с тем, чтобы начать формирование информационной базы для своевременной оценки экологических рисков при его освоении. Если накопление и использование такого рода информации станет обязательным на уровне отечественного и мирового маркетинга УВ сырья, то уменьшится одна из наиболее распространенных экологических нагрузок на здоровье и, особенно, генофонд человека, чреватых непредсказуемыми демографическими последствиями, причем для населения наиболее технически развитых стран, с высоким энергопотреблением в зонах с высокой плотностью населения.

Различия видов УВ сырья предопределяют различия как состава в них ПТЭ, так и масштабов их влияния на среду. Соответственно, меняются и объекты таких воздействий. Поэтому в основе таких территориальных и временных оценок должны лежать: данные о природном фоне ПТЭ в разных средах. Прежде всего:

· сведения о формах нахождения ПТЭ в природных УВ для оценки условий их перехода в состояние, свободное для контактов с биотой;

· содержания ПТЭ в почвах, как основных их аккумуляторов;

· интенсивность возможных изменений естественного фона вследствие техногенных влияний на него, на разных промышленных объектах, реализующих УВ, включая дальность таких воздействий.

Иными словами, исследовать надо не только параметры загрязнений, но и условия восприятия их поверхностной средой.

В этом разделе работы выполнена оценка степени устойчивости нахождения ПТЭ в природном сырье и определены условия их перехода в свободную для биоконтактов форму. Проанализированы методологические аспекты оценки токсических рисков при освоении углеводородного сырья обогащённого ПТЭ. Дана дифференциация основных ПТЭ, выявленных в природных углеводородах по степеням прочности их связей с сырьем и, соответственно, условиям их перехода в свободную для биоконтактов форму в окружающей среде. Определены виды воздействий ПТЭ углеводородов на окружающую среду. Выполнена оценка масштабов накопления и рассеяния ПТЭ углеводородного сырья в окружающей среде.

Заключение

Выполненное исследование посвящено детальному анализу и обобщению геолого-геохимических условий формирования нефтяных и газовых месторождений обогащённых токсоопасными элементами-примесями, освоение и утилизация которых представляет собою экологическую опасность высокого уровня.

Исследования основывались на обширном аналитическом материале, накопленном отечественными и зарубежными геологами и геохимиками, а так же на личных полевых работах автора в ряде крупных НГП России. Выполнялись также теоретические обобщения биологической роли токсичных элементов-примесей поступающих в хозяйственный оборот из глубоких недр при освоении УВ сырья.

Наиболее важные результаты, полученные в ходе выполнения исследований:

1. Определены геолого-геохимические условия формирования и распространения месторождений УВ обогащённых элементами-примесями с чётко выраженными токсическими свойствами, проявляющимися как в ходе освоения сырья (разведки, добычи, очистки, переработки) так и его утилизации. Показано, что тяжёлые элементы-примеси, основная часть которых токсична для человека, накапливаются в надкларковых количествах в УВ только в тех НГБ в которых процессы активного рудогенеза в осадочном чехле (эндогенного, экзогенного) опережали во времени главную фазу нефтегенерации или совпадали с нею;

2. Изучены источники, процессы и механизмы накопления токсичных элементов-примесей в составе УВ и их рассеяния в окружающей среде при освоении в зависимости от прочности их молекулярных связей с комплексными соединениями УВ и физико-химическими свойствами. Показано, что наиболее миграционно-подвижные (летучие) элементы-примеси (соединения) активно токсичны на ранних стадиях освоения УВ сырья, тогда как тяжёлые металлы, входящие в полициклические комплексные соединения проявляют токсические свойства только при техногенных воздействиях на сырьё, т.е. в природном состоянии они потенциально, а не активно токсоопасны. Общеизвестное исключение - радиоактивные элементы - опасные на всех этапах освоения.

3. Обоснованы критерии прогноза месторождений нефти и газа обогащенных потенциально и активно токсичными тяжелыми элементами-примесями.

4. Изучены основные процессы и масштабы проявления негативной биологической активности продуктов рассеяния токсоэлементов УВ сырья в окружающей среде при его освоении, обоснован низкий уровень возможности естественной рекультивации загрязненных токсоэлементами земель в исторически приемлемые сроки.

5. Предложена методология комплексной экологической оценки уровней токсозагрязнения окружающей среды на разных этапах и объектах освоения углеводородов

Основные результаты работы опубликованы в следующих трудах

Издания рекомендованные ВАК РФ для публикации материалов докторских диссертаций:

1. Металлы в нефтях Камчатки и Чукотки./Доклады Академии Наук. 1993. Т. 331. № 4. С. 477-479. (Соавторы: Е.И Кудрявцева, Л.Л. Смуров)

2. Оценка загрязнённости грунтовых вод нефтепродуктами в районе ликвидируемого аэродрома ВВС СССР (г. Бжег, Польша) - /"Вестник СПбГУ. Сер.7, 1994, вып. 2 (№14), с. 93-97. (Соавторы: М.А. Галишев, И. Крыза)

3. Металлы в нефтях и конденсатах Польши. - / "Геология нефти и газа", №3, 1998, с. 44-46. (Соавтор: Е.. И. Кудрявцева)

4. Генетические типы углеводородных скоплений обогащённых металлокомпонентами. - /"Образование и локализация руд в земной коре" - СПб, СПбГУ, 1999, с. 147-159.

5. Экологические проблемы при освоении и разработке нефтяных месторождений. - / "Геология нефти и газа", №1, 2000, с. 56-64

6. Корреляция микрокопонентного состава битумов и вмещающих их пород. - / «Маркшейдерия и Недропользование», №5, 2009,

7. Влияние геоструктурных и литофациальных особенностей НГБ на масштабы накопления токсичных элементов в углеводородах. - / «Вестник Санкт-Петербургского государственного университета. Серия 7 Геология, география». АНО "Издательство СПбГУ", № 4, 2009

Монография:

8. Распространенность углеводородного сырья обогащенного тяжелыми элементами-примесями. Оценка экологических рисков. Недра, СПб, 2005, 372с.

Прочие публикации:

9. Факторы, способствующие накоплению промышленных концентраций ванадия в нефтях и битумах./Геохимические критерии формирования скоплений углеводородов и прогноз нефтегазоносности. М. ВНИГНИ. 1988. с. 164-169.

10. Влияние вторичных методов увеличения нефтеотдачи пласта на промышленные содержания металлов в нефтяных залежах. /Повышение эффективности геологоразведочных работ на нефть и газ на основе достижений научно-технического прогресса. М. ВНИГНИ. 1988. с. 120.

11. Современные представления о гидрогеологических факторах формирования залежей промышленно-металлоносных нефтей. - / "Основы прогноза и поисков нетрадиционного углеводородного сырья" - Л., ВНИГРИ, 1989, с. 125-131.

12. Новые источники ванадий-никелевого сырья в Тимано-Печорской нефтегазоносной провинции. - /"Проблемы оценки ресурсов и комплексного освоения природных битумов высоковязких нефтей и сопутствующих им металлов" - Л., ВНИГРИ, 1990, с. 65-67.

13. Металлоносность нефтей Тимано-Печорской нефтегазоносной провинции. - /"Проблемы оценки ресурсов и комплексного освоения природных битумов, высоковязких нефтей и сопутствующих им металлов" - Л., ВНИГРИ, 1990, с. 105-109. (Соавтор Л.Л. Смуров)

14. Современное состояние, перспектива прогноза и поисков месторождений металлоносных нефтей. - / IV региональная научно-техническая конференция молодых учёных и специалистов Северо-запада "Научные и практические проблемы геологоразведки" - Л., ВИТР, 1990, с. 38. (Соавтор Л.Л. Смуров)

15. Стратегия экологически безопасного обеспечения Российских топливно-энергетических комплексов природным горючим сырьём./ Международный симпозиум "Нетрадиционные источники углеводородного сырья и проблемы его освоения". СПб. ВНИГРИ. 1992. Т.1 С. 168-169.

16. Методы региональной оценки качества окружающей среды. - / Международный научный семинар "Экологическая гидрогеология стран Балтийского моря" - СПб, СПб гос. университет, 1993, с. 53-54. (Соавтор П.П. Якуцени)

17. Complex multi-level system of ground/surface water biotesting - / Second International conference on ground water ecology - USA, Atlanta, AWRA, US EPA, 1994, (Соавтор П.П. Якуцени)

18. Perspectives of integrated development of highly gas saturated water as hydromineral and power raw material/ AAPG Hedberg Research Conference Abnormal Pressures in Hydrocarbon Environments, Denver, (Golden), Colorado, 1994, (Соавтор Е.М. Каплан)

19. Система оценки экотоксикологической опасности освоения углеводородного сырья ТПП. - / Международная конференция "Поиск, разведка и добыча нефти и газа в Тимано-Печорском бассейне и Баренцевом море" - СПб, ВНИГРИ, IKU, 1994, с. 86-87.

20. Источники нетрадиционного углеводородного сырья в Тимано-Печорской провинции (ТПП).- / Международная конференция "Поиск, разведка и добыча нефти и газа в Тимано-Печорском бассейне и Баренцевом море" - СПб, ВНИГРИ, IKU, 1994, с. 213-223.

21. Оценка региональной атмосферной миграции загрязнителей в районе среднего течения реки Печоры. - / Первая всероссийская конференция "Поиски нефти, нефтяная индустрия и охрана окружающей седы" - СПб, ВНИГРИ, 1995, с. 66.

22. Прогноз токсико-экологического риска при освоении нефтегазовых месторождений. - / Тезисы Первой всероссийской конференции "Поиски нефти, нефтяная индустрия и охрана окружающей седы" - СПб, ВНИГРИ, 1995, с. 67-68.

23. Прогноз токсико-экологического риска при освоении нефтегазовых месторождений. - / Сборник статей Первой всероссийской конференции "Поиски нефти, нефтяная индустрия и охрана окружающей седы" - СПб, ВНИГРИ, 1995, с. 93-96. (Соавтор П.П. Якуцени)

24. Предмет геотоксикологических исследований. - / "Закономерности эволюции земной коры" - СПб, СПбГУ, 1996, т.1, с. 211.

25. Накопление металлосодержащих токсокомпонентов в нефтях и природных битумах. - / "Геоэкология рекреационных зон Украины" - Киевский национальный университет, Одесса, НПФ "Астропринт", 1996, с. 169-173. (Соавтор: В.П. Пунько)

26. Экономическая оценка экологического риска, связанного с нефтедобычей. - / "Закономерности эволюции земной коры" - СПб, СПбГУ, 1996, т.1, с. 235. (Соавтор: Н.В. Ботова)

27. Трансформация нефтезагрязнённых почв - / "Закономерности эволюции земной коры" - СПб, СПбГУ, 1996, т.1, с. 235. (Соавтор: А.В. Смирнов)

28. Рудное сырьё нафтидов Тимано-Печорской нефтегазоносной провинции. - / Второй международный симпозиум "Нетрадиционные источники углеводородного сырья и проблемы его освоения" - СПб, ВНИГРИ, 1997, с.64.

29. Выявление и геолого-геофизическая оценка ореолов загрязнения углеводородами и пластовыми водами грунтов зоны аэрации. - / Второй международный симпозиум "Нетрадиционные источники углеводородного сырья и проблемы его освоения" - СПб, ВНИГРИ, 1997, с.165. (Соавтор: В.И. Беляков)

30. Информационные технологии: экология-нефть. - / Вторая международная конференция "Экология. Нормативно-методические и правовые основы создания постоянно действующей службы нефтеэкологического мониторинга..." - СПб, ВНИГРИ, 1998, с.31-32. (Соавтор: П.П. Якуцени)

31. Нефти и экологические проблемы их освоения. - / Международная конференция "Перспективы развития и освоения топливно-энергетической базы Северо-западного эконом. р-на РФ" - СПб, ВНИГРИ, 1998, с. 75-76.

32. Социально-экологические последствия разработки месторождений нефти и газа на севере России. - / Международная конференция "Перспективы развития и освоения топливно-энергетической базы Северо-западного эконом. р-на РФ" - СПб, ВНИГРИ, 1998, с. 76-77. (Соавтор: М.Г. Ятманова)

33. Геолого-геофизическая методика поиска воды для локального водоснабжения на Карельском перешейке - / "XXI век: молодёжь, образование, экология, ноосфера" - СПб, СПбГУ, 2000. (Соавторы: В.И. Беляков, Е.Ю. Рыбина)

34. О роли нефти и газа в мировой экономике. - / «Берг-коллегия», №4, 2001, с.8-11.

35. О постановлении правительства Ленинградской области № 63, от 28.05.2001 «Об установлении базового размера арендной платы за землю в Ленинградской области» - / «Берг-коллегия», №4, 2001, с 12, №1 2002, с.8-9.

36. О битумном терминале в Ораниенбауме. - / «Берг-коллегия», №1 2002, с.43.

37. Кодекс геотоксикологии. - / Словарь-справочник, Одесса, НМФ "Бюро минеральных ресурсов", 2002. - 71 с. (Авторский коллектив)

38. Элементы-примеси в нефтях и газах - геохимические индикаторы геодинамической эволюции осадочных бассейнов и времени нефтегазонакопления. V Международная конференция “Проблемы геодинамики и нефтегазоносности Черноморско-каспийского региона”, EAGE АГЕО, Симферополь 2003, с. 132-134. (Соавтор - В.П.Якуцени).


Подобные документы

  • Классификация антропогенных ландшафтов. Трансформация природных комплексов при прокладке сейсмопрофилей, при строительстве трубопроводов и трасс перетаскивания буровых установок и автодорог. Полимагистральные геотехнические системы углеводородного ряда.

    реферат [28,9 K], добавлен 20.05.2012

  • Интенсивное развитие процессов переработки углеводородного сырья. Основные химические продукты переработки нефти и природного газа. Причины утечек горючей жидкости или углеводородного газа. Методы повышения уровня экологической безопасности производства.

    презентация [460,0 K], добавлен 15.04.2014

  • Сущность природоохранной деятельности предприятия. Инженерно-экологическая экспертиза и паспортизация проектов. Экономические механизмы природоохранной деятельности организации. Дирекция углеводородного сырья, а также пластиков и органического синтеза.

    курсовая работа [43,2 K], добавлен 20.12.2013

  • Природные минеральные ресурсы нашей планеты. Совокупность запасов минерального сырья в недрах. Потери полезных ископаемых и ущерб окружающей среде. Истощение сырьевых ресурсов. Вторичное использование ресурсов. Значение новых методов добычи сырья.

    реферат [28,0 K], добавлен 20.04.2012

  • Среда обитания и ее эволюция. Истоки и причины возникновения техники. Критерии комфортности и безопасности техносферы, показатели ее негативности. Загрязнение регионов техносферы токсическими веществами. Негативные факторы производственной среды.

    курсовая работа [527,3 K], добавлен 28.02.2017

  • Оценка ресурсной ценности отходов, их правовой статус согласно отечественным и европейским стандартам. Выяснение права собственности вторичное материальное сырье при приватизации имущественных комплексов. Определение статуса объектов накопления отходов.

    контрольная работа [28,9 K], добавлен 31.10.2010

  • Понятие экологического кризиса. Глобальные экологические проблемы: ядерные катастрофы; воздействие промышленности на природу; изменения видового и популяционного состава фауны и флоры. Загрязнение биосферы токсическими и радиоактивными веществами.

    реферат [4,6 M], добавлен 19.04.2013

  • Установление класса опасности и объема размещения отходов, срока временного их накопления на территории предприятия. Условия, обеспечивающие охрану окружающей среды с учетом утвержденных лимитов размещения отходов и характеристик объектов их размещения.

    дипломная работа [137,2 K], добавлен 24.01.2011

  • Расчет количества и состава продуктов сгорания топлива. Физико-химические основы очистки отработанных газов от токсичных компонентов. Расчет материального баланса по отработанным газам. Определение плат за выбросы загрязняющих веществ в атмосферу.

    курсовая работа [385,2 K], добавлен 30.04.2012

  • Исследование наиболее опасных загрязнителей окружающей среды: тяжелых металлов, лекарственных препаратов, минеральных удобрений и радионуклидов. Особенности влияния различных факторов на здоровье людей. Опасность накопления загрязнения в экосистеме.

    реферат [24,3 K], добавлен 17.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.