Исследование экологического состояния окружающей среды Ханты-Мансийского автономного округа
Особенности функционирования нефтегазодобывающей отрасли - фактор, определяющий экологическую обстановку на территории Ханты-Мансийского автономного округа. Анализ технологической схемы утилизации попутного нефтяного газа на Ловинском месторождении.
Рубрика | Экология и охрана природы |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 12.11.2016 |
Размер файла | 219,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
ПРИМЕР: Сухой очищенный газ (СОГ) реализуется по цене 1700 руб./тонна. Из 1,5 млрд. м3 ПНГ в год получается 330 тыс.тонн СОГ. В год предприятие заработает 561 млн. рублей. Общая стоимость комплекса, включая 32-х километровую врезку в конденсатопровод - 630 млн. рублей. Окупаемость данной установки приблизительно 1,5-2 года.
По схожей технологии могут работать малогабаритные установки сепарации, предназначенные для установки на промыслах.
Низкотемпературный вихревой аппарат.
Рисунок 4.1 - Схема низкотемпературного вихревого аппарата
Легкие компоненты выходят из установки в качестве сухого отбензиненного газа (СОГ), направляются в:
· магистральный трубопровод;
· в котельные;
· на привод дизельной электростанции;
· на привод компрессора;
· другим потребителям.
Жидкие компоненты выводятся из установки в виде ШФЛУ.
Установка НВА (1) состоит из секций, расположенных друг над другом, между ними закреплены межтрубные доски (2) с трубками на концах на которые накручены энергоразделители (3), вставленные в соответствующие трубки, следующей трубной решетки, образуя при этом сопловые вводы, направленные под углом к вертикальной оси и расположенные по периферии внутри трубок. В верхней части аппарата расположены задвижки ввода попутного газа (4) и вывода сухого газа (5). Средняя и нижние секции снабжены задвижками (6)(7)(8) вывода тяжелых фракций(ШФЛУ). Работа НВА полностью автоматизирована. Управление процессом осуществляется с помощью программи позволяет сохранить фазовое равновесие системы и избежать образования гидратов.
Преимущества по сравнению с традиционными технологиями сепарации углеводородов из попутного нефтяного газа:
· малые габариты и, как следствие, возможность размещения на ограниченных площадях и интеграции в схему существующего оборудования;
· низкие капитальные и эксплуатационные затраты - отсутствие криогенных жидкостей и механизмов обеспечения;
· малое потребление электрической энергии (при наличии давления от 6 и выше);
· высокая эффективность при работе на малом давлении, небольшой перепад давления газа на входе и выходе из НВА.
Наиболее близкий способ переработки попутного газа и установка для его осуществления раскрывается в патенте № 66491.
Данный способ включает компримирование исходного попутного нефтяного газа, сепарацию и дальнейшую деэтанизацию. Полученные в результате сепарации газ и конденсат смешивают, затем газожидкостной поток охлаждают и подают на низкотемпературное разделение, после этого часть низкотемпературного конденсата дросселируют, используя полученный холод для охлаждения сжатого газожидкостного потока, и подают на конденсатоотделение, после которого отделенный от конденсата газ смешивают с исходным газом, а конденсат направляют на деэтанизацию.
Установка для утилизации попутного нефтяного газа содержит компрессорные станции, конденсатоотделитель, рекуперативные теплообменники, теплообменники, низкотемпературный трехфазный разделитель, деэтанизатор, рефлексную емкость и насосы.
Известное техническое решение направлено на создание способа переработки нефтяных газов, позволяющего осуществлять глубокое извлечение целевых компонентов, при этом утилизировать тяжелые нефтяные газы и уменьшить капитальные и эксплуатационные затраты.
Однако полученный с помощью известного технического решения отбензиненный газ содержит значительное и непостоянное количество пропана и бутана, и его нельзя использовать в качестве топлива для электростанций, а полученный жидкий остаток не может быть использован в качестве автомобильного топлива и требует дальнейшей переработки.
Задачей изобретения является создание такой технологии переработки попутного нефтяного газа, которая при меньших энергетических и материальных затратах обеспечивает получение товарной, готовой для использования продукции - газообразного топлива для электростанций и жидкого топлива для автотранспорта.
Поставленная задача решается способом переработки попутного нефтяного газа, включающим компримирование исходного нефтяного попутного газа, его охлаждение и сепарацию с получением сухого газа и газового конденсата, в котором согласно изобретению осуществляют двухступенчатую сепарацию, газовый конденсат подвергают дистилляции в ректификационной колонне с получением пропан-бутановой фракции и стабильного газового конденсата, а пропан-бутановую фракцию охлаждают и конденсируют.
Целесообразно часть пропан-бутановой фракции подавать для орошения в верхнюю часть ректификационной колонны.
Кроме того, целесообразно сухой газ использовать для охлаждения и конденсации пропан-бутановой фракции, газовый конденсат перед дистилляцией - для охлаждения компримированного исходного попутного нефтяного газа, а полученный стабильный газовый конденсат - для охлаждения компримированного исходного попутного нефтяного газа.
Поставленная задача также решается установкой для переработки попутного нефтяного газа, содержащей компрессор, соединенный через по меньшей мере один теплообменник с сепаратором, емкости и насосы, которая согласно изобретению снабжена вторым сепаратором, соединенным с выходом по газу первого сепаратора, выходы сепараторов по газовому конденсату соединены со входом ректификационной колонны, выходы которой по дистилляту и по стабильному газовому конденсату соединены с соответствующими теплообменниками. Предпочтительно использовать сепараторы щелевого типа.
При этом выходы сепараторов по газовому конденсату целесообразно соединять со входом ректификационной колонны через буферную емкость и насос с теплообменником для копримированного нефтяного попутного газа.
Кроме того, целесообразно выход второго сепаратора по сухому газу соединить последовательно с теплообменниками для дистиллята, для стабильного газового конденсата и со вторым теплообменником для компримированного попутного нефтяного газа.
Предлагаемый технологический процесс подготовки попутного газа на малогабаритных установках пригоден к эксплуатации в условиях нефтепромыслов со слаборазвитой инфраструктурой, и благодаря использованию малогабаритных газожидкостных сепараторов щелевого типа остается экономически эффективной в широком диапазоне производительностей от 1 млн. до 1 млрд. нм3/год. Простота и автоматическое управление всем процессом является неоспоримым преимуществом установки, оборудование которой благодаря своей компактности легко транспортируется и устанавливается на месте эксплуатации, сводя к минимуму затраты на монтаж и пусконаладку. Кроме того, явным преимуществом блочно-модульной компоновки оборудования является возможность ее использования в обустройстве малых газовых месторождений. Множество таких месторождений остаются не вовлеченными в эксплуатацию, так как разработка их по традиционным технологиям является экономически не выгодной.
На рисунке изображена схема установки (рисунок 4.2).
Установка для переработки попутного нефтяного газа содержит компрессор 1, соединенный через рекуперативные теплообменники 2 и 3 с первым сепаратором 4, выход которого по газу соединен через турбодетандер 5 с входом второго сепаратора 6. Выходы сепараторов 4 и 6 по газовому конденсату соединены через буферную емкость 9 и насос 10, а также через теплообменник 2 со входом ректификационной колонны 11, выходы которой по дистилляту и по стабильному газовому конденсату соединены с соответствующими рекуперативными теплообменниками 7 и 8. Предпочтительно использовать сепараторы 4 и 6 щелевого типа.
Выход второго сепаратора 6 по сухому газу соединить последовательно с теплообменниками 7, 8 и 3 соответственно для дистиллята, для стабильного газового конденсата и со вторым теплообменником для компримированного попутного нефтяного газа.
Согласно предлагаемой технологической схеме попутный нефтяной газ с температурой - 10°С+30°С и давлением 0,2-0,6 МПа поступает на прием винтового компрессора 1. С нагнетания компрессора 1 с температурой около +100-130°С и давлением 3,0-3,5 МПа попутный газ последовательно проходит через рекуперативные теплообменники 2, 3, где соответственно охлаждается деэтанизированным газовым конденсатом и метан-этановой газовой смесью (сухим газом), отводимой с установки. Далее попутный газ поступает на первую ступень сепарации в малогабаритный газожидкостной сепаратор 4 щелевого типа, предназначенный для выделения части деэтанизированного газового конденсата. Отсепарированный попутный газ с верха сепаратора 4 направляется на прием турбодетандера 5, после чего с давлением до 1,4 МПа и температурой минус 16-20°С направляется на вторую ступень сепарации в сепаратор 6. Сепараторы 4 и 6 имеют одинаковое устройство. Газовая фаза сепаратора 6 - сухой газ используется в качестве топлива либо отводится в магистральный газопровод, предварительно подогреваясь в рекуперативных теплообменниках 7, 8, 3. Жидкая фаза - деэтанизированный газовый конденсат с сепараторов 4 и 6 поступает в буферную емкость 9, откуда насосом 10 подается в качестве питания в ректификационную колонну 11. Перед подачей в колонну 11 деэтанизированный конденсат подогревается в рекуперативном теплообменнике 2 до температуры +125°С, потоком сжатого газа с нагнетания компрессора.
Кубовый продукт колонны - стабильный газовый конденсат отводится на склад либо закачивается в основной поток нефти. Рекуперация тепла стабильного газового конденсата осуществляется в теплообменнике 8, где в качестве хладагента используется сухой газ. Дистиллят колонны - пропан-бутановая фракция с температурой около +50°С поступает в дефлегматор 7, где за счет охлаждения сухим газом конденсируется и с температурой +20ч40°С поступает в рефлюксную емкость 12. Насосом 13 часть пропан - бутановой фракции из рефлюксной емкости 12 подается в качестве орошения в верхнюю часть колонны 11, а балансовая часть отводится с установки на склад.
В отличие от ближайшего аналога предложенные способ и устройство позволяют получить не два, а три продукта, качественные характеристики которых позволяют использовать их в тех или иных технологических целях без дальнейшей переработки.
Получаемый в процессе переработки сухой газ обладает высоким метановым числом, определяющим ее детонационную стойкость. Последняя является наиболее важной характеристикой газа, используемого в газопоршневых электростанциях. Таким образом, получаемый сухой газ вполне эффективно можно использовать для производства электрической энергии путем использования ее в качестве топлива для газопоршневых электростанций. Необходимость строительства такой электростанции следует рассматривать при наличии возможности подачи электроэнергии в существующую сеть, либо использования ее для нужд месторождения на месте, например, для бурения скважин. Излишки сухого газа, либо весь сухой газ в случае его невостребованности на месторождении, посредством дожимной компрессорной станции можно направить в магистральный газопровод или при наличии таковых в газовые сети среднего и низкого давления.
Полученная пропан-бутановая фракция может быть использована в качестве топлива для автотранспорта, а также для промышленных и бытовых нужд.
Стабильный газовый конденсат можно направить в добываемую нефть или использовать как добавку к бензиновой фракции.
В предложенной установке по сравнению с ближайшим аналогом исключен блок гликолевой осушки, используемый для предотвращения гидратообразования, что стало возможным благодаря эффективному использованию процесса низкотемпературной сепарации с применением метанола в качестве ингибитора гидратообразования. Это позволило снизить капитальные вложения в установку переработки попутного нефтяного газа и соответственно исключить энергозатраты, связанные с работой вышеуказанного блока.
Также по сравнению с ближайшим аналогом из состава технологической схемы исключены низкотемпературные трехфазные разделители, вместо которых предлагается использовать щелевые сепараторы, позволяющие без монтажа дополнительных массообменных аппаратов получать сухой газ с высоким (95-98 мас.%) содержанием метана.
Предлагаемая технология утилизации попутного нефтяного газа обладает также следующими преимуществами:
- отсутствие необходимости строительства больших стационарных газоперерабатывающих заводов для утилизации попутного газа, утилизация попутного газа непосредственно на территории нефтеразработки;
- выполнение условий лицензионных соглашений по утилизации попутного газа при обустройстве месторождений;
- высокая экономическая эффективность и короткие сроки окупаемости;
- низкая стоимость строительно-монтажных работ (ввиду блочно-модульной конструкции установок), а также короткие сроки монтажа и пусконаладки оборудования;
- возможность введения в эксплуатацию малых газовых месторождений;
- мобильность установки (возможность использования на других газовых месторождениях);
- значительное снижение затрат на энергоснабжение;
- отсутствие значительных инвестиций по строительству ЛЭП и инженерных сетей для постоянного энергоснабжения новых месторождений.
1. Способ переработки попутного нефтяного газа, включающий компримирование исходного нефтяного попутного газа, его охлаждение и сепарацию с получением сухого газа и газового конденсата, отличающийся тем, что осуществляют двухступенчатую сепарацию, газовый конденсат подвергают дистилляции в ректификационной колонне с получением пропан-бутановой фракции и стабильного газового конденсата, а пропан-бутановую фракцию охлаждают и конденсируют.
2. Способ по п.1, отличающийся тем, что часть пропан-бутановой фракции подают для орошения в верхнюю часть ректификационной колонны.
3. Способ по п.1, отличающийся тем, что сухой газ используют для охлаждения и конденсации пропан-бутановой фракции.
4. Способ по п.1, отличающийся тем, что газовый конденсат перед дистилляцией используют для охлаждения компримированного исходного попутного нефтяного газа.
5. Способ по п.1, отличающийся тем, что полученный стабильный газовый конденсат используют для охлаждения компримированного исходного попутного нефтяного газа.
6. Установка для переработки попутного нефтяного газа, содержащая компрессор, соединенный через, по меньшей мере, один теплообменник с сепаратором, емкости и насосы, отличающаяся тем, что она снабжена вторым сепаратором, соединенным с выходом по газу первого сепаратора, выходы сепараторов по газовому конденсату соединены со входом ректификационной колонны, выходы которой по дистилляту и по стабильному газовому конденсату соединены с соответствующими теплообменниками.
7. Установка по п.6, отличающаяся тем, что выходы сепараторов по газовому конденсату соединены со входом ректификационной колонны через буферную емкость и насос с теплообменником для копримированного нефтяного попутного газа.
8. Установка по п.6, отличающаяся тем, что выход второго сепаратора по сухому газу соединен последовательно с теплообменниками для дистиллята, для стабильного газового конденсата и со вторым теплообменником для компримированного попутного нефтяного газа.
9. Установка по п.6, отличающаяся тем, что сепараторы представляют собой сепараторы щелевого типа.
экологический утилизация нефтегазодобывающий
Рисунок 4.2 - Схема компримирования исходного попутного нефтяного газа, сепарация и дальнейшая деэтанизация: 1 - компрессор; 2 и 3 - рекуперативные теплообменники; 4,6 - сепаратор; 5 - турбодетандер; 9 - буферную емкость; 10 - насос; 11 - ректификационной колонны; 12 - рефлюксную емкость; 13 - насос
Заключение
1. Исследовано состояние атмосферного воздуха в ХМАО-Югре за 2011-2013 годах. Выявлены следующие проблемы данного региона: загрязнение атмосферного воздуха при сжигании на факельных установках нефтяных компаний.
2. Изучена технология сжигания попутного нефтяного газа на месторождении.
3. Рассмотрены природоохранные мероприятия, проводимые в регионе.
4. Предложены наилучшие доступные технологии в области ПНГ.
Литература
1. А.А. Атангулов Состояние добычи нефти и разработки нефтяных месторождений в 2001 году.// О состоянии окружающей природной среды Ханты-Мансийского автономного округа в 2001 г. НПЦ "Мониторинг", Ханты-Мансийск, 2002.
2. В.И. Булатов. «Нефть и экология», ГПНТБ СО РАН, ЮНИИ ИТ. - Новосибирск, 2003 году.
3. С.А. Бураков Антропогенные ландшафты в системе оценки современного прогнозируемого экологического состояния территорий. - Проблемы развития газовой промышленности Западной Сибири. - Сб. тезис. докл. XII-й научно-практической конференции молодых ученых и специалистов Томского НИИ промгаза, «Тюмень» ООО, Изд. Тюмень НИИ промгаз; 2004 г.
4. К. Бердюгин, к.б.н., М. Головатин, к.б.н., Л. Добринский, д.б.н., В. Рябицев, д.б.н. - Редкие виды млекопитающих и птиц Югры - Институт экологии растений и животных Уральского отделения РАН - Журнал "Югра: Дела и Люди" № 3 - 1998.
5. Э.В. Гирусов «Основы социальной экологии». М., - 2000 г.
6. А.А. Горелов Социальная экология. 2-е изд. М., 2008.
Размещено на Allbest.ru
Подобные документы
Ханты-Мансийский автономный округ: влияния нефтегазового комплекса на развитие экологической и экономической ситуации. Описание округа, природных ресурсов. Статистическа по основным отраслям промышленности и сельского хозяйства. Задачи улучшения.
дипломная работа [226,1 K], добавлен 03.08.2008Классификация промысловых животных Ханты-Мансийского автономного округа. Непосредственные ресурсы охотничьих животных на особо охраняемых природных территориях регионального значения. Причины сокращения численности охотничьих животных ХМАО-Югры.
реферат [37,6 K], добавлен 04.03.2015Нефть и газ – осадочные полезные ископаемые. Нефтеперерабатывающая и газоперерабатывающая промышленность Ханты-Мансийского Автономного Округа. Экологические проблемы, связанные с добычей нефти и газа в округе. Пути решения экологических проблем в ХМАО.
реферат [25,7 K], добавлен 17.10.2007Анализ экологических рисков при добыче и транспортировке нефти. Территориальные особенности Ханты-Мансийского автономного округа – Югры. Основные факторы экологической опасности и аварийности. Алгоритм успешных мер по ликвидации аварийных последствий.
статья [162,3 K], добавлен 10.05.2014Исследование воздействия попутного нефтяного газа на окружающую среду. Определение наиболее приемлемых с экономической точки зрения способов утилизации попутного нефтяного газа. Описание и построение модели вертикально-интегрированной нефтяной компании.
дипломная работа [1,2 M], добавлен 02.09.2016Экстремальные природно-климатические условия в районах топливно-энергетического комплекса на Севере России. Состояние атмосферного воздуха. Геоэкологическая характеристика Ненецкого автономного округа. Оценка экологического состояния водных объектов.
дипломная работа [2,9 M], добавлен 20.03.2017Анализ основных показателей охраны окружающей среды в России. Отрасли промышленности, влияющие на экологическую обстановку. Программа повышения эффективности противодействия загрязнению окружающей среды, ее принципы и структура, а также компоненты.
презентация [3,4 M], добавлен 16.08.2017Общая характеристика проблем защиты окружающей среды. Знакомство с этапами разработки технологической схемы очистки и деминерализации сточных пластовых вод на месторождении "Дыш". Рассмотрение методов очистки сточных вод нефтедобывающих предприятий.
дипломная работа [2,2 M], добавлен 21.04.2016Осуществление экологического мониторинга с целью анализа воздействия природных и антропогенных факторов на состояние окружающей среды. Реализация природоохранных мероприятий на территории Черемшанского муниципального района Республики Татарстан.
презентация [7,0 M], добавлен 11.04.2012Отрицательное воздействие предприятий рыбной промышленности на объекты окружающей среды. Требования, предъявляемые к территории рыбоперерабатывающих предприятий. Проблемы утилизации отходов промышленности Камчатского края и мероприятия по их устранению.
курсовая работа [31,9 K], добавлен 17.02.2015