Строительство тоннелей

Рациональные конструктивные решения тоннелей. Особенности применения крупногабаритных сборных железобетонных конструкций. Возведение контрфорсных конструкций по технологии "стена в грунте". Применение компенсационного нагнетания стабилизирующих составов.

Рубрика Строительство и архитектура
Вид дипломная работа
Язык русский
Дата добавления 05.04.2016
Размер файла 1,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В слабоустойчивых грунтах применяют так называемый метод «рамной крепи», при котором для опирания пят свода устраивают искусственные фундаменты из стальных или железобетонных свай, по верху которых возводят обвязочную балку. Разработанный известным австрийским ученым Г. Зауэром метод предусматривает поэтапное строительство подземных сооружений мелкого заложения в следующей технологической последовательности (рис. 13).

На I этапе на участке длиной 50 - 100 м вскрывают неглубокий котлован с естественными откосами или креплением стен до низа перекрытия подземного сооружения. Дно котлована может быть плоским или криволинейным в соответствии с очертанием перекрытия, которое чаще всего выполняют арочной формы. В первом случае конструкция свода бетонируется в специальной опалубке, а во втором - непосредственно на грунте.

Работы II этапа включают устройство фундаментов сводчатого перекрытия из наклонных буровых свай, располагаемых по направлению радиуса кривизны свода в его пятовых сечениях. Конструкция и параметры свай определяются необходимой несущей способностью с учетом действующих нагрузок и прочностно-деформационных свойств грунтов в основании.

Рис. 13 Последовательность строительства тоннеля по технологии «рамной крепи» 1 - котлован; 2 - сваи; 3 - железобетонная обделка свода;4 - грунт обратной засыпки; 5 - обделка тоннеля; 6 - проезжая часть

На III этапе устанавливают арматурные каркасы и бетонируют свод на грунтовой или деревометаллической опалубке. После необходимой выстойки бетона свод покрывают гидроизоляционным и защитным слоями и засыпают грунтом, восстанавливая поверхностные условия над строящимся подземным сооружением.

Работы IV этапа предусматривают проходку подземной выработки под сводом закрытым способом. В зависимости от свойств грунтов и размеров поперечного сечения подземного сооружения могут быть реализованы технологии сплошного или ступенчатого забоя, нижнего уступа или нового австрийского способа (НАТМ).

По мере разработки и удаления грунта возводят обделку из монолитного бетона или набрызг-бетона, усиленного в случае необходимости сплошными или решетчатыми стальными арками. Таким образом, основные работы по проходке подземной выработки ведутся по хорошо известной и отработанной технологии с повышенной степенью безопасности под прикрытием ранее забетонированного свода, что благоприятно отражается на темпах строительства. Так, по данным практики, темпы возведения свода составляют 200 - 400 м/мес., а проходки - 150 - 300 м/мес.

Однако основные достоинства метода «рамной крепи» заключаются в том, что достигается быстрое восстановление движения транспортных средств над строящимся подземным сооружением, сводятся к минимуму перекладки подземных коммуникаций, нарушения грунтового массива и поверхности земли, сокращаются сроки производства работ. Это технически простое и эффективное решение впервые было применено на строительстве тоннеля у г. Бад-Бетриха. Под пяту свода заранее подвод или фундаменты из буровых свай с обвязкой, которую объединяли со сводом.

В настоящее время по такой технологии сооружаются отдельные участки железнодорожного тоннеля Дернбах длиной 3,3 км [27].На северном участке тоннеля, проходящем на мелком заложении, в перемежающихся песчаниках и кварцитах с прослойками глины и ила, железобетонный свод опирали на буронабивные сваи длиной до 30 м и диаметром 1 м. Свод возводили в котловане с естественными откосами, с одной стороны, и ограждающей заанкеренной в грунт стенкой, с другой стороны.

Аналогичным образом сооружали центральный участок тоннеля под автомагистралью А48 на глубине от 4до 8 м. Движение транспортных средств было прервано на две недели. На южном участке свод тоннеля также опирали на буровые сваи диаметром 1 м и длиной до 30м.

В ряде случаев свод опирают на наклонные микросваи диаметром 0,4 - 0,6 м и длиной 4 - 6 м, устраиваемые по дну котлована. Сваи предназначены не только для восприятия усилий со свода, но и для крепления стен тоннеля во время подземной экскавации грунта. Такую технологию применили при строительстве тоннелей метрополитена вг. Бразилиа (Бразилия) в сложных инженерно-геологических условиях (сжимаемые и неустойчивые водоносные грунты) при глубине заложения около 3 м [28].

Микросваи из стальных двутавровых балок высотой 20,32 см и длиной 5 - 9 м погружали вибратором, закрепленным на стреле экскаватора. Свод бетонировали на грунте и частично в опалубке. Выработку раскрывали сплошным и ступенчатым забоем и закрепляли стальными арками и набрызг-бетоном.

При строительстве тоннелей в неустойчивых грунтах свод опирают на массив из закрепленного глубинным инъецированием грунта (цементным раствором, жидким стеклом с хлоридом кальция или синтетической смолой). При недостаточном боковом отпоре грунта, а также смещениях свода в горизонтальном и вертикальном направлениях свыше допустимых величин, последний закрепляют стальными затяжками, что возможно только при бетонировании его в опалубке. После завершения всех работ затяжки снимают.

Для устройства опорных элементов весьма перспективен метод струйной цементации, обеспечивающий быстрое и надежное закрепление как связных, так и несвязных неустойчивых грунтов.

При заложении тоннелей на глубине 2 - 4 м вместо сводчатого часто устраивают плоское перекрытие, устойчивость которого повышают, опирая его концы на короткие наклонные буровые сваи или столбы из искусственно закрепленного грунта. Таким образом, можно сооружать одно- и двухпролетные тоннели. В последнем случае по мере раскрытия профиля выработки в средней части устанавливают промежуточный ряд колонн или сплошную стенку. Схемы сооружения однопролетного и двухпролетного тоннелей с плоским перекрытием представлены на рис. 14.

Новая разновидность полуоткрытого способа - «зиллертальский» способ - был разработан и реализован австрийской фирмой «Бетон и Мониербау» на строительстве тоннеля Бретфол длиной1,33 км на трассе федеральной автомагистрали В169 (Германия) [29]. На южном участке тоннеля длиной 60 м свод из монолитного железобетона опирали на стены из буросекущихся свай, которые доходили до поверхности земли, что позволило сократить размеры котлована.

Технологическая последовательность работ показана на рис.15. В первую очередь возводили стены из буросекущихся свай, а затем вскрывали котлован с криволинейной подошвой до низа сводчатого перекрытия.

Рис. 14 Схема сооружения тоннелей с плоским перекрытием: а - однопролетный тоннель; б - двухпролетный тоннель; 1 - бетонирование перекрытия; 2 - вскрытие котлована; 3 - устройство наклонных стенок; 4 - тоннельная выработка; 5 - плита перекрытия; 6 - обратная засыпка

Последнее возводили из монолитного железобетона, упирая его в стены из буро-секущихся свай. Далее работы вели по традиционной технологии полуоткрытого способа, разрабатывая грунтовое ядро и бетонируя обратный свод.

«Зиллертальский» способ предусматривает иную статическую работу конструкции тоннеля по сравнению с «кернтнерским». Распор свода передается на стены из буровых свай, компенсируя активное боковое давление грунта в верхней части стен. После разработки грунтового ядра свод удерживается силами трения. Для увеличения сил трения между сводом и стеной в последнюю заделывают стальные стержни диаметром 36 мм и длиной 60 мм.

Рис. 15 Технологическая последовательность работ при «Зиллертальском» способе строительства: 1 - конструкция, выполненная по технологии «стена в грунте»; 2 - котлован; 3 - свод; 4 - грунтовое ядро; 5 - внутренняя обделка тоннеля

Таким образом, перекрытие тоннеля, а также обратный свод работают как арочные распорки, что исключает необходимость заанкеривания стен в грунт.

Опыт применения различных модификаций полуоткрытого способа работ показал его надежность и безопасность. Основные горнопроходческие операции выполняются открытым способом под защитой перекрытия с высокой степенью жесткости и несущей способности как в продольном, так и в поперечном направлениях.

Скорость строительства составляет 200 - 400 м/мес. при устройстве перекрытия и 150 - 300 м/мес. При проходке и креплении выработки. Достигается быстрое восстановление движения транспортных средств над строящимся тоннелем, сводятся к минимуму перекладка подземных коммуникаций, нарушения грунтового массива и поверхности земли, уровень шума и вибрации, сокращаются сроки производства работ. Несмотря на некоторые недостатки, полуоткрытый способ может составить конкуренцию традиционным - открытому и закрытому, особенно при сооружении тоннелей мелкого заложения в слабоустойчивых грунтах.

3.2 Применение щитов прямоугольного поперечного сечения

Сооружение тоннелей мелкого заложения на застроенных городских территориях открытыми способами вызывает нарушения нормальной жизни города, связанные с ограничением движения транспортных средств и пешеходов в районе строительства, загрязнением воздушного бассейна, повышением уровня шума и вибрации, возможным повреждением фундаментов расположенных поблизости зданий и др.

Применение закрытых способов (горного и щитового) не требует вскрытия дневной поверхности по всей трассе тоннеля и не вызывает существенных нарушений городской жизни. Вместе с тем при строительстве тоннелей мелкого заложения традиционным горным способом неизбежны осадки грунтового массива, вызванные переборами грунта, многочисленными перекреплениями и др.

При щитовом способе работ возможно ограничение осадок грунтового массива, однако круговая форма поперечного сечения, характерная для щитового способа, является нерациональной для тоннелей мелкого заложения, не испытывающих значительных внешних нагрузок. Так, проходка пешеходных тоннелей щитами кругового поперечного сечения неэффективна, поскольку площадь выработки используется лишь на 60%.

Применяемые в практике городского подземного строительства прямоугольные щиты незамкнутого сверху профиля требуют вскрытия дневной поверхности на всем протяжении тоннеля. В связи с вышеизложенным заслуживает внимания опыт Японии по созданию и внедрению щитовых агрегатов прямоугольного поперечного сечения для проходки городских тоннелей мелкого заложения закрытым способом [2].

Основные преимущества прямоугольных щитов перед круговыми следующие:

- рациональное использование всего выработанного пространства;

- уменьшение объемов разрабатываемого грунта (примерно на 40%) и снижение стоимости строительных работ;

- увеличение толщины защитной кровли над тоннелем и возможность проходки под инженерными коммуникациями;

- снижение осадок поверхности земли в процессе проходки;

- повышение степени устойчивости тоннельной обделки против неуравновешенного давления грунта, вызванного проходческими работами или устройством фундаментов вблизи строящегося тоннеля.

Щиты прямоугольного поперечного сечения могут быть использованы при строительстве перегонных тоннелей метрополитена, тоннелей для пропуска легковых автомобилей, пешеходных и коллекторных тоннелей в мягких и слабых грунтах [30].

Первый прямоугольный щит замкнутого профиля был создан для проходки коллекторного тоннеля длиной 534 м вг. Нагоя (Япония). Трасса тоннеля проходит на глубине 4 м от поверхности земли в толще аллювиальных отложений, представленных илистыми глинами, крупно- и среднезернистыми песками и илистыми песками. Уровень грунтовых вод расположен на глубине 10 м от дневной поверхности.

Щитовой агрегат длиной5,0 м, шириной 4,3 м, высотой 3,1 м и массой 48 т состоит из ножевой, опорной и хвостовой частей и оснащен 14 гидравлическими домкратами с ходом поршня 1,2 м и усилием 1400 кН. В ножевой части смонтирован удлиненный шандорный козырек, выдвигаемый 20-тонным домкратом и поддерживаемый шестью вертикальными домкратами. Наличие выдвижного козырька и забойных домкратов предотвращает выпуски грунта в забое щита.

На хвостовой оболочке щита монтировали секции прямоугольной обделки тоннеля из шести железобетонных блоков шириной 1,0 м и толщиной 0,25 м и центральной стальной подпорки.

Рис. 16 Схема прямоугольного щитового агрегата: 1 -железобетонные блоки; 2 - хвостовая оболочка щита; 3 - стальная подпорка; 4 - арматура;5 - накладки; 6 - болт

Стыки между блоками устраивали на болтах, скрепляющих накладки, приваренные к рабочей арматуре блоков. На рис. 16 приведена схема прямоугольного щитового агрегата.

Для монтажа обделки использовали рычажный укладчик, способный перемещаться как в горизонтальном, так и в вертикальном направлении. Вначале монтаж одной секции обделки занимал150 мин, а затем 80 мин (на 200-й секции) и 65 мин (на 350-й секции); соответственно время проходческого цикла было уменьшено с 400 до 200 мин.

По мере монтажа обделки в строительный зазор на участке хвостовой оболочки щита нагнетали стабилизирующую смесь из песка, мелкого гравия, бентонита и воды. Измеренное во время передвижки щита смещение относительно вертикальной оси не превышало ±20 мм и стабилизаторы не потребовались. При этом линейные горизонтальные смещения щита и обделки составляли соответственно 0,6 и 1,8 см, а вертикальные - соответственно 5,5 и3,8 см.

По результатам систематических измерений были построены графики изменения осадок поверхности земли над тоннелем при разных расстояниях от расчетного створа до забоя щита. Максимальные значения составили 42 мм, что не превышает осадок при проходке круговыми щитами.

В период строительства тоннеля производили также измерения давления грунта и усилий в обделке, для чего на контакте обделки с грунтом установили 36 датчиков давления. Анализ результатов длительных измерений показал, что нагрузки на тоннель и усилия в обделке не превышали расчетных.

В процессе проектирования и строительства тоннеля возникли различные проблемы, для решения которых были проведены комплексные экспериментальные исследования в лабораторных и натурных условиях [31]. Одной из проблем явилось обеспечение требуемой жесткости стыков между блоками, которые под действием изгибающих моментов имеют тенденцию к раскрытию. Были проведены исследования работы обделки под нагрузкой для трех типов стыков: омоноличенного, болтового и болтового в сочетании со сваркой закладных деталей и обмазкой торцовых поверхностей эпоксидным клеем.

Модель секции обделки в масштабе 1/2 натуральной величины обжимали со всех сторон гидравлическими домкратами, имитируя постоянную вертикальную равномерно распределенную нагрузку интенсивностью 100 кН/м2 и изменяющееся по высоте стен горизонтальное давление грунта.

В результате экспериментальных исследований было установлено, что наиболее подходящими следует считать болтовые стыки с приваренными к рабочей арматуре блоков накладками и покрытые эпоксидным клеем. Несущая способность и жесткость таких стыков незначительно отличаются от несущей способности и жесткости тела блоков. Этот вывод был подтвержден полномасштабными испытаниями обделки под нагрузкой, в натурных условиях.

Вторая проблема касалась создания специализированного укладчика блоков обделки. Как правило, при монтаже круговых обделок рабочий орган рычажного укладчика вращается вокруг центральной оси, удлиняется и укорачивается. Для монтажа прямоугольных обделок, помимо этого, необходимо обеспечить вертикальное и горизонтальное перемещение блокоукладчика. Такой агрегат с гидравлическим приводом был создан и испытан в производственных условиях. Кроме того, была изготовлена специальная тележка с поворотным столом для перевозки блоков обделки.

Третья проблема связана с опасностью поворота щита относительно его вертикальной оси при передвижке. Если в щитах кругового сечения их закручивание не препятствует точному монтажу колец обделки, то даже незначительный крен прямоугольного щита не позволит соединить соседние секции обделки между собой.

Для оценки возможного диапазона углов поворота щита и разработки мер по их предотвращению были проведены экспериментальные исследования. Модели щитов кругового, эллиптического и прямоугольного сечения помещали в желатиновую среду, имитирующую грунтовый массив. Были установлены соотношения между крутящим моментом и углом поворота модели и показано, что для закручивания модели прямоугольного щита на тот же угол, что и круглого, требуется в 4 - 5 раз больший крутящей момент. Были созданы специальные электронные и оптические приборы для контроля за поворотами щита, его вертикальными и горизонтальными смещениями, а также ножевые стабилизаторы, вдавливаемые в грунт домкратами и препятствующие закручиванию щита.

Четвертая проблема относится к осуществлению безосадочной проходки и решается своевременным заполнением строительного зазора в зоне хвостовой оболочки щита. Опытным путем определили оптимальный состав нагнетаемой смеси (на 1 м3 смеси - 600кг песка, 780 кг мелкого гравия, 600 л воды, 60 кг бентонита и 2 кг добавок) и давление нагнетания.

Опыт строительства тоннеля в г. Нагое (Япония) и результаты экспериментальных исследований были использованы при строительстве двух коллекторных тоннелей в г. Токио (Япония). Один из них длиной 370 м и сечением 5Ч4,15 м заложен под руслом реки на глубине до 20 м от поверхности воды между двумя шахтными стволами.

Щит со скругленными углами имел длину 6,6 м (хвостовая оболочка - 2,05 м, ножевая часть - 1,8 м), высоту 4,38 м и ширину 5,23 м. Породу в забое щита разрабатывали буровзрывным способом. Обделку тоннеля собирали из железобетонных рамных элементов толщиной 0,35 м, шириной 1,0 м и средней вертикальной перегородки толщиной 0,25 м, расположенной несимметрично относительно оси тоннеля. Обделку монтировали с перевязкой продольных швов соседних секций.

Дальнейшее развитие щитовой техники для проходки тоннельных выработок прямоугольного поперечного сечения связано с созданием механизированных щитовых агрегатов нового поколения. В настоящее время в Японии применяются механизированные щиты прямоугольной формы с нетрадиционными рабочими органами:

- барабанного типа с двумя и более барабанами, расположенными перпендикулярно оси тоннеля и оснащенными резцами, скалывателями или шарошками (рис. 17,а);

- роторного типа, состоящими из нескольких режущих дисков одинаковых или разных размеров, несущих породоразрушающие инструменты (рис. 17,б).

Рис. 17 Механизированные щиты прямоугольного поперечного сечения: а - с рабочим органом барабанного типа; б - с рабочим органом роторного типа; 1 - корпус щита; 2 - двухбарабанный рабочий режущий диск; 3 - центральный режущий диск; 4 - боковые режущие диски

Разработаны щиты с различным соотношением размеров рабочего органа для проходки как «горизонтальных» прямоугольных выработок, пролет которых в 2 - 3 раза превышает высоту, так и «вертикальных» с высотой более пролета.

В зависимости от инженерно-геологических условий щиты оборудуют пригрузочными камерами с бентонитовым или грунтовым пригрузом.

Применение прямоугольных механизированных щитов лежит в основе двух новых технологий строительства тоннелей мелкого заложения в слабоустойчивых грунтах, получивших название [32]:

-«проходка коробчатыми щитами» (BSM);

-«мульти-микрощитовая проходка» (MMST).

Технология BSM предназначена для строительства подземных сооружений мелкого заложения на застроенных городских территориях при наличии густой сети подземных коммуникаций, не подлежащей перекладке.

В этом случае ограждающие конструкции, выполненные по технологии «стена в грунте», а также буровые или забивные сваи не могут быть устроены с поверхности земли и применение классического котлованного или траншейного способов оказывается невозможным.

Сущность технологии BSM заключается в том, что непосредственно под инженерными коммуникациями с помощью прямоугольного щита проходят одну или несколько подземных выработок, объединяют их между собой, а затем из объединенной выработки устраивают ограждающие конструкции, выполненные по технологии «стена в грунте», в виде буровых или виброопускных свай. Под защитой ограждающей конструкции разрабатывают грунт и возводят обделку подземного сооружения.

Данная технология впервые была апробирована на строительстве подземной автостоянки вместимостью 111автомобилей в центральном районе г. Токио [33].Стоянка расположена под проезжей частью автомагистрали вблизи зданий, непосредственно под инженерными коммуникациями (электрическими кабелями, газопроводом, водопроводом, канализацией, телефонными кабелями).

Стоянка заложена в толще аллювиальных песков и глинистых грунтов. Уровень грунтовых вод находится на глубине 3 - 4 м от поверхности земли. При выборе метода строительства традиционные технологии устройства ограждения стен оказались неприемлемыми из-за невозможности перекладок подземных коммуникаций. Была предложена технология BSM с применением прямоугольного коробчатого щита с двухбарабанным рабочим органом и поэтапным ведением работ (рис. 18).

Рис. 18 Последовательность строительства подземной автостоянки по технологии BSM 1 - подземные коммуникации; 2 - зона укрепленного грунта; 3 - скважины для инъецирования; 4 -нижняя вспомогательная выработка; 5 - верхняя вспомогательная выработка; 6 - объединенная выработка; 7- буровая свая Ш 0,45 м; 8 - временные сваи; 9 - покрытие проезжей части; 10 - конструкция автостоянки; 11 - грунт обратной засыпки

На I этапе прямоугольным щитом была пройдена вспомогательная выработка длиной 163 м, низ которой совпадает с серединой лотковой плиты подземной автостоянки. Из этой выработки забурили восстающие вертикальные скважины, через которые выполнили укрепительную цементацию грунта под подземными коммуникациями.

На II этапе была пройдена верхняя вспомогательная выработка, верх которой совпадает с верхом плиты перекрытия автостоянки, а низ - на 0,25 - 1,20 м превышает отметку верха нижней вспомогательной. Обделки обеих выработок объединили между собой при помощи скользящих стальных листов, а грунт из зазора между обделками удалили.

Работы III этапа включали устройство ограждающих буроопускных свай рядом с объединенной выработкой и непосредственно из выработки. В пробуренные скважины диаметром 0,45 м опускали двутавровые балки с последующим обетонированием. На внутренний ряд свай опирали покрытие проезжей части, по которому пропускали наземные транспортные средства в период строительства подземной автостоянки.

Работы IV этапа предусматривали последовательную разработку грунта по схеме «сверху - вниз» между ограждающими конструкциями.

На V этапе выполняли бетонирование конструкций подземной стоянки по схеме «снизу- вверх». Готовую конструкцию засыпали грунтом, полностью восстанавливая поверхностные условия.

В процессе строительства проводили мониторинг напряженно-деформированного состояния конструкций подземной автостоянки и окружающего грунтового массива. Максимальные осадки грунта после проходки нижней вспомогательной выработки составили 5 мм, а верхней - 15мм; горизонтальные смещения не превышали 1,1 мм.

Опыт строительства подземной автостоянки с применением технологии BSM оказался успешным и намечается к использованию при сооружении других подземных объектов в Японии.

Применение технологии MMST предусматривает щитовую проходку нескольких прямоугольных выработок по контуру будущего подземного сооружения. Каждая из выработок закрепляется стальными коробами, а затем заполняется бетонной смесью, образуя элементы обделки подземного сооружения. Отдельные сталебетонные элементы объединяют между собой. Под защитой замкнутой обделки разрабатывают грунтовое ядро и возводят внутренние конструкции подземного сооружения (рис. 19).

Рис. 19 Последовательность строительства подземного сооружения по технологии MMST: 1 -вспомогательная выработка, сооружаемая прямоугольным щитом; 2 - зазор; 3 -экскаватор; 4 - проезжая часть; 5 - стальной короб; 6 - зона химического закрепления грунта; 7 - выдвижной стальной лист; 8 - зона обетонирования

К преимуществам данной технологии по сравнению с традиционными относятся: рациональная форма и размеры поперечного сечения; возможность строительства подземного сооружения с минимальной глубиной заложения (до 1 м), что практически невозможно при проходке щитами кругового поперечного сечения; исключение нарушений на поверхности земли.

Новая технология запатентована в 1991 г. и апробирована в 1997 г. на опытном участке строительства системы вентиляционных тоннелей А, В и С длиной соответственно75,4; 77,7; 60,0 м, примыкающих к вентиляционной станции на трассе экспрессной автомагистрали Транс-Кавасаки[32].Между вентиляционными тоннелями предусмотрены четыре шахтных ствола.

Тоннели имеют прямоугольное очертание пролетом от 13,6 до 14,8 м и высотой от 14,2 до 15,6 м. Глубина заложения тоннелей изменяется от 4,7 до 7,3 м.

Проведению опытной проходки предшествовали крупномасштабные эксперименты на физических моделях в масштабе 1:2. Измеряли напряженно-деформированное состояние обделки и грунтового массива.

Работы по строительству тоннелей начали с проходки вспомогательных контурных выработок прямоугольного сечения механизированными щитами двух типов: «горизонтальным» шириной 7,0 м и высотой 2,5 м и «вертикальным» шириной 2,5 м и высотой 7,5 м. Всего на строительстве каждого тоннеля использовали по два щита.

В тоннеле А работали щиты с барабанным рабочим органом и бентонитовым пригрузом, в тоннеле В - скомбинированным рабочим органом и грунтовым пригрузом, а в тоннеле С - с роторным рабочим органом и бентонитовым пригрузом.

Контур каждой выработки закрепляли коробчатой конструкцией длиной 1,2 м из стальных листов, усиленных ребрами жесткости. Короба соединяли между собой на сварке.

Проходку вспомогательных выработок вели со средней скоростью 2,4 м/сут и максимальной 4,8 м/сут. Сравнительно невысокие темпы проходки объясняются небольшой длиной выработок, что не позволяет обеспечить режим скоростной проходки. На начальной стадии максимальные отклонения щитов от проектной трассы достигали 195 мм (по вертикали) и 124 мм (в плане), а затем не превышали 100 мм.

После проходки вспомогательных выработок разрабатывали грунтовые целики между ними шириной от0,5 до 1,0 м в вертикальном направлении и от 0,8 до 1,6 м в горизонтальном направлении. Образующиеся зазоры герметизировали с помощью скользящих стальных листов, выдвигаемых домкратными устройствами, и нагнетанием в грунт стабилизирующих составов. После этого вспомогательные выработки заполняли бетонной смесью, создавая сплошную сталебетонную обделку основного тоннеля. Под защитой обделки разрабатывали грунтовое ядро с помощью гусеничного экскаватора и возводили внутренние конструкции.

В настоящее время применение технологии MMST предусматривается на строительстве четырехполосного автодорожного тоннеля по трассе автомагистрали в районе г. Токио [32].Наличие плотной капитальной застройки и интенсивного уличного движения затрудняют применение траншейного способа работ, традиционной щитовой проходки и НАТМ, при которых в данных условиях неизбежны нарушения поверхности.

Рассмотренные выше новые технологии строительства городских подземных сооружений мелкого заложения в слабоустойчивых грунтах характеризуются достаточно высокой эффективностью и обеспечивают минимизацию нарушений поверхностных условий.

Выбор той или иной технологии определяется видом подземного сооружения, его размерами, конструктивными особенностями, а также градостроительными, топографическими и инженерно-геологическими условиями района строительства.

3.3 Адаптивная опережающая крепь

В практике современного тоннелестроения широко используют различные виды опережающих крепей: экраны из труб, бетонные своды, экраны из грунта, стабилизированного искусственным замораживанием, химическим закреплением, струйной цементацией и др. [2,34].

Опережающее крепление -превентивная мера, гарантирующая безопасное раскрытие тоннельной выработки и устойчивость окружающего грунтового массива. Опережающую крепь применяют преимущественно на участках нарушенных скальных, слабоустойчивых и неустойчивых мягких водоносных грунтов, которые встречаются по трассе горных, подводных и городских тоннелей, сооружаемых закрытыми способами. Выбор того или иного вида опережающей крепи и технологии ее устройства определяются протяженностью нарушенных зон, типом и свойствами пересекаемых грунтов, расположением уровня грунтовых вод и т.д.

Рассматриваемая технология характеризуется достаточной гибкостью и адаптивностью к изменяющимся инженерно-геологическим условиям, сводит к минимуму нарушения окружающей среды и имеет ряд преимуществ перед другими способами крепления тоннельных выработок.

С применением опережающей крепи построены многие тоннели и городские подземные сооружения в Англии, Германии, Франции, Италии, России, США, Японии, Сингапуре и других странах [2].Ниже приводятся данные современного опыта строительства транспортных тоннелей с опережающей крепью, анализируются наиболее эффективные конструктивно-технологические решения и выявляются прогрессивные тенденции развития рассматриваемых методов.

Экраны из труб

В последние годы наряду с традиционными способами устройства опережающих экранов из стальных труб находят применение новые технологии, предусматривающие использование перфорированных труб в сочетании с закреплением грунта инъецированием в затрубном пространстве.

В Японии строится тоннель Сатсума Тагами длиной 3297 м по трассе железнодорожной линии Синкансен [35].В пределах застроенной территории г. Кагошима трасса тоннеля проходит на глубине от 25 до 70 м в сложных инженерно-геологических условиях, характеризующихся чередованием участков достаточно устойчивых полускальных пород и локальных эрозионных зон, распространяющихся с поверхности земли до уровня горизонтального диаметра тоннеля. Эрозионные зоны заполнены твердыми минеральными композициями, которые под действием грунтовых вод разрушаются, превращаясь в текучую несвязную массу, не способную к консолидации.

В связи с этим проходку эрозионных зон вели под защитой опережающих экранов из стальных перфорированных труб в сочетании с закреплением грунта инъецированием. Для этого через трубы экрана производили нагнетание химически активных стабилизирующих составов. Применение традиционных способов искусственного замораживания грунтов и понижения уровня грунтовых вод в данных условиях оказалось неприемлемым из-за опасности осадок грунтового массива и поверхности земли.

Экран из стальных труб наружным диаметром 1,02 м был создан в сводовой части тоннеля.

Рис. 20 Схема расположения труб экрана и зон химически закрепленного грунта при строительстве тоннеля Сатсума Тагами (Япония): 1 -заполнительное нагнетание; 2 - первичное закрепление; 3 - вторичное закрепление; 4 - трубы экрана. Приведенные цифры соответствуют номерам труб экрана

Схема расположения труб экрана и зон химически закрепленного грунта представлена на рис. 20.

Для прокладки труб экрана с шагом 0,3 м применили микротоннельную технологию, используя микрощиты диаметром 0,8 м с бентонитовым пригрузом и установку для продавливания труб. Такая технология считается более надежной, чем бурение скважин, с точки зрения предотвращения вывалов грунта в забое и преодоления возможных препятствий в виде валунов, стволов деревьев, старых свай.

Трубы продавливали звеньями длиной по 2 м по мере продвижения микрощитового комплекса, соединяя их между собой на болтах. Для снижения усилий продавливания труб их поверхность покрывали антифрикционным составом.

По мере проходки зазоры между трубами заполняли двухстадийным инъецированием стабилизирующего состава, создавая над экраном воротник из закрепленного грунта толщиной до 1,5 м и прочностью 1 МПа. Параллельное ведение работ по продавливанию труб и закреплению грунта существенно сократило сроки строительства. Длина экрана из труб в пределах первой нарушенной зоны достигала 96 м.

Для оценки напряженно-деформированного состояния грунтового массива и прогнозирования возможных осадок были выполнены расчеты методом конечных элементов. Исследования двухразмерных моделей показали, что характер и интенсивность развития мульдыоседания грунтов не выходят за допустимые пределы. Это было подтверждено данными мониторинга сдвижений и деформаций в натурных условиях.

Проходку тоннеля подзащитой экрана из труб вели заходками по 10,5 м (первая заходка - 15 м) ступенчатым забоем, устанавливая в калотте арочную крепь из двутавровых балок Н200 и нанося слой набрызг-бетона толщиной 0,2 м. Во избежание нарушения устойчивости забоя его закрепляли набрызг-бетоном и возводили временный обратный свод толщиной 0,25 м в калотте. Вторичную обделку возводили из железобетона толщиной 0,4.м с обратным сводом толщиной 0,5 м.

Опережающие экраны из грунтоцементных столбов в сочетании с арочной крепью и опорными элементами из микросвай применяют в настоящее время на строительстве в Японии двухъярусного автодорожного тоннеля Оуме длиной 2095 м и площадью поперечного сечения от 221до 261 м1[36].

Центральный участок тоннеля длиной 1093 м проходит под застроенной территорией на мелком заложении (6,9 - 7,8 м) в слабоустойчивых водоносных гравелистых грунтах (крупностью частиц от 2 до 20 см) с включением ила. Проходку тоннеля ведут по технологии НАТМ с поэтапным раскрытием выработки пролетом 15,75 м (рис. 21). Породу разрабатывают механизированным способом с погрузкой ковшовым погрузчиком в транспортные средства.

В первую очередь устраивали экран из стальных труб длиной 12,5 м в сводовой части тоннеля. Перфорированные трубы диаметром 0,11 м с толщиной стенок 6 мм располагали в поперечном направлении с шагом 0,6 м (на припортальном участке - 0,3 м) и через них в грунт инъецировали цементный раствор под давлением 0,5 МПа. Раствор проникал в грунт примерно на 20 см, образуя вокруг труб грунтоцементные столбы диаметром 0,50 - 0,55 м.

Рис. 21 Поперечное сечение двухъярусного тоннели Оуме (Япония) и этапы работ по его сооружению: 1 - грунтоцементные столбы; 2 - экран из труб; 3 - наклонные микросваи; 4 - обделка из монолитного бетона; 5 - промежуточное перекрытие

Под экраном из грунтоцементных столбов вдоль стент оннеля были пробурены две горизонтальные скважины с обсадкой из труб для обеспечения дренажа (до 100 л/мин). Для закрепления при забойной зоны под сводом калотты устраивали слабонаклонные (под углом 3° к оси тоннеля) столбы диаметром0,8 м из грунта, закрепленного струйной цементацией, прочностью 7 МПа,

Тоннельную выработку раскрывали сверху вниз четырьмя ступенями: вначале малую и большую калотту с возведением промежуточного перекрытия, а затем штроссу и лотковую частьвы работки. По мере раскрытия калоттного профиля устанавливали арочную крепь из стальных профилей Н 200 и наносили набрызг-бетонное покрытие по верхнему своду толщиной 0,25 м, а по временному обратному своду - толщиной 0,2 м.

Давление от массы свода тоннеля (100 - 110 т/м2) временно передавали на опорные микросваи (четыре сваи на участке длиной 9 м), которые возводили до бетонирования промежуточного перекрытия тоннеля. До раскрытия нижних ступеней под промежуточное перекрытие методом струйной цементации были устроены вертикальные сваи диаметром 0,8 м и прочностью 4 МПа.

Применение комбинированной крепи в сочетании с поэтапным раскрытием выработки позволило свести к минимуму деформации грунтового массива и поверхности земли. Так, по результатам геотехнического мониторинга максимальные осадки дневной поверхности после раскрытия калоттного профиля составили 15 мм, а после раскрытия штроссы -20 мм.

Новую технологию устройства защитного экрана из микросвай применили на строительстве тоннеля на кольцевой автомагистрали в г. Праге[37]. Два параллельных тоннеля мелкого заложения длиной свыше 2 км заложены в слабоустойчивых грунтах и сооружаются новым австрийским способом (НАТМ). На участках плотно застроенной территории во избежание нарушений поверхностных условий были приняты дополнительные защитные меры, включающие консолидирующее и компенсационное нагнетание, а также экраны из микросвай.

Сваи длиной от 12 до 15м, располагаемые под углом 5 - 6° к оси тоннеля, устраивали с использованием специализированного бурового оборудования BOODEX шведской фирмы «Атлас Копко». В сечении тоннеля располагали от 18 до 25 микросвай с шагом 400 - 500 мм.

Для бурения скважин диаметром 0,12 м по трассе тоннеля раскрывали камеры с превышением над контуром выработки на 0,68 м и длиной 8,9 или 12 м в соответствии с длиной микросвай и величиной перекрытия соседних секций (3 - 4 м). В пробуренные скважины проталкивали перфорированные стальные трубы диаметром 0,11 м с толщиной стенки6,3 мм, через которые в грунт нагнетали цементный раствор под давлением 0,2 -0,5 МПа.

В 2002 г. Завершено строительство железнодорожного тоннеля Вольфсгрубен длиной 1743 м в Австрийских Альпах [38]. На припортальных участках тоннеля залегают неустойчивые водоносные грунты, в связи с чем проходку тоннеля вели под защитой опережающей крепи из двух рядов микросвай длиной до 20 м с перекрытием соседних участков на 2 м.

Работы вели по технологии НАТМ с раскрытием выработки сечением 120 - 130 м2 в два этапа и двухслойной крепью из набрызг-бетона. После проходки 50 м со стороны восточного портала в набрызг-бетонной крепи обнаружили трещины и возникла опасность вывалов грунта. В связи с этим потребовалось устройство наклонных столбов длиной 3 - 4 м под пяты свода и инъекционных анкеров длиной до 10 м в радиальном направлении.

Наиболее сложные условия были у западного портала на участке длиной 60 м. Здесь также устраивали защитный экран из двух рядов микросвай, выполненных из 76-миллиметровыхперфорированных стальных труб, через которые в грунт нагнетали цементный раствор. Применением микросвай удалось стабилизировать грунтовый массив и обеспечить безосадочную проходку калоттного профиля способом сплошного забоя.

Крепь из грунта, закрепленного струйной цементацией

Развитие струйной цементации в тоннелестроении во многом связано с устройством опережающей крепи. При этом в грунт по контуру будущего тоннеля с определенным интервалом погружают мониторы с насадками, через которые под большим давлением подают воду и цементный раствор. Окружающий скважину грунт разрушается струей воды и интенсивно перемешивается с цементным раствором. Постепенно извлекая монитор из скважины, создают области закрепленного грунта.

С применением струйной цементации пройдены отдельные участки тоннелей метрополитена в г.г. Милане, Вене, Лионе, Сингапуре, железнодорожных тоннелей в Италии, Германии, Швейцарии, автодорожных тоннелей в Австрии, Югославии, Швейцарии [2]. В последние годы опережающую струйную цементацию применяют в сочетании с устройством опорных столбов в пятовых сечениях свода тоннеля.

В Швейцарских Альпах сооружают тоннель Зюгвальд длиной 2,6 км, по которому будет осуществляться перевозка автомобилей на железнодорожных платформах [39]. Трасса строящегося тоннеля проходит рядом с эксплуатируемым тоннелем Киостерс и пересекает участки выветрелых и разрушенных скальных пород с включениями водоносных песков. Для безопасной проходки этих участков применили опережающую крепь, устраиваемую методом струйной цементации, и вертикальные столбы под пяты свода тоннеля.

На припортальном участке тоннеля было устроено 17 секций экрана из 28 грунтоцементных столбов диаметром0,6 м и длиной по 16,8 м. Перекрытие соседних секций экрана составляло 2,5 м.

При устройстве экрана в пробуренные скважины помещали мониторы и нагнетали водоцементную смесь под давлением до 50 МПа через насадки диаметром 2,2 мм. На 1 м столба расходовали350 кг водоцементной смеси. Процесс бурения одной скважины занимал от 30 до 60мин, нагнетания - 4 - 5 мин.

Проходку тоннеля под экраном вели ступенчатым забоем заходками по 1 м с использованием тоннелепроходческой машины Эйскхоф-110 с рабочим органом избирательного действия. После проходки 12,5 м тоннеля возводили первичную крепь из слоя набрызг-бетона толщиной 3 - 4 см, армированного стальной сеткой, и стальных арок из прокатного металла. Одновременно методом струйной цементации устраивали12 наклонных (под углом 10° к вертикали) столбов длиной 3 - 4 м и диаметром 0,6м под пяты свода.

Опережающую крепь из стабилизированного струйной цементацией грунта применили также на строительстве тоннеля в г. Сан-Пауло (Бразилия) в слабых неустойчивых грунтах [40]. Тоннель овоидального поперечного сечения пролетом 4,26 м и высотой 4,52 м проходит под застроенной городской территорией и пересекает канал Тамандате на глубине до 25 м от поверхности воды.

По трассе тоннеля залегают в основном аллювиальные грунты: пески, илистые и твердые серые глины. Уровень грунтовых вод в период затяжных дождей повышается почти до дневной поверхности. В этих условиях проходку тоннеля было решено вести горным способом по технологии НАТМ под защитой опережающих экранов из грунта, закрепленного струйной цементацией. На тех участках, где в нижней части тоннеля залегают плотные глины, защитный экран устраивали только по своду и боковым стенам, а на участках неустойчивых грунтов - по всему периметру тоннеля. Схемы расположения экранов показаны на рис. 22.

Секции опережающей крепи на первом участке состояли из 21 столба закрепленного грунта диаметром 0,6 м и длиной 8,5 м, а на втором участке - из 34 таких же столбов. При проходке подводной части тоннеля в водоносных грунтах помимо опережающей крепи по контуру тоннеля, по концам каждой секции, методом струйной цементации устраивали торцовые диафрагмы толщиной 1,5 - 2,0 м. Для этого по всей площади забоя выработки забуривали горизонтальные скважины длиной 8,5 м, в донную часть которых нагнетали цементный раствор. В процессе бурения скважин во избежание прорыва воды в выработку использовали превенторы. В пробуренные скважины нагнетали смесь из портландцемента и воды в соотношении 1:1 в песчаных и 1:0,8в глинистых грунтах. Прочность закрепленного струйной цементацией грунта составила 4 МПа.

На участке тоннеля длиной82 м было выполнено 316 контурных столбов длиной по 7,5 м и диаметром 0,6 м и514 горизонтальных столбов длиной по 1,5 - 2,0 м и диаметром 0,8 м (для диафрагм).

Рис. 22 Схема расположения экранов незамкнутого (а) и замкнутого (б) очертания при строительстве тоннеля в г. Сан-Пауло (Бразилия): 1 - песок; 2 -илистая глина; 3, 4 - соответственно экран и диафрагмы из грунта, закрепленного струйной цементацией

Проходку под защитным экраном вели горным способом с установкой арочной крепи и возведением обделки из набрызг-бетона. В процессе проходки контролировали размеры колонн стабилизированного грунта, их положение в плане и профиле, прочность, водонепроницаемость и др. Принятая технология проходки позволила осуществить безаварийное строительство тоннеля под каналом в сложных инженерно-геологических условиях.

В сложных инженерно-геологических условиях построен также автодорожный тоннель Прапонтин длиной 4,4 км (Италия) [41]. Две параллельные выработки пересекают горный массив, сложенный разнородными грунтами. Восточный участок тоннеля длиной 700 м проходит под застроенной территорией на мелком заложении в аллювиальных грунтах с крупными валунами. Центральный участок тоннеля глубокого заложения проходит под действующим железнодорожным тоннелем в гнейсах и глинистых сланцах, а западный участок длиной 200 м пересекает трассу железной дороги и заложен на небольшой глубине в слабых водоносных грунтах (песках и глине).

В соответствии с инженерно-геологическими условиями и глубиной заложения тоннеля проходку его вели различными способами. Восточный участок сооружали под экраном из грунтоцементных столбов с опиранием свода на микросваи. Центральный участок был пройден с применением буровзрывного способа при ограничении глубины заходок до1,0 - 1,5 м в зоне пересечения с действующим железнодорожным тоннелем.

На западном участке проходку вели с поэтапным раскрытием выработки под защитой опережающих экранов из 38 грунтоцементных столбов диаметром 0,6 м по контуру выработки, выполненных методом струйной цементации, и 40 фибергласовых нагелей длиной 12 м в призабойной зоне и скальных анкеров в пятах арок (рис. 23).

Рис. 23 Этапы проходки тоннеля Прапонтин (Италия): 1 - экран из грунтоцементных столбов; 2 - фибергласовые нагели; 3 - арочная крепь; 4 - анкеры;5 - наклонные микросваи; 6 - обделка тоннеля

На I этапе устраивали опережающую крепь, под защитой которой на II этапе раскрывали калоттный профиль, закрепляя его стальными арками и горизонтальными анкерами. На этом же этапе под пяты арок подводили наклонные столбы из микросвай. Работы III этапа включали раскрытие штроссы, а IV этапа - возведение обделки из монолитного бетона. По мере проходки фибергласовые нагели срезали.

Представляет интерес опыт строительства тоннелей на автомагистрали Е71 между г.г. Римом и Равенной в Аппенинах (Италия) [42]. Тоннели заложены в сланцах различной крепости, для разработки которых использовали гидравлические молоты Rummer S86 и S84,смонтированные на экскаваторе Fiat Allis.

Для крепления выработок площадью поперечного сечения 95 м2 использовали 12-метровые экраны из столбов, выполненные методом струйной цементации фирмой «Родио», скальные анкеры длиной 5 и 6 м, стальные арки из двутавровых профилей с шагом 1,5 м, между которыми наносили покрытие из набрызг-бетона. Под пяты свода и стен были подведены микросваи длиной 6, 10 и 20 м. Обделку из монолитного бетона толщиной в замке 0,7 м и в обратном своде 0,8 м возводили в тоннельной опалубке «CIFA».

Опережающая бетонная крепь

При строительстве тоннелей горным способом в нарушенных скальных и мягких связных грунтах применяют опережающую бетонную крепь (ОБК). Ее устраивают путем бетонирования предварительно нарезанной контурной щели в пределах свода или свода и стен выработки. Отдельные бетонные оболочки конической формы перекрывают одна другую, образуя непрерывную крепь, которая после проходки тоннеля входит в состав постоянной конструкции [2].

Впервые ОБК применили во Франции в конце 70-х годов прошлого века и с тех пор с ее использованием построены многочисленные тоннели метрополитена, железнодорожные и автодорожные тоннели во Франции, Италии, Испании, Швейцарии, Венесуэле и Японии. С применением ОБК сооружен участок станционного комплекса «Адмиралтейская» в г. Санкт-Петербурге.

В последние годы рассматриваемая технология существенно усовершенствована за счет применения более мобильного и производительного щеленарезного и бетоноукладочного оборудования, увеличения размеров нарезаемой щели и бетонной оболочки, устройства криволинейных в продольном направлении оболочек и др. Во Франции щеленарезные машины «Супремек» и «Перфорекс» выпускает фирма «Сершар», в Германии - фирма «Вирт», в Японии - фирма «Ниппон кокудо кайхацу», в Италии -фирма «Родио».

Щеленарезные машины последнего поколения включают жесткую раму с направляющей дугой, по которой перемещается каретка с баровым рабочим органом. Мощность гидропривода таких машин изменяется от 120 до 400 кВт, скорость нарезания щели - от 1 до 10 м/мини более. Контроль за нарезанием щели осуществляется лазерными геодезическими приборами.

Щели глубиной от 1,5 до5,0 м и высотой от 0,1 до 0,4 м заполняют высокопрочным набрызг-бетоном или фибронабрызг-бетоном по «сухой» или «мокрой» технологии робот-методом или подают удобоукладываемую бетонную смесь бетононасосами. Время выстойки бетона в щели до требуемой прочности (8 - 10 МПа) изменяется от 4 - 6 до 10 - 15 ч.

В последние годы с применением ОБК построен ряд транспортных тоннелей. Два параллельных тоннеля Пеш Брюнет длиной 218 и 258 м пройдены в 1997 г. на автомобильной дороге А20 на юге Франции [43]. Тоннели для трехполосного движения пролетом 14,31 м и высотой 12 м заложены на глубине 7 - 21 м от поверхности земли в перемежающихся песчаных, глинистых и мергелистых грунтах прочностью от 0,2 до 2,4 МПа.

Для устройства контурной щели длиной 5 м и высотой 0,25м применили щеленарезную машину массой 165 т и мощностью привода 350 кВт с баровым рабочим органом. Скорость нарезания щели составила 30 м/смену. Щель заполняли набрызг-бетоном, создавая взаимно перекрываемые на 1,00 - 1,25 м бетонные оболочки.

Проходку тоннеля вели с использованием тоннельного экскаватора «Либхер-954» и автомобилей-самосвалов «Вольво А-25». Забой закрепляли набрызг-бетоном и фибергласовыми анкерамидиа метром 32 мм плотностью распределения 0,25 ед./м2. На участках неустойчивых грунтов устанавливали стальные арки и скальные анкеры длиной 5,5 ми диаметром 25 мм. Применение ОБК позволило пройти тоннель с осадками вышележащей грунтовой толщи не более 12 мм.

В горах Эль Пардо (Испания) ведется строительство двух параллельных автодорожных тоннелей для трехполосного движения каждый длиной по 300 м [44].Тоннели заложены на глубине 15 - 30 м в нарушенных скальных и осадочных мягких грунтах и сооружаются по технологии НАТМ с опережающей проходкой боковых штолен, в которых бетонируются стены тоннеля.

При раскрытии калоттного профиля применили ОБК в виде конических оболочек длиной 4,5 м и высотой 0,3 м с перекрытием в 1,0 м. Щель нарезали агрегатами массой 40 и 75 т и мощностью 225и 280 кВт и заполняли набрызг-бетоном робот-методом по «сухой» технологии. Через четыре часа прочность бетона на сжатие составила 9 МПа, а через 24 ч - 50МПа.

Под защитой ОБК раскрывали штроссу, разрушали внутреннюю крепь штольни, бетонировали центральную часть обратного свода и верхний свод. Скорость проходки тоннеля возросла с 1,3 м/сут в первые четыре месяца до 2,7 м/сут в дальнейшем. Мониторинг напряженно-деформированного состояния массива показал, что осадки кровли не превышали допустимых.

При строительстве автодорожного тоннеля длиной 3,3 км и площадью поперечного сечения 108 м2в г. Тулоне (Франция) на участке плотно застроенной территории на глубине до 35м от поверхности земли в мягких водоносных грунтах во избежание осадок поверхности земли применили ОБК [45].Контурную щель конической формы глубиной 4 м и высотой 0,22 м с перекрытием0,5; 1,0 и 1,5 м прорезали щеленарезной машиной с баровым рабочим органом и заполняли фибробетоном. Через четыре часа прочность бетона достигала 8 МПа. Забой закрепляли фибергласовыми анкерами длиной 18 м.

В марте 1996 г. При проходке через нарушенную зону в тоннеле произошел вывал породы с образованием двух воронок на поверхности. Это потребовало усиления конструкции тоннеля обратным сводом, радиальными скальными анкерами длиной 3 - 5 м и стальными решетчатыми арками. После этого проходка тоннеля была завершена без нарушения поверхностных условий.


Подобные документы

  • Разработка технологической карты на каменную кладку сборных железобетонных конструкций с учетом численно-квалификационного состава бригады, калькуляции трудовых затрат, потребности в материалах. Составление календарного и генерального планов работ.

    курсовая работа [110,5 K], добавлен 26.01.2011

  • Технология изготовления сборных железобетонных конструкций. Большепролетное стальное покрытие, требования к его надежности. Технология изготовления металлоконструкций. Монолитные каркасные здания, высотное строительство: проектирование и воздействие.

    отчет по практике [41,6 K], добавлен 12.09.2015

  • Особенности заводского производства сборных железобетонных элементов, которое ведется по нескольким технологическим схемам. Коррозия железобетона и меры защиты от нее. Характеристика методов разрушения железобетонных конструкций, применяемое оборудование.

    контрольная работа [21,7 K], добавлен 06.08.2013

  • Изучение комплексно-механизированного процесса сборки зданий и сооружений из элементов и конструктивных узлов заводского изготовления. Разработка технологической карты на монтаж сборных железобетонных конструкций одноэтажного промышленного здания.

    курсовая работа [2,8 M], добавлен 28.01.2014

  • Сущность железобетона, его особенности как строительного материала. Физико-механические свойства материалов железобетонных конструкций и арматуры. Достоинства и недостатки железобетона. Технология изготовления сборных конструкций, области их применения.

    презентация [4,6 M], добавлен 11.05.2014

  • Применение способа "стена в грунте" при возведении заглубленных сооружений подземных частей промышленных, энергетических и гражданских зданий; классификация, типовые конструкции. Техника и технология устройства стены в грунте вокруг Чернобыльской АЭС.

    реферат [3,5 M], добавлен 17.01.2012

  • Объёмно-планировочные и конструктивные решения здания. Способы монтажа подкрановых балок, железобетонных колонн, покрытий, наружных стеновых панелей. Выбор грузозахватных устройств, монтажных приспособлений и кранов. Контроль качества монтажа конструкций.

    курсовая работа [1,7 M], добавлен 18.12.2013

  • Спецификация сборных железобетонных конструкций, технология монтажа. Выбор монтажных кранов по техническим параметрам. Подсчет эксплуатационной производительности крана и объемов земляных работ при обработке траншей. Выбор бульдозера для обратной засыпки.

    реферат [801,7 K], добавлен 09.12.2012

  • Производство работ по каменной кладке сборных железобетонных конструкций. Анализ геодезического обеспечения строительно-монтажных работ, выбор монтажного крана. Осуществление расчетов: потребность в воде, временные склады, строительно-монтажные работы.

    дипломная работа [101,7 K], добавлен 24.12.2011

  • Железобетонные конструкции как база современного индустриального строительства, их структура и принципы формирования, предъявляемые требования. Изучение метода расчета сечений железобетонных конструкций по предельным состояниям, оценка его эффективности.

    курсовая работа [924,0 K], добавлен 26.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.