Техника защиты водных ресурсов и атмосферного воздуха

Абсорбционные методы очистки газов. Оценка экономического ущерба за загрязнение водоемов, почв твердыми отходами. Сооружения и аппараты биологической очистки. Расчет отстойников для очистки сточных вод. Характеристика термических методов обезвреживания.

Рубрика Экология и охрана природы
Вид шпаргалка
Язык русский
Дата добавления 23.09.2015
Размер файла 1,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

· состав и содержание болезнетворных бактерий.

Предельно допустимая концентрация загрязняющего вещества (ПДК) - максимальная концентрация загрязняющих веществ в воде, при которой вещество не оказывает прямого или опосредованного влияния на здоровье человека (при воздействии на организм в течение всей жизни) и не ухудшает гигиенические условия водопользования. ПДК вредных веществ, как показатель качества воды, устанавливается с учетом лимитирующего показателя вредности (ЛПВ) вредного вещества, под которым понимают наиболее вероятное неблагоприятное воздействие каждого вещества. При нормировании качества воды в водных объектах 1-ой категории используют три вида ЛПВ: санитарно-токсикологический, общесанитарный, органолептический. Для водоемов 2-ой категории, наряду с указанными, используют еще два вида ЛПВ: токсикологический и рыбохозяйственный. При оценке опасности загрязнения водных объектов используется соотношение: С/ПДК<1, где С - концентрация вредного вещества в водоеме, г/м3; ПДК - предельно допустимая концентрация вещества, г/м3. Если значение соотношения больше единицы, то опасность загрязнения существует. При поступлении в водные объекты нескольких веществ с одинаковыми ЛПВ, их концентрация должна удовлетворять условию:

С1/ПДК1 + С2/ПДК2 + …+ С n ПДКn<1,

где C1,n - фактические концентрации вредных веществ, г/м3; ПДК1,n - предельно допустимые концентрации этих веществ, г/м3.

Предельно допустимые сбросы (ПДС) в водный объект - это масса загрязняющего вещества в сточных водах, максимально допустимая к отведению в данном пункте водного объекта в единицу времени с целью обеспечения качества воды.

ПДС устанавливаются для предприятий, имеющих самостоятельные выпуски сточных вод.

ПДС для всех категорий водопользования определяется по формуле:

ПДС = Q•С,

где Q - расход сточных вод; С - концентрация веществ в сточных водах. ПДС устанавливается по каждому веществу, в том числе и по веществам, относящимся к одной группе ЛПВ.

11. Коагуляция

Коагуляция - это слипание частиц коллоидной системы при столкновениях в процессе теплового движения, перемешивания или направленного перемешивания во внешнем силовом поле. В результате коагуляции образуются агрегаты - более крупные (вторичные) частицы, состоящие из скопления мелких (первичных) частиц. Первичные частицы в таких агрегатах соединены силами межмолекулярного взаимодействия непосредственно или через прослойку окружающей (дисперсной) среды. Коагуляция сопровождается прогрессирующим укрупнением частиц и снижением их общего числа в объеме дисперсной среды. Слипание однородных частиц называется гомокоагуляцией, а разнородных - гетерокоагуляцией.

Флокуляция - это один из видов коагуляции, при которой более мелкие частицы, находящиеся во взвешенном состоянии в воде, под влиянием специально добавляемых веществ (флокулянтов), образуют интенсивно оседающие скопления в виде хлопьев.

Методы коагуляции и флокуляции широко распространены для очистки сточных вод предприятий химической, нефтехимической, нефтеперерабатывающей, целлюлозно-бумажной, легкой, текстильной и других отраслей промышленности.

Эффективность коагуляционной очистки зависит от многих факторов: вида коллоидных частиц; их концентрации и степени дисперсности; наличия в сточных водах электролитов и других примесей; величины электрокинетического потенциала. В сточных водах могут содержаться твердые (каолин, глина, волокна, цемент, кристаллы солей и др.) и жидкие (нефть, нефтепродукты, смолы и др.) частицы.

Расширению оптимальных областей коагуляции (по рН и температуре) способствуют флокулянты, повышающие плотность и прочность образующихся хлопьев, снижающие расход коагулянтов, повышающие надежность работы и пропускную способность очистных сооружений. При растворении в сточных водах флокулянты могут находиться в неионизированном и ионизированном состоянии. Последние носят название растворимых полиэлектролитов. В зависимости от состава полярных групп флокулянты бывают: неионогенные - полимеры, содержащие неионогенные группы: - ОН, >СО (крахмал, оксиэтилцеллюлоза, поливиниловый спирт" полиакрилонитрил и др.);

анионные - полимеры, содержащие анионные группы: -СООН, -SO3H, OSO3H (активная кремниевая кислота, полиакрилат натрия, альгинат натрия, лигносульфонаты и др.);

катионные - полимеры, содержащие катнонные группы: -NH2, =NH (полиэтиленимин, сополимеры винилпиридина, ВА-2, ВА-102, ВА-212 и др.); амфотерные - полимеры, содержащие одновременно анионные и катионные группы: полиакриламид, белки и др.

Скорость и эффективность процесса флокуляции зависят от состава сточных вод, их температуры, интенсивности перемешивания и последовательности введения коагулянтов и флокулянтов. Дозы флокулянтов принимаются обычно 0,1-10 г/м3, а в среднем 0,5-1 г/м3. Так, применение добавок полиакриламида в концентрации 1 г/м3 при коагуляции сточных вод металлургического завода позволило увеличить удельную нагрузку на радиальные отстойники в 2 раза.

Процесс очистки сточных вод методом коагуляции или флокуляции включает приготовление водных растворов коагулянтов или флокулянтов, их дозирование, смешение со всем объемом сточной воды, хлопьеобразование, выделение хлопьев из нее.

Для очистки поверхностного стока наиболее целесообразно применять горизонтальные или тангенциальные песколовки. Длину горизонтальных песколовок L, м, рекомендуется определять по формуле:

L=1000• k• hp• v/u0,

где k - коэффициент, учитывающий неполное использование зоны отстаивания, = 1,7;

hp - расчетная глубина песколовки, принимается в диапазоне от 0,5 до 2 м;

v - скорость движения сточных вод, при максимальном притоке vмакс = 0,3м/с;

u0 - гидравлическая крупность частиц песка, на задержание которых рассчитывается песколовка, u0 = 18,7 мм/с;

1000 - переводной коэффициент размерности.

Площадь живого сечения песколовки (F):

F = Q/vмакс,

где Q - максимальный расход сточных вод, м3/с;

vмакс - скорость движения сточных вод, м/с.

Из уравнения неразрывности струи:

Q=F• v, м3/с,

определяют ширину песколовки (В):

В=F/hp, м.

При нескольких отделениях песколовки ширина одного отделения:

b=B/n, м.

где n - количество песколовок или их отделений.

Ширина отделений обычно принимается от 0,5 до 2 м.

Для определения высоты слоя осадка, задерживаемого в песколовке (hос), устанавливается общий объем задержанного осадка (Wос):

Wос = Q•C0•0,15/(100-b)•v•104,м3/ч, где Q - расход сточных вод, м3/ч;

C0 - концентрация взвешенных веществ в поступающем стоке, мг/л.

b - влажность осадка, % (60-70 %);

v - плотность осадка, г/см3 (1,2-1,5 г/см3).

Обычно число суток между чистками песколовки принимается 0,33-2 суток.

hос = Wос/L•B•N, м.

Общая строительная глубина песколовки определяется по формуле:

H = hб + hр + hос, м

где hб - высота бортов над уровнем воды в песколовке (принимается 0,2-0,4 м).

Время протекания в песколовке определяется в секундах (с) из уравнения: L=vмакс• t, м.

Отсюда:

t=L/vмакс. (4.15)

Продолжительность протекания сточных вод в горизонтальной песколовке должна быть не менее 30 с.

Расчет тангенциальных песколовок осуществляется по гидравлической нагрузке на поверхность песколовки в плане.

Необходимая площадь песколовок в плане определяется по формуле:

F = Q / q0, м2,

где Q - расчетный расход сточных вод, м3/ч;

q0 - расчетная гидравлическая нагрузка, м3/(м2• ч).

Расчетная гидравлическая нагрузка на поверхность тангенциальных песколовок в плане рекомендуется принимать в границах 90-130 м3/(м2• ч) (на маленьких очистных станциях - 60-80 м3/(м2• ч)) 16. По СНиП 2.04.03-85 расчет тангенциальных песколовок рекомендуется осуществлять по гидравлической нагрузке 110 м3/(м2• ч).

Диаметр песколовки должен составлять:

, м,

где N - количество песколовок (не менее двух).

Диаметр тангенциальных песколовок не должен превышать 6 м, а рабочая глубина принимается не большей величины радиуса.

12. Усреднители

Усреднение расхода и концентрации загрязнений позволяют рассчитывать все последующие звенья очистки не на максимальные, а на некоторые средние значения параметров потока. Экономичнее иметь усреднитель в начале цепи, чем завышать объем и производительность каждого из последующих звеньев очистки.

Выбор рациональной схемы усреднения (типа усреднителя), расчет его объема проводятся на основе информации о характере колебаний параметров входного потока (концентраций Сen(t) и расхода qen(t) ч и требований на допустимые колебания параметров сточных вод на выходе усреднителя Ceх,(t),qex(t). Эти требования обычно устанавливаются на основе максимально допустимых величин Сadm и qadm, назначаемых в зависимости от типа последующих очистных сооружений, при этом они должны превышать средние значения параметров Сen mid, qen mid.

Для расчета объема усреднителя используется информация, получаемая: от технологов основного производства, которые используя характеристику номинального режима производства и аварийных режимов, могут прогнозировать характер поступления сточных вод на очистные сооружения; с объектов-аналогов, а также непосредственным наблюдением на объекте.

При наличии на предприятии контрольно-измерительной аппаратуры изменение состава сточных вод регистрируется непрерывно, при отсутствии - дискретно с различной длительностью интервалов между лабораторными анализами (не более 1 ч). Окончательная форма представления информации о колебаниях - таблицы и графики. Полученная информация о колебаниях расхода и состава сточных вод (по лимитируемым загрязнениям, например: рH среды, интенсивность окраски, взвешенные вещества, специфические загрязнения производства), а также представление о количественном и качественном составе нерастворимых загрязнений, даст возможность вести расчет объема усреднителя в соответствии с основными типами нестационарности потока:

залповые сбросы высококонцентрированных сточных вод;

циклические колебания;

случайные колебании произвольного спектра.

Сведения о количественном и качественном составе нерастворимых загрязнений необходимы для выбора способа перемешивания и расчета перемешивающих устройств. Кроме того, эти сведения помогу принять решения о возможной компоновке усреднителя с отстойной зоной в целях облегчения его эксплуатации и частичной очистки стоков. Образование непредусмотренного и трудноотделяемого осадка в усреднителях является основной причиной снижения эффективности их работы.

Конструктивное выделение зоны отстаивания в усреднителе приемлемо при наличии узла обработки осадка в технологической цепи очистки (напорная, реагентная флотация, отстаивание, осветление). Типы и конструкции усреднителей Тип усреднителя необходимо выбирать в зависимости от характера и количества нерастворенных компонентов загрязнений, а также динамики поступления сточных вод. При гашении залповых сбросов предпочтительнее конструкции многоканального типа, при произвольных колебаниях практически равноценны любые типы усреднителей. В таких случаях большую роль играют вид и количество нерастворенных загрязнений.

К многоканальным конструкциям относятся: прямоугольные - Д. М. Ванякина, круглые - Д. А. Шпилева, конструкции с неравномерным распределением расхода и объемов по каналам.

Усреднитель-смеситель барботажного типа следует применять для усреднения стоков независимо от режима их поступления при содержании грубодиспергированных взвешенных веществ с концентрацией до 500 мг/л гидравлической крупностью до 10 мм/с. Усреднитель-смеситель с механическим перемешиванием и отстойной зоной необходимо применять для усреднения стогов с содержанием взвешенных веществ более 500 мг/л любой гидравлической крупности. Режим поступления стоков - произвольный. Усреднители следует устанавливать после отстойников или оборудовать их отстойной частью с целью облегчения эксплуатации. Расчет отстойной части необходимо проводить по данным кинетики осаждения взвесей, аналогично расчету отстойников. При этом необходимо учитывать гидродинамический режим выбранного типа усреднителя. Для подавления залповых сбросов высококонцентрированных стоков и произвольных колебаний состава и при наличии взвешенных мелкодиспергированных веществ с концентрацией до 500 мг/л, гидравлической крупностью до 5 мм/с следует применять многоканальные усреднители без принудительного перемешивания. При необходимости усреднения и расхода усреднитель блокируется с аккумулирующей емкостью.

КОНСТРУКЦИИ УСРЕДНИТЕЛЕЙ РАЗЛИЧНОГО ТИПА

Комплексный подход к выбору типа усреднителя и его расчету в зависимости от характера колебаний концентрации загрязнений и расхода сточных вод, от их качественного состава, позволил выявить основные ниш конструкций. Однако для конкретных технологических задач усреднения сточных вод могут быть использованы и другие схемы усреднения (последовательно-параллельные, двухступенчатые и др.) с соответствующим обоснованием, разрабатываться новые конструкции с заданными свойствами.

Усреднитель - смеситель барботажного типа

Союзводоканалпроект разработал типовые проекты многосекционных пневматических усреднителей концентрации сточных вод полезным объемом одной секции 300, 1400 и 5000 м3. Применение усреднителей барботажного типа связано с соблюдением ряда принципиальных положении:

1. Распределение сточных вод по площади усреднителя должно быть максимально равномерное. С этой целью могут использоваться системы подающих лотков с придонными водосливными окнами, расположенными на расстоянии 2 м друг от друга. При обеспечении должного качества строительства возможно распределение жидкости из лотков через донные выпуски. Размеры выпусков рассчитываются по формуле:

(1)

Каждый распределительный лоток оборудуется двумя шиберами: на входе в лоток для создания оптимального режима и равномерного распределения сточной воды между лотками; и в конце лотка в торцевом придонном водосливном окне размером 20х40 см (НхВ), обеспечивающий периодическую промывку лотка. Число распределительных лотков и размещение выпускных окон в одной или обеих стенках лотков принимается из такого расчета, чтобы в каждый циркуляционный поток поступало одинаковое количество жидкости.

2. При напорной подаче воды на усреднитель перед ним на трубопроводе необходимо устанавливать колодец гашения напора. Целесообразнее самотечная подача стоков на усреднитель. В этом случае сооружение несет на себе всю нагрузку по выравниванию расхода и концентрации.

3. Расчет объема усреднителя ведется в зависимости от характера поступления сточных вод на сооружение в соответствии с формулами (19)-(24) СНиП 2.04.03- 85.

Максимальная величина скорости проточного течения жидкости в усреднитель 2,5 мм/с, при этом длина секции усреднителя принимается из расчета

(2)

с учетом графика поступления концентрации загрязнении по часам суток.

С целью обеспечения равномерного распределения жидкости и воздуха вдоль усреднителя целесообразна длина секции не более 24 м. Глубина слоя поды в усреднителе из конструктивных соображений принимается в пределах 3-6 м. Ширина секции усреднителя принимается не более 12 м.

4. В качестве барботеров в усреднителе рекомендуется использовать перфорированные трубы с отверстиями диаметром 3 мм (шаг 8-16 см), располагаемыми в нижней части трубы в один или два ряда под углом 45° к оси трубы.

Трубы укладываются горизонтально вдоль резервуара на подставках высотой 6-10 см. Допустимое отклонение от горизонтальной укладки труб барботеров не должно превышать ± 0,015 м так, чтобы связанная с этим неравномерность подачи воздуха по длине барботера не превысила одной трети от принятой в расчете неравномерности подачи воздуха (20 % среднего расхода воздуха).

Барботеры подразделяют на пристеночные, создающие один циркуляционный поток, и промежуточные, создающие два циркуляционных потока.

Оптимальное расстояние между барботерами следует считать (2-3)^ Н, а между барботерами и параллельной ему стеной усреднителя (1-1,5)Н, где Н - глубина погружения барботера.

При расчете принимаются:

интенсивность барботирования для усреднения концентрации растворенных примесей при простеночных барботерах 6 м3/ч на 1 м, при промежуточных барботерах 12 м3/ч на 1 м;

интенсивность барботирования для предотвращения выпадания в осадок взвесей в пристеночных барботерах 12 м3/ч на 1 м, в промежуточных 24 м3/ч на 1 м. Расчетная глубина погружения барботера принята равной 4,3 м. Приведенные в табл. 1 данные могут использоваться при изменении погружения в диапазоне 3-5 м.

При среднем перепаде давления на перфорированных отверстиях = 1 кПа максимальные потери в барботере не более м = 2 кПа, а при = 4 кПа - не более м = 7 кПа.

5. Для предотвращения выпадения осадка в местах прямоугольного сопряжения днища со стенками резервуара рекомендуется заполнение этих мест тощим бетоном. При этом угол сопряжении днища с заполнением должен составлять 30.

Возможен уклон в сторону забора воды, где должен быть предусмотрен трубопровод опорожнения секции усреднителя.

6. На входе в усреднитель необходимо устанавливать контрольно-измерительную аппаратуру для определения расхода полы и воздуха, поступающих на сооружение.

7. Все конструктивные узлы сооружения необходимо оборудовать трубопроводами опорожнения и предусматривать малые средства механизации (например, бадья-таль-кошка, бадья-тальфер и др.) для периодической чистки усреднителя.

Возможно предусмотреть нестационарную систему пеногашения усредненными стоками (например, шланги с насадками, укрепленные на штативах). Как показал опыт эксплуатации, пены в усреднителях нет, кроме исключительных случаев, когда применяли и производстве запрещенные в настоящее время ПАВ.

8. В зависимости от характеристик стоков в цеховых каналах, на выпусках из промышленных здании или перед резервуаром - усреднителем необходимо предусматривать решетки для сбора волокон, шерсти, тряпок и других отходов производства. Целесообразно по ходу технологических линий на определенных производствах устанавливать шерстеуловители.

9. Самым надежным способом водоотведения, как показал опыт эксплуатации, является работа насосов.

13. Расчет отстойников для очистки сточных вод

Расчет отстойников подлежит производить по гидравлической крупности частиц взвеси, выделение которых обеспечивает необходимый эффект очистки. В качестве примера приведенная методика расчета горизонтального и тонкослойного отстойников.

Данные для расчета горизонтальных отстойников:

В - ширина отстойника или его секции, принимается в пределах 3-9 м;

u0 - гидравлическая крупность, составляет 1-0,05 мм/с при эффекте удале-ния взвесей Э (%) от 25 до 85 %;

tр - расчетное время пребывания воды в отстойнике, tр = 1-3 ч;

Н0 - высота зоны отстаивания, Н0 = 2-3 м.

Суммарную площадь горизонтальных отстойников определяют по формуле:

где Qоч - расчетный расход сточных вод, м3/ч;

u0 - скорость выпадения (всплытия) примесей (взвешенных веществ, нефтепродуктов и т.д., задерживаемых отстойником (гидравлическая крупность), мм/с;

б - коэффициент, учитывающий вертикальной составляющей скорости потока;

vср - скорость движения воды в отстойнике, принимается в пределах 5-7 мм/с, при расчете его на удаление взвесей с u0 ? 0,55 мм/с и 3-5 мм/с при расчете на удаление взвесей с u0 ? 0,4 мм/с.

Длина отстойника L0 (м):

Общая ширина отстойников В (м) определяется по формуле:

В = F0/L0;

После определения величины В определяется фактическая скорость (vср, мм/с) в проточной части отстойников:

, мм/с. (4.23)

Ширина (^ В ) принимается 3-9 м, а длина не более 10Н0. Расчетное количество отстойников или секций не менее двух.

При расчете осадочной части отстойника следует исходить из расчетного накопления осадка и принятой частоты его удаления.

В отстойниках для механической очистки поверхностного стока, как в нефтеловушках и в первичных отстойниках городских очистных сооружений, должны быть предусмотрены устройства для задерживания и периодического удаления всплывающих примесей (в основном нефтепродуктов и масел) и накапливающегося осадка. Удаляемые с поверхности отстойника всплывающие примеси отводятся в сборники, где выдерживаются в течение нескольких суток для отделения нефтепродуктов. Частично осветленные и обезвоженные нефтепродукты, в зависимости от их качества, должны направляться на утилизацию или сжигание, а отделившаяся вода или шлам возвращаться в отстойник.

14. Расчет тонкослойных отстойников

Перед началом расчета тонкослойных отстойников, которые работают по противоточной схеме (рис. 4.1), принимают: высоту яруса по вертикали hв, угол наклона пластин к горизонту б, скорость движения потока в межполочном пространстве v, количество секций Nф и строительную ширину одной секции отстойника B. Высоту яруса по вертикали hв принимают 0,2-0,025 м (при высоких начальных концентрациях взвешенных веществ рекомендуется принимать большие значения). Для лучшего сползания осадка с поверхности пластин или труб их целесообразно устанавливать в блоках под углом б = 55-600. Скорость движения потока v в межполочном пространстве принимают не больше 10 мм/с. Ширину тонкослойного отстойника Bbl принимают конструктивно (2-6 м), исходя из строительной ширины секции отстойника B, размеров материала листов блоков и условий их монтажа. Количество секций отстойника Nф должно быть не меньше двух (если принять минимальное число отстойников (Nф= 2), то максимальный расчетный расход очищаемых сточных вод следует увеличить в 1,2-1,3 раз).

15. Общая характеристика термических методов обезвреживания сточных вод

абсорбционный загрязнение водоем обезвреживание

Все методы очистки сточных вод могут быть разделены на деструктивные и регенеративные.

Под деструктивными понимают такие методы, при которых загрязняющие воду вещества подвергаются разрушению. Образующиеся продукты распада удаляются из воды в виде газов или осадков или остаются в растворе, но уже в обезвреженном виде. Чаще всего это происходит при использовании естественных или искусственных окислительных процессов. Регенеративные методы решают две задачи: очистку сточных вод и утилизацию ценных веществ. Практически нередко приходится совмещать обе группы методов, а также проводить стадии предварительной очистки и доочистки.

Методы очистки сточных вод можно подразделить также на гидромеханические, химические, физико-химические, термические, электрохимические, биохимические.

Если в сточных водах имеются весьма вредные вещества, применяют термические методы, позволяющие уничтожить эти примеси, например, при сжигании. Такой процесс применим для обезвреживания органических примесей сточных вод. Для очистки минерализованных сточных вод из термических методов можно использовать выпаривание, адиабатное испарение, вымораживание и кристаллизацию из растворов и др.

Для обезвреживания значительной группы жидких, твердых, пастообразных и газообразных промышленных отходов с большим набором и высокой концентрацией органических и минеральных веществ применяют термические методы. Они заключаются в тепловом воздействии на отходы, при котором происходит окисление или восстановление некоторых вредных веществ с образованием безвредных или менее вредных. К термическим методам относят жидкофазное окисление, гетерогенный катализ, газификацию отходов, пиролиз отходов, плазменный и огневой методы. По теплотворной способности промышленные стоки делят на сточные воды, способные гореть самостоятельно, и на воды, для обезвреживания которых необходимо добавлять топливо. Эти сточные воды имеют энтальпию ниже 8400 кДж/кг (2000 ккал/кг). При использовании термоокислительного метода все органические вещества, загрязняющие сточные воды, полностью окисляются кислородом воздуха при высоких температурах до нетоксичных соединений. К этим методам относят метод жидкофазного окисления, метод парофазного каталитического окисления и пламенный или "огневой" метод. Выбор метода зависит от объема сточных вод, их состава и теплотворной способности, экономичности процесса и требований, предъявляемых к очищенным водам. Метод жидкофазного окисления. Этот метод очистки основан на окислении органических веществ, растворенных в воде, кислородом при температурах 100 - 350°С и давлениях 2 - 28 МПа. При высоких давлениях растворимость в воде кислорода значительно возрастает, что способствует ускорению процесса окисления органических веществ. Эффективность процесса окисления увеличивается с повышением температуры. Летучие вещества окисляются в основном в парогазовой фазе, а нелетучие - в жидкой фазе. С увеличением концентрации органических примесей в воде экономичность процесса жидкофазного окисления возрастает. Метод начинают использовать для очистки сточных вод в химической, нефтеперерабатывающей, целлюлознобумажной, фармацевтической и других отраслях промышленности. Метод парофазного каталитического окисления. В основе метода находится гетерогенное каталитическое окисление кислородом воздуха при высокой температуре летучих органических веществ, находящихся в сточных водах. Процесс протекает интенсивно в паровой фазе в присутствии медно-хромового, цинк-хромового, медно-марганцевого или другого катализатора. Основной недостаток метода - возможность отравления катализаторов соединениями фосфора, фтора, серы. Поэтому необходимо предварительное удаление каталитических ядов из сточных вод. Достоинства метода: возможность очистки большого объема сточных вод без предварительного концентрирования, отсутствие в продуктах окисления вредных органических веществ; возможность комбинирования с другими методами; безопасность в работе. Недостатки метода: неполное окисление некоторых органических веществ; высокая коррозия оборудования в кислых средах. Огневой метод. Этот метод обезвреживания сточных вод является наиболее эффективным и универсальным из термических методов. Сущность его заключается в распылении сточных вод непосредственно в топочные газы, нагретые до 900 - 1000°С. При этом вода полностью испаряется, а органические примеси сгорают. Огневой метод применяют для обезвреживания сточных вод, содержащих только минеральные вещества. Метод может быть использован также для обезвреживания небольшого объема сточных вод, содержащих высокотоксичные органические вещества, очистка от которых другими методами невозможна или неэффективна. Кроме того, огневой метод целесообразен, если имеются горючие отходы, которые можно использовать как топливо. В процессе обезвреживания сточных вод различного состава могут образовываться оксиды щелочных и щелочно-земельных металлов (CaO, MgO, BaO, K2O, Na2O и др.). При диссоциации хлоридов в дымовых газах содержится хлор и хлороводород. Органические соединения, содержащие серу, фосфор, галогены, могут образовывать SO2, SO3, P2O5, HC1, C12 и др. Присутствие этих веществ в дымовых газах нежелательно, т.к. это вызывает коррозию аппаратуры. Из сточных вод, содержащих нитросоединения, могут выделяться оксиды азота. Между этими соединениями происходят взаимодействия с образованием новых соединений, в том числе и токсичных. Огневой метод Огневой метод используют для сжигания негорючих сточных вод. Сущность метода заключается в распылении сточных вод в топочные газы, имеющие высокую температуру (900--1000 °С). Вода при этом полностью испаряется, органические примеси сгорают с образованием газовых продуктов, а минеральные вещества образуют твердые или расплавленные частицы, которые затем улавливаются.

Для обезвреживания особо опасных, ядовитых и неутилизируемых отходов огневой метод является наиболее целесообразным, а зачастую единственно возможным. Однако у данного метода есть существенный недостаток - это высокие затраты энергоресурсов и дороговизна, которые ограничивают возможности и масштабы его применения. Поэтому снижение себестоимости термического способа очистки сточных вод является весьма актуальным. Разработан ряд технологических установок для огневого метода обезвреживания: без рекуперации тепла и очистки газов; без рекуперации тепла с очисткой газов; с рекуперацией тепла без очистки газов; с рекуперацией тепла и очисткой газов. Во всех этих схемах отсутствует рекуперация твердых отходов. Предложены схемы и с рекуперацией твердых отходов, выделяющихся при использовании огневого метода обезвреживания сточных вод. Огневой метод требует больших затрат топлива на испарение воды и полного сгорания токсичных примесей. Обычно расход топлива составляет 250--300 кг на 1 т сточной воды. История развития термических способов обезвреживания сточных вод начинается с использования камерных и шахтных печей, в которых осуществлялось подсушивание и сжигание распыливаемой при помощи сопел сточной воды за счет сжигания топлива. Основными их недостатками являются громоздкость, дороговизна и малая удельная производительность. Наиболее совершенными для сжигания жидких отходов являются циклонные печи, преимущества которых обусловлены аэродинамическими особенностями (вихревая структура газового потока), обеспечивающими высокую интенсивность и устойчивость процесса сжигания с малыми тепловыми потерями и минимальными избытками воздуха. Это позволяет создавать малогабаритные устройства, работающие с высокими удельными тепловыми нагрузками, в десятки раз превышающими нагрузки камерных, шахтных и барабанных печей. Широкое применение циклонные печи нашли для обезвреживания сточных вод, загрязненных органическими и минеральными компонентами. Подача воздуха и топлива осуществляется тангенциально газо-мазутными горелками предварительного смешения, расположенными на боковой поверхности камеры сгорания. Распыливание сточных вод осуществляется центробежными механическими форсунками, установленными радиально ниже зоны горения топлива. Дальнейшее развитие техники сжигания сточных вод привело к созданию многоподовых печей и печей с псевдоожиженным слоем. Однако имеющиеся существенные недостатки - сложность технологической схемы подготовки и сжигания сточных вод и недостаточная стойкость футеровки - ограничили широкое их распространение. В связи с огромным разнообразием и сложностью химических процессов, появлением сложных соединений различного класса, пластификаторов, синтетических материалов, ядохимикатов и др. резко возросла необходимость в поиске путей эффективного обезвреживания сточных вод различных производств, содержащих токсичные органические и неорганические вещества. Описанные выше методы и способы термического обезвреживания сточных вод оказываются не в состоянии обеспечить надежную их очистку и утилизацию содержащихся в них солей. В этих случаях наиболее надежным, а часто и экономически целесообразным, является огневой способ обезвреживания в циклонных печах. Однако, несмотря на столь существенные качественные преимущества метода термического обезвреживания и термической очистки сточных вод промышленных предприятий, его применение в современных условиях является достаточно ограниченным и несоответствующим потенциальным возможностям последнего и относится, главным образом, лишь только к области обезвреживания путем прямого сжигания небольших количеств высококонцентрированных по органическим примесям жидких отходов производств или сжигания с выпариванием небольших количеств высококонцентрированных по минеральным веществам сточных вод. Основными недостатками методов термического обезвреживания и термической очистки сточных вод промышленных предприятий, препятствующих дальнейшему расширению применения последних, являются: высокая стоимость процесса термического обезвреживания и термической очистки сточных вод промышленных предприятий, обусловленная, прежде всего, большой удельной затратой топлива в процессе обезвреживания в существующих промышленных установках ; конструктивная сложность и большие размеры установок; высокая начальная стоимость установок ; недостаточная надежность установок ; сложность эксплуатации установок ; трудность осуществления полной и высоконадежной автоматизации установок. Жидкие отходы перед поступлением в камеру сгорания распыляются с помощью форсунок, поэтому, чтобы избежать забивки форсунок, жидкие отходы должны быть тщательно очищены, а зимой, когда отходы густеют, их тщательная очистка перед форсунками вообще неосуществима.

16. Сорбция

Сорбция представляет собой один из наиболее эффективных методов глубокой очистки от растворенных органических веществ сточных вод предприятий целлюлозно-бумажной, химической, нефтехимической, текстильной и других отраслей промышленности. Сорбционная очистка может применяться самостоятельно и совместно с биологической, как метод предварительной и глубокой очистки. Преимуществами этого метода являются возможность поглощения веществ из многокомпонентных смесей и высокая степень очистки, особенно слабо концентрированных сточных вод. Сорбция - это процесс поглощения одного вещества из окружающей среды другим веществом, твердым телом или жидкостью. Поглощающее тело называется сорбентом, а поглощаемое - сорбатом. В зависимости от механизма сорбции различают адсорбцию, абсорбцию, хемосорбцию и капиллярную конденсацию. Поглощение вещества всей массой жидкого сорбента называется абсорбция, а поверхностным слоем твердого или жидкого сорбента - адсорбция. Сорбция, сопровождающаяся химическим взаимодействием сорбента с поглощаемым веществом, называется хемосорбцией. Сорбция представляет собой один из наиболее эффективных методов глубокой очистки от растворенных органических веществ сточных вод предприятий целлюлозно-бумажной, химической, нефтехимической, текстильной и других отраслей промышленности. Сорбционная очистка может применяться самостоятельно и совместно с биологической, как метод предварительной и глубокой очистки. Преимуществами этого метода являются возможность поглощения веществ из многокомпонентных смесей и высокая степень очистки, особенно слабо концентрированных сточных вод. Сорбционные методы весьма эффективны для извлечения из сточных вод ценных растворенных веществ с их последующей утилизацией и использования очищенных сточных вод в системе оборотного водоснабжения промышленных предприятий. Адсорбция растворенных веществ - результат перехода молекулы растворенного вещества из раствора на поверхность твердого сорбента под действием силового поля поверхности. При этом наблюдаются два вида сил межмолекулярного взаимодействия:

- молекул растворенного вещества с молекулами (или атомами) поверхности сорбента;

- молекул растворенного вещества с молекулами воды в растворе (гидратация).

Разность этих двух сил межмолекулярного взаимодействия и есть та сила, с какой удерживается извлеченное из раствора вещество на поверхности сорбента. Чем больше энергия гидратации молекул растворенного вещества, тем большее противодействие испытывают эти молекулы при переходе на поверхность сорбента и тем слабее адсорбируется вещество из раствора. Сорбционная очистка сточных вод наиболее рациональна, если в них содержатся преимущественно ароматические соединения, не электролиты или слабые электролиты, красители, непредельные соединения или гидрофобные (например, содержащие хлор или нитрогруппы) алифатические соединения. При содержании в сточных водах только неорганических соединений, а также низких одноатомных спиртов этот метод не применим. В качестве сорбентов применяют различные искусственные и пористые природные материалы: золу, коксовую мелочь, торф, силикагели, алюмогели, активные гели и др. Эффективными и наиболее универсальными сорбентами являются активированные угли различных марок. Минеральные сорбенты используют мало, т.к. энергия взаимодействия их с молекулами воды велика - иногда превышает энергию адсорбции. Пористость этих углей составляет 60-75 %, а удельная площадь поверхности 400-900 м2 на единицу веса сорбента. Адсорбционные свойства активированных углей в значительной мере зависит от структуры пор, их величины, распределения по размерам. В зависимости от преобладающего размера пор активированные угли делятся на крупно- и мелкопористые, и смешанные. Поры по своему размеру подразделяются на три вида:

- макропоры - 0,1-2 мкм;

- переходные - 0,004-0,1 мкм;

- микропоры - 0,004 мкм.

Активные угли должны слабо взаимодействовать с молекулами воды и хорошо - с органическими веществами, быть относительно крупнопористыми (с эффективным радиусом адсорбционных пор в пределах 0,8-5,0 нм), чтобы их поверхность была доступна для больших и сложных органических молекул. При малом времени контакта с водой они должны иметь высокую адсорбционную емкость, высокую селективность и малую удерживающую способность при регенерации. При соблюдении последнего условия затраты на реагенты для регенерации угля будут небольшими. Угли должны быть прочными, быстро смачиваться водой, иметь определенный гранулометрический состав. В процессе очистки используют мелкозернистые адсорбенты с частицами размерами 0,25-0,5 мм и высокодисперсные угли с частицами размером менее 40 мкм. Важно, чтобы угли обладали малой каталитической активностью по отношению к реакциям окисления, конденсации и др., т.к. некоторые органические вещества, находящиеся в сточных водах, способны окисляться и осмоляться. Эти процессы ускоряются катализаторами. Осмелившиеся вещества забивают поры адсорбента, что затрудняет его низкотемпературную регенерацию. Наконец, они должны иметь низкую стоимость, не уменьшать адсорбционную емкость после регенерации и обеспечивать большое число циклов работы. Сырьем для активных углей может быть практически любой углеродсодержащий материал: уголь, древесина, полимеры, отходы пищевой, целлюлозно-бумажной и других отраслей промышленности Макропоры и переходные поры играют, как правило, роль транспортирующих каналов, а сорбционная способность активированных углей определяется микропористой структурой. Растворенные органические вещества, имеющие размер частиц менее 0,001 мкм, заполняют объем микропор сорбента, полная емкость которых соответствует поглощающей способности сорбента.

Активность сорбента характеризуется количеством поглощаемого вещества на единицу объема или массы сорбента. Процесс сорбции может осуществляться в статических условиях, при которых частица жидкости не перемещается относительно частицы сорбента, т.е. движется вместе с ней, а также в динамических условиях, когда частица жидкости перемещается относительно сорбента. Таким образом, сорбцию называют статической, когда поглощаемое вещество, находится в газообразной или жидкой фазе, приведено в контакт с неподвижным сорбентом или перемешиваются с ним. Так происходит в аппаратах с перемешивающими устройствами. Динамической сорбцию называют в тех случаях, когда поглощаемое вещество находится в подвижной жидкой или газообразной фазе, которая фильтруется через слой сорбента. Так происходит в аппаратах с псевдоожиженным слоем, фильтрах. В соответствии с этим различают статическую и динамическую активность сорбента. Статическая активность характеризуется количеством поглощенного вещества на единицу массы сорбента к моменту достижения равновесия в определенных условиях (постоянных температуре жидкости и начальной концентрации вещества). Динамическая активность сорбента характеризуется временем от начала пропускания сорбата до его проскока, т.е. до появления за слоем сорбента, или максимальным количеством вещества, поглощенного единицей объема или массы сорбента до момента появления сорбируемого вещества через слой сорбента. Динамическая активность в промышленных адсорберах составляет 45-90 %. На практике сорбционные процессы осуществляют, как правило, в динамических условиях, т.к. это обеспечивает непрерывность технологического процесса и возможность его автоматизации. Между количеством вещества, адсорбированного сорбентом и оставшегося в растворе, в разбавленных растворах наступает равновесие, подчиняющееся закону распределения. Сорбция - процесс обратимый, т.е. адсорбированное вещество (сорбат) может переходить с сорбента обратно в раствор. При прочих равных условиях скорости протекания прямого (сорбция) и обратного (десорбция) процессов пропорциональны концентрации вещества в растворе и поверхности сорбента. Поэтому в начальный период процесса сорбции, т. е. при максимальной концентрации вещества в растворе, скорость сорбции также максимальна. По мере повышения концентрации растворенного вещества на поверхности сорбента увеличивается число сорбированных молекул, переходящих обратно в раствор. С момента, когда количество сорбируемых из раствора (в единицу времени) молекул становится равным количеству молекул, переходящих с поверхности сорбента в раствор, концентрация раствора становится постоянной. Эта концентрация называется равновесной. Если после достижения адсорбционного равновесия несколько повысить концентрацию обрабатываемого раствора, то сорбент сможет извлечь из него еще некоторое количество растворенного вещества. Но нарушаемое таким образом равновесие будет восстанавливаться лишь до полного использования сорбционной способности (емкости) сорбента, после чего повышение концентрации вещества в растворе не изменяет количества сорбируемого вещества.

17. Очистка сточных вод методами флотации

Очистка сточных вод методами флотации: флотация пузырьками, образующимися путем механического дробления воздуха (механическими турбинами-импеллерами, форсунками, с помощью пористых пластин и каскадными методами); флотация пузырьками, образующимися из пересыщенных растворов воздуха в воде (вакуумная, напорная); электрофлотация. Процесс флотации -- образования комплекса пузырек-частица происходит в три стадии: сближение пузырька воздуха и частицы в жидкой фазе, контакт пузырька с частицей и прилипание пузырька к частице. Прочность соединения пузырек-частица зависит от размеров пузырька и частицы, физико-химических свойств пузырька, частицы и жидкости, гидродинамических условий и других факторов. Процесс очистки стоков при флотации заключается в следующем: поток жидкости и поток воздуха (мелких пузырьков) в большинстве случаев движутся в одном направлении. Взвешенные частицы загрязнений находятся во всем объеме сточной воды и при совместном движении с пузырьками воздуха происходит агрегирование частицы с воздухом. Если пузырьки воздуха значительных размеров, то скорости воздушного пузырька и загрязненной частицы различаются так сильно, что частицы не могут закрепиться на поверхности воздушного пузырька. Кроме того, большие воздушные пузырьки при быстром движении сильно перемешивают воду, вызывая разъединение уже соединенных воздушных пузырьков и загрязненных частиц. Поэтому для нормальной работы флотатора во флотационную камеру не допускаются пузырьки более определенного размера. Вакуумная флотация Вакуумная флотация основана на понижении давления ниже атмосферного в камере флотатора. При этом происходит выделение воздуха, растворенного в воде. При таком процессе флотации образование пузырьков воздуха происходит в спокойной среде, в результате чего улучшается агрегирование комплексов частица-пузырек и не нарушается их целостность вплоть до достижения ими поверхности жидкости. Напорная флотация Этот вид флотации выполняется в две стадии: насыщение воды воздухом под давлением; выделение пузырьков воздуха соответствующего диаметра и всплытие взвешенных и эмульгированных частиц примесей вместе с пузырьками воздуха. Если флотация проводится без добавления реагентов, то такая флотация относится к физическим способам очистки сточных вод. Импеллерная флотация Флотаторы импеллерного типа применяют для очистки сточных вод нефтяных предприятий от нефти, нефтепродуктов и жиров. Их также можно использовать для очистки сточных вод других предприятий. Данный способ флотации в промышленности применяют редко из-за его небольшой эффективности, высокой турбулентности потоков во флотационной камере, приводящей к разрушению хлопьевидных частиц, и необходимости применять поверхностно-активные вещества. Флотация с подачей воздуха через пористые материалы Для получения пузырьков воздуха небольших размеров можно использовать пористые материалы при флотации, которые должны иметь достаточное расстояние между отверстиями, чтобы не допустить срастания пузырьков воздуха над поверхностью материала. На размер пузырька большое влияние оказывает скорость истечения воздуха из отверстия. Для получения микропузырьков необходима относительно небольшая скорость истечения. Электрофлотация Сточная жидкость при пропускании через нее постоянного электрического тока насыщается пузырьками водорода, образующегося на катоде. Электрический ток, проходящий через сточную воду, изменяет химический состав жидкости, свойства и состояние нерастворимых примесей. В одних случаях эти изменения положительно влияют на процесс очистки стоков (флотации), в других - ими надо управлять, чтобы получить максимальный эффект очистки. В общем, достоинствами флотации являются непрерывность процесса, широкий диапазон применения, небольшие капитальные и эксплуатационные затраты на флотацию, простая аппаратура флотации, селективность выделения примесей, по сравнению с отстаиванием большая скорость процесса, а также возможность получения шлама более низкой влажности (90-95%), высокая степень очистки (95-98%), возможность рекуперации удаляемых веществ. Флотацию растворенным в воде воздухом обычно ведут совместно с коагуляцией и флокуляцией взвеси для удаления коллоидных малоконцентрированных (> 1 %) примесей. Пузырьки воздуха размером 10--100 мкм, выделяющиеся из воды, пересыщенной растворенным в ней воздухом, захватывают взвесь частиц. Воздух диспергируется турбиной -- импеллером флотационной машины. Иногда воздух вводят под избыточным давлением 0,03 -- 0,2 МПа через сопла или фильтры. Флотация осуществляется крупными (> 1000 мкм) быстро всплывающими пузырьками (при расходе воздуха 0,3 -- 5 м3/м3 воды). При электрофлотации очистку промышленных стоков осуществляют кислородом и водородом, которые выделяются на электродах, размещаемых в осветленной воде. Выделяющийся в ламинарном режиме газ с размером пузырьков 50 мкм обеспечивает высокий эффект очистки. Биологическая и химическая флотация (автофлотация) происходят в результате взаимодействия пузырьков газа размером 5 -- 50 мкм с поверхностью взвешенных в воде частиц, которые освобождаются от воды.

18. Очистка газов от аэрозолей

Методы очистки по их основному принципу можно разделить на механическую очистку, электростатическую очистку и очистку с помощью звуковой и ультразвуковой коагуляции.

Механическая очистка газов включает сухие и мокрые методы. К сухим методам относятся:

1) гравитационное осаждение;

2) инерционное и центробежное пылеулавливание;

3) фильтрация.

Гравитационное осаждение основано на осаждении взвешенных частиц под действием силы тяжести при движении запыленного газа с малой скоростью без изменения направления потока. Процесс проводят в отстойных газоходах и пылеосадительных камерах. Для уменьшения высоты осаждения частиц в осадительных камерах установлено на расстоянии 40-100 мм множество горизонтальных полок, разбивающих газовый поток на плоские струи. Степень очистки воздуха в пылеосадочных камерах не превышает 50-60 %. Метод пригоден лишь для предварительной, грубой очистки газов.

Инерционное осаждение основано на стремлении взвешенных частиц сохранять первоначальное направление движения при изменении направления газового потока. Среди инерционных аппаратов наиболее часто применяют жалюзийные пылеуловители с большим числом щелей _(жалюзи). Газы обеспыливаются, выходя через щели и меняя при этом направление движения. Частицы пыли с d < 20 мкм в жалюзийных аппаратах не улавливаются. Степень очистки в зависимости от дисперсности частиц составляет 20-70%. Инерционный метод можно применять лишь для грубой очистки газа. Помимо малой эффективности недостаток этого метода - быстрое истирание или забивание щелей.

Центробежные методы очистки газов основаны на действии центробежной силы, возникающей при вращении очищаемого газового потока в очистном аппарате или при вращении частей самого аппарата. В качестве центробежных аппаратов пылеочистки применяют циклоны различных типов: батарейные циклоны, вращающиеся пылеуловители (ротоклоны) и др. Степень очистки от пыли зависит от размеров частиц. Для циклонов высокой производительности, в частности батарейных циклонов, степень очистки составляет около 90% при диаметре частиц d > 30 мкм. Для частиц с d = 30 мкм степень очистки снижается до 80%, а при d = 5 мкм она составляет менее 40%. Циклоны широко применяют при грубой и средней очистке газа от аэрозолей.

Фильтрация основана на прохождении очищаемого газа через различные фильтрующие ткани (хлопок, шерсть, химические волокна, стекловолокно и др.) или через другие фильтрующие материалы (керамика, металлокерамика, пористые перегородки из пластмассы и др.). Фильтрация - весьма распространенный прием тонкой очистки газов. Ее преимущества - сравнительная низкая стоимость оборудования (за исключением металлокерамических фильтров) и высокая эффективность тонкой очистки. Недостатки фильтрации высокое гидравлическое сопротивление и быстрое забивание фильтрующего материала пылью.

Мокрая очистка газов от аэрозолей основана на промывке газа жидкостью (обычной водой) при возможно более развитой поверхности контакта жидкости с частицами аэрозоля и возможно более интенсивном перемешивании очищаемого газа с жидкостью. Этот универсальный метод _очистки газов от частиц пыли, дыма и тумана любых размеров является наиболее распространенным приемом заключительной стадии механической очистки, в особенности для газов, подлежащих охлаждению. К аппаратам мокрой очистки относятся насадочные и центробежные скрубберы, скрубберы Вентури, форсуночные скрубберы, тарелочные и барботажно-пенные скрубберы. Рассмотрим некоторые из них.

Скруббер Вентури

Агрегат состоит из трубы Вентури 1и скруббера-каплеуловителя 2. Запыленный газ поступает сверху в трубу Вентури, в конфузорную (сужающуюся) часть которой вводится через распыливающую механическую форсунку орошающая жидкость (чаще всего - вода). В горловине трубы и в диффузорной (расширяющейся) части происходит дробление капель жидкости, на поверхности которых оседают частицы пыли. Площадь поверхности капель достаточно велика, чтобы уловить практически всю пыль. Капли жидкости с потоком газа поступают в каплеуловитель 2. Жидкость с частицами пыли выводится через нижний штуцер, а очищенный газ - через верхний улиточный газоотвод.

В ряде случаев для мокрой очистки применяются форсуночные скрубберы (а). Запыленный газовый поток поступает в скруббер по патрубку 3 и направляется на зеркало воды, где осаждаются наиболее крупные частицы пыли. Газовый поток и мелкодисперсная пыль, распределяясь по всему сечению корпуса 1, поднимаются вверх навстречу потоку капель, поступающих в скруббер через форсуночные пояса.

Форсуночный (а) и центробежный (б) скрубберы


Подобные документы

  • Применение механической очистки бытовых и производственных сточных вод для удаления взвешенных веществ: решеток, песколовок и отстойников. Сооружения биологической очистки и расчет аэротенков, биофильтров, полей фильтрации и вторичных отстойников.

    курсовая работа [1,5 M], добавлен 25.04.2012

  • Загрязнение водных ресурсов сточными водами. Влияние выпуска сточных вод металлургических предприятий на санитарное и общеэкологическое состояние водоемов. Нормативно-правовая база в области очистки сточных вод. Методика оценки экологических аспектов.

    дипломная работа [214,2 K], добавлен 09.04.2015

  • Описание и принцип действия песколовок. Расчет первичных отстойников, предназначенных для предварительного осветления сточных вод. Азротенки-вытеснители для очистки сточных вод. Выбор типа вторичных отстойников, схема расчета глубины и диаметра.

    курсовая работа [1,9 M], добавлен 04.12.2011

  • Укрупненная оценка экономического ущерба от загрязнения атмосферы, водных ресурсов. Расчет показателей относительной опасности загрязнения. Расчет платы за размещение твердых отходов. Методы очистки газообразных выбросов и сточных вод от загрязнителей.

    контрольная работа [114,7 K], добавлен 25.04.2012

  • Анализ методов очистки сточных вод при производстве сплавов. Оценка перспективных электрохимических методов очистки. Результаты исследований электрокоагуляторов по обезвреживанию шестивалентного хрома в сточных водах, содержащих другие тяжелые металлы.

    реферат [11,8 K], добавлен 11.03.2012

  • Укрупнённая оценка эколого-экономического ущерба от загрязнения водных объектов и атмосферы. Методы очистки выбросов и сточных вод от приоритетных загрязнителей. Удаление азота, присутствующего в форме аммиака. Индексация ущерба с учётом инфляции.

    контрольная работа [44,6 K], добавлен 17.04.2013

  • Характеристика загрязнения атмосферы (на примере Астраханской области). Методы и средства защиты атмосферного воздуха, их классификация и основные параметры. Очистка воздуха с использованием туманоуловителя. Эффективность очистки в разнообразных условиях.

    курсовая работа [1,7 M], добавлен 17.05.2015

  • Состав сточных вод. Характеристика сточных вод различного происхождения. Основные методы очистки сточных вод. Технологическая схема и компоновка оборудования. Механический расчет первичного и вторичного отстойников. Техническая характеристика фильтра.

    дипломная работа [2,6 M], добавлен 16.09.2015

  • Учет и управление экологическими рисками населения от загрязнений окружающей среды. Методы очистки и обезвреживания отходящих газов ОАО "Новоросцемент". Аппараты и устройства, используемые для очистки аспирационного воздуха и отходящих газов от пыли.

    дипломная работа [113,0 K], добавлен 24.02.2010

  • Биологические методы очистки и обеззараживания сточных вод. Очистные установки биологической очистки, их эффективность и концентрация очищенных вод по основным показателям. Международная стандартизация в области экологического менеджмента. Экоаудит.

    контрольная работа [1,9 M], добавлен 18.09.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.