Improving the quality of soybean by-products by physical methods during its use in bakery technology. Review
Physiological function of dietary fiber, the use of various types of fiber in bakery products. Improve the quality of legume waste with physical technology. Removal of Ant nutrition factors. Trypsin inhibitor, use of legume flour in bread and cakes.
Рубрика | Кулинария и продукты питания |
Вид | статья |
Язык | английский |
Дата добавления | 03.06.2022 |
Размер файла | 59,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
93. Balasubramaniam V. M., Martine-Monteagudo Sergio I., & Gupta R. (2015), Principles and application of high pressur-based technologies in the food industry, Annual Review of Food Science & Technology, 6(1), pp. 435-462.
94. Barba F. J., Terefe N. S., Buckow R., Knorr D., & Orlien V. (2015), New opportunities and perspectives of high pressure treatment to improve health and safety attributes of foods. A review, Food Research International, 77, pp. 725-742.
95. Aguirre A., Karwe M. V., & Borneo R. (2018), Effect of high pressure processing on sugar-snap cookie dough preservation and cookie quality, Journal of Food Processing and Preservation, 42(1), e13407.
96. Beatriz, Barcenilla, Laura, Roman, Camino, & Martinez. (2016), Effect of high pressure processing on batters and cakes properties, Innovative Food Science & Emerging Technologies.
97. Cappa C., Barbos-Canovas G. V., Lucisano M., & Mariotti M. (2016), Effect of high pressure processing on the baking aptitude of corn starch and rice flour, LWT - Food Science and Technology, 73, pp. 20-27.
98. Vallons K. J. R., Ryan L. A. M., Koehler P., &Arendt E. K. (2010), High pressur- treated sorghum flour as a functional ingredient in the production of sorghum bread,
99. Alvarez M. D., Fuentes Raul, Olivares M. D., & Canet W. (2014), Effects of high hydrostatic pressure on rheological and thermal properties of chickpea (cicer arietinum l.) flour slurry and hea-induced paste, Innovative Food ence & Emerging Technologies, 21, pp. 12-23.
100. Maria Eugenia Barcenas, Altamiran -Fortoul R., & Rosell C. M. (2010), Effect of high pressure processing on wheat dough and bread characteristics, LWT - Food
101. Hu X. P., Zhang B., Jin Z. Y., Xu X. M., & Chen H. Q. (2017), Effect of high hydrostatic pressure and retrogradation treatments on structural and physicochemical properties of waxy wheat starch, Food Chemistry, 232(OCT. 1),pp. 560-565.
102. Xu J., Mukherjee D., & Chang S. K. C. (2017), Physicochemical properties and storage stability of soybean protein nanoemulsions prepared by ultr-high pressure homogenization, Food Chemistry, 240(feb.1), pp. 1005-1013.
103. Leite T. S., De Jesus A. L. T., Schmiele M., Tribst A. A. L., & Cristianini M. (2016), High pressure processing (HPP) of pea starch: effect on the gelatinization properties, Lwt Food Science & Technology, S0023643816304406.
104. Waliszewski K. N., Pardio V., & Carreon E. (2010), Physicochemical and sensory properties of corn tortillas made from nixtamalized corn flour fortified with spent soymilk residue (okara), Journal of Food Science, 67(8), pp. 3194-3197.
105. Chaikham P., Worametrachanon S., & Apichartsrangkoon A. (2014), Effects of high pressure and thermal processing on phytochemical, color and microbiological qualities of herba-plant infusion, International Food Research Journal, 21(1), pp. 51-57.
106. Rosana, Colussi, Lovedeep, Kaur, Elessandra, & da. (2018), High pressure processing and retrogradation of potato starch: influence on functional properties and gastr-small intestinal digestion in vitro, Food Hydrocolloids.
107. Mccann T. H., Leder A., Buckow R., & Day L. (2013), Modification of structure and mixing properties of wheat flour through hig-pressure processing, Food Research International, 53(1), pp. 352-361.
108. Miguel Meirelles de Oliveira, Alline Artigiani LimaTribst, Bruno Ricardo de CastroLeite Jьnior, Rafael Augustus de Oliveira, Marcelo Cristianini (2015), Effects of high pressure processing on cocoyam, peruvian carrot, and sweet potato: changes in microstructure, physical characteristics, starch, and drying rate, Innovative Food Science & Emerging Technologies, 31, pp. 45-53.
109. Li Y., Xiong M., Yin C., Wu F., Xie X., & Yang G. (2012), Modification of insoluble dietary fiber from sweet potato residue with ultra high pressure processing technology, Transactions of the Chinese Society of Agricultural Engineering, 28(19), pp. 270-278.
110. Zhang H., Ishida N., & Isobe S. (2004), Hig-pressure hydration treatment for soybean processing, Transactions of the Asae, 47(4), pp. 1151-1158.
111. Zh-Nan X., & Zhen-Xiang N. (2006), Technology of superfine grinding and its application in food industry, Journal of Agricultural ences, 17(10), pp. 991-1009.
112. Sh-Li L., & Hua W. (2007), Application and research of superfine grinding technique in food industry, Drying Technology & Equipment.
113. Zhang M., Zhang C. J., & Shrestha S. (2005), Study on the preparation technology of superfine ground powder of agrocybe chaxingu huang, Journal of Food Engineering, 67(3), pp. 333-337.
114. Ye Tao, Chen Zh-na, Yin Li-lin, LI Jua-juan, Yang Miao, Gu Yon-zhong. (2017), Effect of partial substitution of wheat flour with okara flour on the quality of guan- style moon cake, Science &Technology of Food Industry.
115. Chung S. Y., Han S. H., Lee S. W., & Rhee C. (2010), Physicochemical and brea- making properties of air flow pulverized wheat and corn flours, Food Science and Biotechnology, 19(6), pp. 1529-1535.
116. Hemery Y. M., Anson R. M., Havenaar R., Haenen R. R. M. M., Noort R. W. J., & Rouau R. (2010), Dr-fractionation of wheat bran increases the bioaccessibility of phenolic acids in breads made from processed bran fractions, Food Research International, 43(5), pp. 1429-1438.
117. Noort M. W. J., Haaster D. V., Hemery, Y., Schols H. A., & Hamer R. J. (2010), The effect of particle size of wheat bran fractions on bread quality - evidence for fibr-protein interactions, Journal of Cereal ence, 52(1), pp. 59-64.
118. Mustac, Cukelj N., Novotni D., Habus M., Drakula S., Nanjara L., Voucko B., ... Curie D. (2020), Storage stability, micronisation, and application of nutrien -dense fraction of proso millet bran in glute-free bread, Journal of Cereal Science, 91, 102864.
119. Rosa N. N., Barron C., Gaiani C., Dufour C., & Micard V. (2013), Ultr-fine grinding increases the antioxidant capacity of wheat bran, Journal of Cereal Science, 57(1), pp. 84-90.
120. Liu C., Liu L., Li L., Hao C., Zheng X., Bian K., ... Wang X. (2015), Effects of different milling processes on whole wheat flour quality and performance in steamed bread making, L WT - Food Science and Technology, 62(1), pp. 310-318.
121. Niu M., Zhang B., Jia C., & Zhao S. (2017), Mult-scale structures and pasting characteristics of starch in whol-wheat flour treated by superfine grinding, International Journal of Biological Macromolecules, 104, 837, pp. 837-845.
122. Zhu K. X., Huang S., Peng W., Qian H. F., & Zhou H. M. (2010), Effect of ultrafine grinding on hydration and antioxidant properties of wheat bran dietary fiber, Food Research International, 43(4), pp. 943-948.
123. Xu X., Xu Y., Wang N., & Zhou Y. (2018), Effects of superfine grinding of bran on the properties of dough and qualities of steamed bread, Journal of Cereal Science, 81, pp. 76-82.
124. Sha-Jun T., Y-Fei X., Yan M. A., & Z-En Y. (2014), Application of ultrafine grinding soybean dregs in noodles, Science and Technology of Cereals,Oils and Foods.
125. Mizrahi S. (2012), Mechanisms of objectionable textural changes by microwave reheating of foods: a review, Journal of Food Science, 77(1-3), pp. 57-62.
126. Ozmutl O., Gьlьm Sumnu & Sahin S. (2001), Effects of different formulations on the quality of microwave baked breads, European Food Research & Technology, 213(1), pp. 38-42.
127. Therdthai N., Tanvarakom T., Ritthiruangdej P., & Zhou W. (2016), Effect of microwave assisted baking on quality of rice flour bread, Journal of Food Quality, 39(4), pp. 245-254.
128. Pere-Quirce Sandra, Ronda F., Lazaridou A., & Biliaderis C. G. (2017), Effect of microwave radiation pretreatment of rice flour on glute-free breadmaking and molecular size of -glucans in the fortified breads, Food and Bioprocess Technology, 10(8), 1-10.
129. Shi C., Wang L., Wu M., Adhikari B., & Li L. (2011), Optimization of Twi-Screw Extrusion Process to Produce Okar-Maize Snack Foods Using Response Surface Methodologym International Journal of Food Engineering, 7(2).
130. Li F. D., Li L. T., Sun J. F., & Tatsumi E. (2006), Effect of electrohydrodynamic (ehd) technique on drying process and appearance of okara cake, Journal of Food Engineering, 77(2), pp. 275-280.
131. Donatella Peressini, Dobrila Braunstein, John H Page, Anatoliy Strybulevych, Corrado Lagazio, & Martin G Scanlon. (2017), Relation between ultrasonic properties, rheology and baking quality for bread doughs of widely differing formulation, Journal of the Science of Food and Agriculture, 97(8), pp. 2366-2378.
132. Baik Byun-Kee, Choi Induck, Cai& Liming. (2015), Bran hydration and physical treatments improve the brea-baking quality of whole grain wheat flour, Cereal Chemistry journal, 92(6), pp. 557-564.
133. Feng Z., Dou W., Alaxi S., Niu Y., & Yu L. L. (2017), Modified soluble dietary fiber from black bean coats with its rheological and bile acid binding properties, Food Hydrocolloids, 62, pp. 94-101.
134. Vong W. C., Hua X. Y., & Liu S.-Q. (2018), Soli-state fermentation with Rhizopus oligosporus and Yarrowia lipolytica improved nutritional and flavour properties of okara. LWT - Food Science and Technology, 90, pp. 316-322.
135. Sun C., Wu X., Chen X., Li X., Zheng Z., & Jiang S. (2020), Production and Characterization of Okara Dietary Fiber Produced by Fermentation with Monascus anka, Food Chemistry, 126243.
136. Ciccoritti R., Terracciano G., Cammerata A., Sgrulletta D., Del Frate V., Gazza L., & Nocente F. (2018), Hydrothermal grain pr-processing and ultr-fine milling for the production of durum wheat flour fractions with high nutritional value, Food Science and Technology International, 24(3), 242-250.
137. Ye F. Y., Zhang Y., Qian G. M., Fan H. X., & Zhao G. H. (2014), Changes in composition and physicochemical properties of okara dietary fiber treated with different ionic liquid, Modern Food ence & Technology, 30(8), 182-186 and 105.
138. Ha-Fei L., Jia-Jun C., & Lei W. (2008), Research on extraction conditions of soluble dietary fiber from soybean dreg by enzymatic method, Science & Technology of Food Industry.
139. Zhang M., Bai X., & Zhang Z. (2011), Extrusion process improves the functionality of soluble dietary fiber in oat bran, Journal of Cereal Science, 54(1), pp. 98-103.
140. Jing Y., & Chi Y. J. (2013), Effects of twi-screw extrusion on soluble dietary fibre and physicochemical properties of soybean residue, Food Chemistry, 138(2-3), pp. 884-889.
141. Li H., Long D., Peng J., Ming J., & Zhao G. (2012), A novel i-situ enhanced blasting extrusion technique -- Extrudate analysis and optimization of processing conditions with okara, Innovative Food Science & Emerging Technologies, 16, pp. 80-88.
142. Yu Z., Zhang B., Yu F., Xu G., & Song A. (2012), A real explosion: The requirement of steam explosion pretreatment. Bioresource Technology, 121, pp. 335-341.
143. Fan-Fang K., Yua-Yang N., Ch-Jun D., Y-Hui J., Wei Y., & Bo L. I. (2018), Effect of steam explosion on dietary fiber of okara and its application in semi hard biscuit,
Science and Technology of Food Industry.
144. Lou H.,& Chi Y. (2009), Optimization of technology for preparing soluble dietary fiber from extruded soybean residue. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 25(6), pp. 285 -289.
145. Ullah I., Yin T., Xiong S., Zhang J., Din Z., & Zhang M. (2017), Structural characteristics and physicochemical properties of okara (soybean residue) insoluble dietary fiber modified by hig-energy wet media milling, LWT - Food Science and Technology, 82, pp. 15-22.
146. Tsubaki S., Nakauchi M., Ozaki Y. & Azuma J. I. (2009), Microwave heating for solubilization of polysaccharide and polyphenol from soybean residue (okara), Food Science & Technology Research, 15(3), pp. 307-314.
147. Liu ChengMei, Xiong Hui Wei, Liu Wei, Ruan Rong Sheng, & Tu Zong Cai (2005). On the possibility of using instantaneous high pressure treatment to modify physical properties of dietary fiber in soybean dregs, Food Science.
148. Dai W., Hu Y., Yu H., Wang Y., & Tian X. (2018), The water distribution in the bean dregs by different processing treatments based on lo-field nuclear magnetic resonance,Journal of Chinese Institute of Food Science and Technology, 18(8), pp. 260-266.
149. Zhu K., Huang S., Peng W., Qian H., & Zhou H. (2010), Effect of ultrafine grinding on hydration and antioxidant properties of wheat bran dietary fiber, Food Research International, 43(4), pp. 943-948.
150. Y-Fei X., Sha-Jun T., Yan M. A., & Z-En Y. (2014), Effect of ultrafine grinding on functional properties of okara, Food & Machinery.
151. Pere-Lopez E., Mateo-Aparicio I., & Ruperez P. (2016), Okara treated with high hydrostatic pressure assisted by Ultraflo ® L: Effect on solubility of dietary fibre, Innovative Food Science & Emerging Technologies, 33, pp. 32-37.
152. Fayaz G., Plazzotta S., Calligaris S., Manzocco L., & Nicoli M. C. (2019), Impact of high pressure homogenization on physical properties, extraction yield and biopolymer structure of soybean okara, LW- Food Science and Technology, 108324.
153. Tu Z., Chen L., Wang H., Ruan C., Zhang L., & Kou Y. (2012), Effect of fermentation and dynamic high pressure microfluidization on dietary fibre of soybean residue, Journal of Food Science and Technology, 51(11), pp. 3285-3292.
154. Chunxia G., Fengzhong W., & Li Y. (2019). Summary of changes of bioactive substances,ant-nutritional factors and antioxidant activity of soybean during germination, Journal of Nuclear Agricultural Sciences.
155. Akpapunam M. A., & Sef-Dedeh S. (1997), Some physicochemical properties and ant-nutritional factors of raw, cooked and germinated jack bean (canavalia ensiformis), Food Chemistry, 59(1), pp. 121-125.
156. Hawa A., Satheesh N., & Kumela D. (2018), Nutritional and ant-nutritional evaluation of cookies prepared from okara, red teff and wheat flours, International Food Research Journal, 25(5), pp. 2042-2050.
157. Machado F. P. P., Queiroz J. H., Oliveira M. G. A., Piovesan N. D., Peluzio M. C. G., Costa N. M. B., & Moreira M. A. (2008), Effects of heating on protein quality of soybean flour devoid of Kunitz inhibitor and lectin, Food Chemistry, 107(2), pp. 649-655.
158. Ya Nan Zhou., He Chai., Qi Chu., et al. (2016), The Variable Pattern of Nutrition Components in Bacillus natto Fermentation of Bean Residue, Food Research and Development, 37(23), pp. 170-174.
159. Bin L., Ha-Song Y. U., Y-Hua W., Chu-Hong P., Ju-Mei L., & We-Chang D. et al. (2016), The change of the nutritional content after the extrusion in okara as raw materials of meat analogs products, Food Research and Development.
160. Kwok K. C., Qin W. H., & Tsang J. C. (2010), Heat inactivation of trypsin inhibitors in soymilk at ultr-high temperatures, Journal of Food Science, 58(4), pp. 859-862.
161. E-Mahdy A. R., Moustafa E. K., & Mohamed M. S. (1981), Trypsin inhibitor activity in vicia faba beans, Food Chemistry, 7(1), pp. 63-71.
162. Machado F. P. P., Queiroz J. H., Oliveira M. G. A., Piovesan N. D., Peluzio M. C. G., & Costa N. M. B., et al. (2008), Effects of heating on protein quality of soybean flour devoid of kunitz inhibitor and lectin, Food Chemistry, 107(2), pp. 649-655.
163. Yoshida H., & Kajimoto G. (2010), Effects of microwave treatment on the trypsin inhibitor and molecular species of triglycerides in soybeans, Journal of Food Science, 53(6), pp. 1756-1760.
164. Barac M., & Stanojevic S. (2005), The effect of microwave roasting on soybean protein composition and components with trypsin inhibitor activity, Acta Alimentaria, 34(1), pp. 23-31.
165. Tarek A.,& E-Adawy. (2002), Nutritional composition and antinutritional factors of chickpeas (cicer arietinum l.) undergoing different cooking methods and germination, Plant Foods for Human Nutrition, pp. 83-97.
166. Zhou R., Cai W., & Xu B. (2017), Phytochemical profiles of black and yellow soybeans as affected by roasting, International Journal of Food Properties, 20(12), pp. 3179-3190.
167. Alajaji S. A., & E-Adawy T. A. (2006), Nutritional composition of chickpea (cicer arietinum l.) as affected by microwave cooking and other traditional cooking methods, Journal of Food Composition & Analysis, 19(8), pp. 806-812.
168. Rathod R. P., & Annapure U. S. (2016), Effect of extrusion process on antinutritional factors and protein and starch digestibility of lentil splits, LWT - Food Science and Technology, 66, pp. 114-123.
169. Petrier Ch. (2005), A combination of ultrasound and oxidative enzyme: son-enzyme degradation of phenols in a mixture, Ultrasonics Sonochemistry, 12(4), pp. 283288.
170. Cornelly V. D. V., Matser A. M., & Van d. B. R. W. (2005), Inactivation of soybean trypsin inhibitors and lipoxygenase by hig-pressure processing, Journal of Agricultural & Food Chemistry, 53(4), 1087-92.
171. Linsberge-Martin G., Weiglhofer K., Phuong T. P. T., &Berghofer E. (2013), High hydrostatic pressure influences antinutritional factors and invitro protein digestibility of split peas and whole white beans, LWT - Food Science and Technology, 51(1), pp. 331-336.
172. Clarke E. J. (2000), Developments in plant breeding for improved nutritional quality of soya beans i. protein and amino acid content, Journal of Agricultural ence, 134(2), pp. 125-136.
173. Desai N. N., Allen A. K., & Neuberger A. (1988), Studies on the chemical modification of soybean agglutinin, Carbohydrate Research, 178(1), pp. 183-190.
174. Kala B. K., & Mohan V. R. (2012), Effect of uv treatment on the anti nutritional factors of two accessions of velvet bean, Tropical and Subtropical Agroecosystems, 15(1), pp. 718-728.
175. N ALKJAERSIG, E DEUTSCH, & W H SEEGERS. (1955), Prothrombin derivatives and the inhibition of thrombin formation with soy bean trypsin inhibitor, American Journal of Physiology, 180(2), 367.
176. Zhenyu G. (2000), Removal of goitrogen in soybean, JOURNAL OF THE CHINESE CEREALS AND OILS ASSOCIATION.
177. Qiu Dong Chen., Ping Yu., Pei Lin Cen. (2002), Removal of goiter, prothrombin and trypsin inhibitors in soybean, Food Science, 23(11), pp. 79-82.
178. Jian Rong Li., Zhen Yu Gu., & Ping Yu. (1998), Study on the removal of soy goiter,
Journal of CIFST(01), pp. 64-69.
179. Zhen Yu Gu., Jian Rong Li., Ping Yu., et al. (2000), Removal of Goitrogen in Soybean, Journal of the Chinese Cereals and Oils Association, 15 (1), pp. 33-36.
Размещено на Allbest.ru
Подобные документы
Meat - one of the most important products in the human diet and the most popular meat in our region. Chemical and physical methods of preserving meat and meat products. Canned meat by freezing in brine. Preservation of cold. Canning high temperatures.
реферат [23,8 K], добавлен 30.11.2015Characteristics of sausages, of raw and auxiliary materials. Technology of production of dry sausage enzymatic. Technological line for crude smoked sausage production. Requirements for the finished product, for quality sausage. Defects of sausages.
курсовая работа [303,1 K], добавлен 01.05.2011The development of the chocolate industry. Ferrero Rocher is a high quality for parties, special occasions. Marketing principles. Communication objectives. Brand features. Primary media is television, are magazines and billboards. Evaluation and control.
презентация [4,4 M], добавлен 27.05.2015History of development and feature of the Chinese kitchen. Distribution of salt dishes and easy sauces is in the kitchen of China. Sichuan as technology of application of the strong seasonings and spicinesses is in dishes. Chinese menu for gourmets.
презентация [12,8 M], добавлен 28.01.2013Характеристика цеха ресторана. Расчет количества потребителей. Составление производственной программы предприятия, а также графика реализации блюд. Расчет и подбор теплового и вспомогательного оборудования. Расчет численности производственных работников.
курсовая работа [97,0 K], добавлен 25.11.2010Description of raving brands of elite alcohol. Merchandising description of consumer qualities of whisky, dzhina, horse and wine of type of mal'vazii. Composition and distinguishing features of elite types of vodka and liqueurs of foreign producers.
презентация [5,3 M], добавлен 24.12.2013The production technology of dairy industry products, main sources of wastes and ways of its utilization. Description of milk processing. Waste generating processes. Handling of by-products and treatment of waste. Waste reduction. Economic considerations.
курсовая работа [528,7 K], добавлен 23.10.2012The principles of personal safety in the application of physical restraint. Improving the practice of physical restraint in the activities of the tax police to enhance personal safety. Legal protection of the tax police in applying physical effects.
курсовая работа [0 b], добавлен 08.10.2012Philip Morris International - the leading international tobacco company: history, brands, productivity. The organizational structure of the company. Development of innovative products. Contents of charitable programs. Quality control, testing on animals.
статья [24,6 K], добавлен 22.02.2015Concept and product signs. Main forms in which product can be presented. The products protected by the copyright. Audiovisual and architectural products. The products which are not objects of the copyright. Authors of products, the co-authorship.
реферат [11,0 K], добавлен 08.04.2011