Древесина, металлы, строительно-отделочные материалы
Виды древесных пород и строение частей дерева, его пороки и породы. Технологические свойства древесины. Сплавы: строение металлов, их механические свойства. Железоуглеродистые сплавы, стали и цветные металлы. Строительно-отделочные материалы и полы.
Рубрика | Строительство и архитектура |
Вид | курс лекций |
Язык | русский |
Дата добавления | 29.04.2012 |
Размер файла | 1,9 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
СИЛ-0, СИЛ-1 и СИЛ-2. Кроме алюминия (основа) и кремния (10-13 %), в этот сплав входят: железо - 0,2-0,7 %, марганец - 0,05--0,5 %, кальций - 0,7-0,2 %, титан - 0,05--0,2 %, медь - 0,03 % и цинк - 0,08 %. Из силуминов изготовляют различные детали для автомобилей, тракторов, пассажирских вагонов. Алюминиевые деформируемые сплавы в чушках, предназначенные для обработки давлением и для подшик--товки при получении других алюминиевых сплавов, нормируются определенными стандартами. Сплавы для обработки давлением состоят из алюминия (основа), легирующих элементов (медь - 5 %, магний - 0,1-2,8 %, марганец - 0,1-0,7 %, кремний - 0,8-2,2 %, цинк - 2-6,5 % и небольшого количества других примесей). Марки этих сплавов: ВД1, АВД1, АВД1-1, АКМ, из алюминиевых сплавов изготавливают полуфабрикаты - листы, ленты, полосы, плиты, слитки, слябы.
Кроме того, цветная металлургия производит алюминиевые антифрикционные сплавы, применяемые для изготовления монометаллических и биметаллических подшипников методом литья. В зависимости от химического состава стандартом предусмотрены следующие марки этих сплавов: АО3-7, АО9-2, АО6-1, АО9-1, АО20-1, АМСТ. Стандартом также определены условия работы изделий, изготовленных из этих сплавов: нагрузка от 19,5 до 39,2 МН/м2 (200-400 кгс/см 2), температура от 100 до 120 °C, твердость - от 200 до 320 НВ.
4. Титановые сплавы
Титан - металл серебристо--белого цвета. Это один из наиболее распространенных в природе элементов. Среди других элементов по распространенности в земной коре (0,61 %) он занимает десятое место. Титан легок (плотность его 4,5 г/см 3), тугоплавок (температура плавления 1665 °C), весьма прочен и пластичен. На поверхности его образуется стойкая окисная пленка, за счет которой он хорошо сопротивляется коррозии в пресной и морской воде, а также в некоторых кислотах. При температурах до 882 °C он имеет гексагональную плотно упакованную решетку, при более высоких температурах - объемно--центрированный куб. Механические свойства листового титана зависят от химического состава и способа термической обработки. Предел прочности его - 300--1200 МПа (30--120 КГС/мм 2), относительное удлинение - 4--10 %. Вредными примесями титана являются азот, углерод, кислород и водород. Они снижают его пластичность и свариваемость, повышают твердость и прочность, ухудшают сопротивление коррозии.
При температуре свыше 500 °C титан и его сплавы легко окисляются, поглощая водород, который вызывает охрупчи--вание (водородная хрупкость). При нагревании выше 800 °C титан энергично поглощает кислород, азот и водород, эта его способность используется в металлургии для раскисления стали. Он служит легирующим элементом для других цветных металлов и для стали.
Благодаря своим замечательным свойствам титан и его сплавы нашли широкое применение в авиа-, ракето--и судостроении. Из титана и его сплавов изготовляют полуфабрикаты: листы, трубы, прутки и проволоку. Основными промышленными материалами для получения титана являются ильменит, рутил, перовскит и сфен (титанит). Технология получения титана сложна, трудоемка и длительна: сначала вырабатывают титановую губку, а затем путем переплавки в вакуумных печах из нее производят ковкий титан.
Губчатый титан, получаемый магнийтермическим способом, служит исходным материалом для производства титановых сплавов и других целей. В зависимости от химического состава и механических свойств стандартом установлены следующие марки губчатого титана: ТГ-90, ТГ-100, ТГ-110, ТГ-120, ТГ-130. В обозначении марок буквы «ТГ» означают - титан губчатый, «Тв» - твердый, цифры означают твердость по Бринеллю. В губчатый титан входят примеси: железо - до 0,2 %, кремний - до 0,04 %, никель - до 0,05 %, углерод - до 0,05 %, хлор - до 0,12 %, азот - до 0,04 %, кислород - до 0,1 %. Для изготовления различных полуфабрикатов (листы, трубы, прутки, проволока) предназначены титан и титановые сплавы, обрабатываемые давлением. В зависимости от химического состава стандарт предусматривает следующие их марки: ВТ1-00, ВТ1-0, ОТ4-0, ОТ4-1, ОТ4, ВТ5, ВТ5-1, ВТ6, ВТ20, ВТ22, ПТ-7М, ПТ-7В, ПТ-1 м. Основные компоненты: алюминий - 0,2-0,7 %, марганец - 0,2-2 %, молибден - 0,5-5,5 %, ванадий - 0,8-5,5 %, цирконий - 0,8-3 %, хром - 0,5-2,3 %, олово - 2-3 %, кремний - 0,15--0,40 %, железо - 0,2-1,5 %. Железо, кремний и цирконий в зависимости от марки сплава могут быть основными компонентами или примесями.
5. Цинковые сплавы
Сплав цинка с медью - латунь - был известен еще древним грекам и египтянам. Но выплавка цинка в промышленных масштабах началась лишь в XVII в.
Цинк - металл светло--серо--голубоватого цвета, хрупкий при комнатной температуре и при 200 °C, при нагревании до 100-150 °C становится пластичным.
В соответствии со стандартом цинк изготовляется и поставляется в виде чушек и блоков массой до 25 кг. Стандарт устанавливает также марки цинка и области их применения: ЦВ00 (содержание цинка - 99,997 %) - для научных целей, получения химических реактивов, изготовления изделий для электротехнической промышленности; ЦВО (цинка - 99,995 %) - для полиграфической и автомобильной промышленности; ЦВ1, ЦВ (цинка - 99,99 %) - для производства отливок под давлением, предназначенных для изготовления деталей особо ответственного назначения, для получения окиси цинка, цинкового порошка и чистых реактивов; ЦОА (цинка 99,98 %), ЦО (цинка 99,975 %) - для изготовления цинковых листов, цинковых сплавов, обрабатываемых давлением, белил, лигатуры, для горячего и гальванического цинкования; Ц1С, Ц1, Ц2С, Ц2, Ц3С, Ц3 - для различных целей.
В промышленности широко применяются цинковые сплавы: латуни, цинковые бронзы, сплавы для покрытия различных стальных изделий, изготовления гальванических элементов, типографские и др. Цинковые сплавы в чушках для литья нормируются стандартом. Эти сплавы используются в автомобиле--и приборостроении, а также в других отраслях промышленности. Стандартом установлены марки сплавов, их химический состав, определены изготовляемые из них изделия:
1) ЦАМ4-10 - особо ответственные детали;
2) ЦАМ4-1 - ответственные детали;
3) ЦАМ4-1В - неответственные детали;
4) ЦА4О - ответственные детали с устойчивыми размерами;
5) ЦА4 - неответственные детали с устойчивым размерами.
Цинковые антифрикционные сплавы, предназначенные для производства монометаллических и биметаллических изделий, а также полуфабрикатов, методами литья и обработки давлением нормируются стандартом. Механические свойства сплавов зависят от их химического состава: предел прочности ?В = 250-350 МПа (25-35 КГС/мм 2), относительное удлинение ? = 0,4--10 %, твердость - 85--100 НВ. Стандарт устанавливает марки этих сплавов, области их применения и условия работы: ЦАМ9-1,5Л - отливка монометаллических вкладышей, втулок и ползунов; допустимые: нагрузка - 10 МПа (100 кгс/см 2), скорость скольжения - 8 м/с, температура 80 °C; если биметаллические детали получают методом литья при наличии металлического каркаса, то нагрузка, скорость скольжения и температура могут быть увеличены до 20 МПа (200 КГС/см 2), 10 м/с и 100 °C соответственно: ЦАМ9-1,5 - получение биметаллической ленты (сплав цинка со сталью и дюралюминием) методом прокатки, лента предназначена для изготовления вкладышей путем штамповки; допустимые: нагрузка - до 25 МПА (250 кгс/см 2), скорость скольжения - до 15 м/с, температура 100 °C; АМ10-5Л - отливка подшипников и втулок, допустимые: нагрузка - 10 МПа (100 КГС/см 2), скорость скольжения - 8 м/с, температура 80 °C.
Лекция № 12. Свойства неметаллических материалов
1. Неметаллические материалы
Еще во второй половине XX в. в нашей стране уделялось большое внимание применению неметаллических материалов в различных отраслях промышленности и народного хозяйства в целом. Было налажено и постоянно наращивалось производство самых различных неметаллических материалов: синтетических смол и пластмасс, синтетических каучу--ков, заменяющих натуральный каучук, высококачественных полимеров с заданными техническими характеристиками, включая армированные и наполненные пластмассы.
Пластические массы и другие неметаллические материалы обладают рядом превосходных физико--химических, механических и технологических свойств, что обусловило их широкое распространение в различных отраслях промышленности - машиностроении, электротехнике, электронике и др. Как конструкционный материал пластические массы все более вытесняют дорогостоящие металлы. Применение пластических масс дает возможность постоянно совершенствовать конструкции. Оснащение машин и оборудования, а также частичная комплектация различных узлов позволяют снизить их массу, улучшить надежность и долговечность работы, повысить производительность. Для производства пластмасс требуется в 2-3 раза меньше капитальных вложений, чем для производства цветных металлов. Исходными материалами для получения пластических масс служат дешевые продукты переработки каменного угля, нефти и природного газа. Пластмассы подвергают армированию для улучшения механических свойств. Для изготовления различных деталей, работающих в механизмах трения (скольжения) с небольшими нагрузками и скоростями, применяются такие неметаллические материалы, как антифрикционные полимерные и пластмассовые материалы. Эти материалы обладают небольшим коэффициентом трения, высокой износостойкостью, химической стойкостью, могут работать без смазки. Однако низкая теплопроводность, значительный (в десятки раз больше, чем у металлов) коэффициент термического расширения, небольшая твердость и высокая податливость ограничивают возможности их широкого использования. Более эффективно они применяются в комбинации с другими материалами, металлами и пластмассами.
Кроме того, в качестве фрикционных неметаллических материалов применяются тормозные тканые асбестовые ленты и фрикционные асбестовые накладки - формованные, прессованные, тканые, картонно--бакелитовые и спирально--навивные, которые могут эксплуатироваться во всех климатических зонах. Фрикционные асбестовые накладки применяются для узлов трения автомобилей, самолетов, тракторов, металлорежущих и текстильных станков, подъемно--транспортного оборудования и тепловозов. Ресурс таких неметаллических накладок, работающих в узлах трения, достаточно высок. Например, для автомобилей с дизелями он составляет 6000 моточасов, легковых автомобилей - 125 000 км, грузовых автомобилей - 75 000 км. Тормозные тканые асбестовые ленты применяются в качестве накладок в тормозных и фрикционных узлах машин и механизмов с поверхностной температурой трения до 300 °C.
Неметаллические материалы широко применяются в различных отраслях промышленности и хозяйства в целом.
2. Полимеры: строение, полимеризация и поликонденсация, свойства
В настоящее время трудно представить себе медицину без полимерных систем для переливания крови, медицинскую аппаратуру - без прозрачных полимерных трубок, предметы ухода за больными - без резиновых грелок, пузырей для льда и т. д. Значительно обогатить ассортимент материалов, применяемых в медицине, позволили синтетические полимеры.
Полимеры существенно отличаются от металлов и сплавов: их молекулы вытянуты в длинные цепочки, в результате чего полимеры имеют высокую молекулярную массу. Молекулы полимеров получают из исходных низкомолекулярных продуктов - мономеров - полимеризацией и поликонденсацией. К полимерам поликонденсационного типа относятся фенолформальдегидные смолы, полиэфиры, полиуретаны, эпоксидные смолы. К высокомолекулярным соединениям полимеризационного типа относятся поливинилхлорид, полиэтилен, полистирол, полипропилен. Высокополимерные и высокомолекулярные соединения являются основой органической природы - животных и растительных клеток, состоящих из белка.
Для изготовления многих медицинских изделий широко применяют как полимерные материалы, в основе которых лежит природное сырье, так и искусственные - синтетические и полимерные материалы. Из полимерных материалов естественного происхождения изготовляют большинство перевязочных средств: вату, марлю и изделия из них, алигнин, а также нити шовных материалов (хирургический шелк). Полимеры являются основой пластмасс, используемых при изготовлении различных инструментов, частей медицинской аппаратуры и оборудования.
Широкое применение в различных отраслях промышленности и хозяйства в целом нашли такие полимеры, как фенолформальдегидные жидкие и твердые смолы. Фенол--формальдегидные жидкие смолы резольного типа - продукт поликонденсации фенола и формальдегида в присутствии катализатора с добавкой модифицирующих и стабилизирующих веществ или без них - поставляются в виде однородной прозрачной жидкости от красновато--коричневого до темно--вишневого цвета со средней плотностью 1,2 г/см 3. Применяются при производстве теплозвукоизоляционных изделий, фанеры, древесностружечных и древесноволокнистых плит, абразивных инструментов на гибкой основе, стеклопластиков, асботехнических и асбофрикционных изделий, углепласта для шахтных крепей и др. Марки смол: СФЖ-303, СФЖ-305 и т. д.
Твердые фенолформальдегидные смолы новолачного и ре--зольного типов - продукты поликонденсации фенолов (или их фракций) и формальдегида в присутствии катализатора с добавкой модифицирующих веществ или без них. Выпускаются в виде порошка, чешуек и крошки. Применяются для получения резиновых смесей, прессовочных масс, слоистых пластиков, лаковых токопроводящих суспензий, антикоррозионных лакокрасочных материалов и клеев, в качестве связующих для абразивных изделий и оболочковых форм, при изготовлении поропласта, при производстве масляных лаков для лакокрасочной и пищевой промышленности. Выпускаются следующие марки смол: СФ-010А, СФ-010, СФ-010М (модифицированная), СФ-014 и т. д.
3. Пластмассы: термопластичные, термореактивные, газонаполненные
Пластмассы - пластические массы - это материалы, полученные на основе высокомолекулярного органического соединения - полимера, выполняющего роль связующего и определяющего основные технические свойства материала В зависимости от эластичности пластмассы делят на три группы: жесткие, модуль упругости 700 Мпа, до 70 МПа Пластмассы выпускаются монолитными в виде термопластичных и термореактивных и газонаполненными - ячеистой структуры. К термопластичным пластмассам относят полиэтилен низкого давления, полипропилен, ударопрочный полистирол, АБС--пластики, поливинилхлорид, стеклопластики, полиамиды и др.
К термореактивным пластмассам относятся: жесткие пенополиуретаны, аминопласты и др.
К газонаполненным пластмассам относятся пенополиуретаны - газонаполненный сверхлегкий конструкционный материал.
Термопластичная пластмасса - полиэтилен низкого давления - продукт полимеризации этилена, получаемый при низком давлении с использованием комплексных металлоор--ганических катализаторов. Базовые марки этого полиэтилена: 20108-001, 20208-002, 20308-005 и т. д. Плотность полиэтилена - от 0,931 до 0,970 г/см 3.
Ударопрочный полистирол - продукт сополимеризации стирола с каучуком или другим пластификатором, обладающий более высокими механическими свойствами, чем полистирол общего назначения. Он обладает высокой твердостью, прочностью к ударным нагрузкам, эластичностью, сопротивлением на разрыв, стоек к действию температуры в пределах от +65 до-40 °C.
Аминопласты - термореактивные пластмассы - прессовочные карбамидо--и меламиноформальдегидные массы, получаемые на основе аминосмол с использованием наполнителей (органических, минеральных или их сочетания), окрашивающих и модифицирующих веществ. Их теплостойкость по Мартену составляет не менее 100-180 °C, ударная вязкость - 3,9--29,4 КДж/м 2(4--30 кгс ? см/см 2), усадка - 0,2-0,8 %, удельное объемное электрическое сопротивление - 1? 10 11 --1 ? 10 12 Ом ? см. Из аминопластов путем горячего прессования изготовляют изделия бытового, технического и электротехнического назначения. Всего выпускается 11 марок аминопластов: КФА-1, КФБ-1 и т. д.
Пенополиуретаны - газонаполненные пластмассы - сверхлегкий конструкционный материал. Исходными для их получения являются простые и сложные полиэфиры, изо--цианаты, катализаторы и эмульгаторы. Эластичные пенополиуретаны (ППУ) имеют закрытые, несообщающиеся газонаполненные ячейки (пенопласты) и сообщающиеся ячейки (поропласты). Часто применяется общий термин - «пенопласты». Эластичный поропласт содержит 70 % воздушных сообщающихся пор. Он имеет плотность 25-29 кг/м 3, хорошо противостоит гниению, веществам, применяемым при химической чистке изделий, его предел прочности при растяжении - 0,07--0,11 МПА.
Эластичный пенополиуретан применяется в производстве мягкой мебели, сидений автомобилей, тракторов и других изделий. Жесткий пенополиуретан применяется для изготовления корпусов кресел, декоративных элементов, в качестве тепло--и звукоизоляционных материалов. Широкое распространение в последние годы получили наполненные пенопласты (ППУ).
4. Эластомеры
Термин «эластомеры» был введен взамен названия «синтетические каучуки», а также «натуральный каучук». Эластомерами называют полимеры, обладающие в широком температурном интервале высокой эластичностью - способностью подвергаться значительным (от нескольких сотен до 1000 % и более) обратимым деформациям при сравнительно небольших действующих нагрузках. Первым эластичным материалом такого рода был натуральный каучук, который и в настоящее время не потерял своего значения в производстве эластомеров, в том числе и для медицинских изделий, благодаря своей нетоксичности. Каучук получают из латекса (млечный сок бразильской гевеи), состоящего более чем наполовину из воды, в которой растворено 34-37 % каучука, 2-2,7 % белка, 1,65--3,4 % смолы, 1,5-4,92 % сахара. На плантациях, где приготовляют натуральный каучук как промышленное сырье, латекс коагулируют с помощью органических кислот, прокатывают в рифленые листы и коптят в камерах с дымом при температуре +50 °C. Составные вещества дыма играют роль антисептиков и стабилизаторов окисления каучука. Такие листы толщиной 2,5-3 мм с вафельным рисунком поверхности называют «смокетшит». Они служат наиболее употребительной формой сырого плантационного каучука Данные элементного анализа очищенного каучука соответствуют эмпирической формуле C5H8 (изопрен).
Синтетические каучуки (эластомеры) получают путем полимеризации из мономеров с участием катализаторов (ускорителей процесса). Первый советский синтетический каучук был получен С. Д. Лебедевым из технического спирта. В настоящее время выпускают несколько видов синтетических каучуков (эластомеров), в том числе изопреновый, мало отличающийся от натурального. Для изделий медицинского назначения применяется салоксановый (силиконовый) каучук, основная полимерная цепь которого состоит из атомов кремния и кислорода. Он термостоек и физиологически инертен. Сырьем для изготовления синтетических каучуков служат нефть, природный газ, каменный уголь.
Превращение каучука или «сырой» каучуковой смеси в эластичную резину (материал с необходимыми эксплуатационными свойствами) осуществляют путем вулканизации. Вулканизация, подобно термообработке металлов и сплавов, приводит к изменению структуры каучука. При вулканизации осуществляется соединение («сшивание») молекул эластомера химическими связями в пространственную трехмерную сетку, в результате чего получают материал, обладающий необходимыми эластическими и прочностными свойствами (прочность, упругость, твердость, сопротивление разрыву и т. д.).
Основным вулканизирующим веществом служит сера; применяют также теллур и селен.
Чем больше к каучуку добавляют серы, тем более твердым и менее эластичным получается эластомер. В современном производстве, помимо вулканизаторов, широко применяют органические ускорители, присутствие которых снижает количество серы (до 2 % вместо 10 %) и температуру вулканизации. Существуют ультраускорители, благодаря которым вулканизация вместо температуры в +130-150 °C протекает при комнатной температуре.
5. Резины
Резины различных видов и марок относятся к группе эластичных материалов - эластомеров. Резины подразделяются на формовые и неформовые. К неформовым относится большая группа так называемых сырых резин. Сырые резины выпускаются под номерами (10, 11, 14 и т. д.) в виде разнотол--щинных пластин, покрытых тальком (для предохранения от слипания), или в виде рулонов с тканевой прокладкой (из миткаля), которая также предохраняет резину от слипания.
Неформовая сырая резина получается путем вулканизации из резиновых смесей, изготавливаемых на основе синтетических каучуков или натурального. Основным вулканизирующим веществом является сера, но еще применяют селен и теллур. В зависимости от марок сырая резина используется для получения различных формовых изделий с определенными свойствами. Например, из сырой резины получают техническую листовую резину нескольких типов: кислотощелочестой--кую, теплостойкую, морозостойкую, пищевую и т. д. Морозостойкая резина сохраняет свои свойства при температуре до --45 °C. Техническую листовую резину толщиной 3-4 мм применяют для изготовления уплотнительных прокладок во фланцевых соединениях трубопроводов, транспортирующих холодную воду, а резину с тканевой прокладкой (из синтетической ткани) - и при транспортировании горячей воды температурой до +100 °C.
Из сырых резин получают различные резиновые изделия - муфты, кольца, клапаны, различные прокладки и т. д., применяя следующие методы формования: прессование, экструзию и литье под давлением. Процесс прессования резиновых изделий проходит в вулканизационных гидравлических прессах под давлением 100-300 атм. и при температуре +140-160 °C.
При производстве мягкой мебели широко применяется пенорезина, представляющая собой материал на основе синтетического или натурального каучука. Для изготовления пенорезины используют латексную смесь, которую выдерживают 18-21 ч, вспенивают и вулканизируют с последующей сушкой. Пенорезину выпускают в виде листов или формованных элементов мебели. По показателям эластичности упругости, остаточной деформации пенорезина является идеальным материалом для мягкой мебели. Пенорезина самовентилируется и охлаждается за счет прохождения воздуха через сообщающиеся поры. Для снижения веса мебельных элементов из пенорезны их делают с пустотами, но чтобы при этом сохранялась способность выдерживать значительные нагрузки, объем пустот не должен превышать 40 % объема всего элемента.
К резинам, предназначенным для изготовления отдельных групп изделий, предъявляют дополнительные требования, обеспечивающие выполнение изделиями их функционального назначения и надежность в работе. В настоящее время промышленность выпускает резину листовую трех марок: тепломорозокислотощелочестойкую (ТМКЩ); ограни--ченномаслобензостойкую (ОМБ); повышенномаслобензо--стойкую (ПМБ), которые в свою очередь подразделяются по твердости применяемой резины: мягкая (М) для работы при температурах от-45 °C до +90 °C; средней твердости (С) - при температурах от --60 °C до +80 °C, повышенной твердости (П) - при температурах от --60 °C до +80 °C.
6. Герметики
Герметики (герметизирующие составы) применяются практически повсеместно - в строительстве, в системе ЖКХ, машиностроении, мебельном производстве, в быту, при различных ремонтных работах. Герметики представляют собой полимерные композиции в виде паст, замазок или жидкостей, которые после нанесения на поверхность сразу или спустя некоторое время густеют в результате вулканизации полимерной основы.
Для приготовления герметиков применяют жидкие синтетические каучуки и специальные добавки. Промышленностью выпускаются герметики разных видов: строительные фасадные, шовно--тиоколовые и акрилатные, строительные каучукосиликоновые, акриловые. В стекольных работах для герметизации стыков в основном применяют тиоколовые герметики 7--30М и УТ-31, которые вулканизируются при температуре от +18 °C до +30 °C. В системе ЖКХ широко применяется силиконовый герметик КЛТ-30 для уплотнения резьбовых соединений, работающих в интервале температур от --60 °C до +200 °C.
В последние годы в Россию завозится множество марок герметиков, производимых зарубежными фирмами: DAP, KVADRO, KIMTEC, KRASS.
По сравнению с другими аналогичными материалами герметики обладают влагостойкостью, газонепроницаемостью, долговечностью. Герметики на основе полиизобутилена используются для уплотнения наружных швов между элементами сборных крупнопанельных зданий. Герметики, так же как и резины, относятся к группе эластомеров.
Наиболее широко применяются тиоколовые герметики, для которых характерна универсальность. Промышленность России выпускает следующие марки тиоколовых герметиков:
1) У-30М. Поставляют комплектно в составе пасты--герме--тика черного цвета У-30, вулканизатора № 9 и ускорителя вулканизации - дифенилгуанидина, смешиваемых непосредственно перед употреблением в соотношении 100: 7: 0,35 массовых частей. Предназначен для герметизации металлических (кроме латунных, медных, серебряных) и других соединений, работающих в среде разбавленных кислот и щелочей, жидкого топлива и на воздухе во всех климатических условиях при температурах от --60 °C до + 130 °C;
2) УТ-31 - светло--серая паста У-31, вулканизатор № 9 и ускоритель вулканизации, применяется для герметизации металлических (кроме латунных, медных, серебряных) и других соединений, работающих на воздухе и в среде жидких топлив при температурах от --60 °C до +130 °C и до + 150 °C - кратковременно на воздухе; 3) 51-УТ-36А (с адгезивом) и 51-УТ-36Б (без адгезива) - темно--серая замазкообразная паста У-36, эпоксидная смола Э-40 (для 51-УТ-36Б) и двухромовый натр в качестве вулканизатора; применяются в приборостроении. Для герметизации различных соединений, швов, работающих при температурах от +200 °C до +300 °C, предназначены теплостойкие силоксановые герметики, изготавливаемые на основе жидких силоксановых каучуков. Марки силокса--новых герметиков следующие: эластосил 11-01, силпен. ВПТ-2Л, КЛ-4, КЛТ-30, КЛСЕ, ВГО-2, КЛВАЕ и др. Выпускаются также теплотопливостойкие герметики, изготавливаемые на основе фторсодержащих каучуков, следующих марок: ВГФ-1, ВГФ-2, 51-Г-1 и др.
Лекция № 13. Стекло. Декоративные материалы
1. Стекло: неорганическое и органическое
В различных отраслях промышленности, строительстве и других отраслях хозяйства применяются стекла неорганические и органические. Неорганическое стекло подразделяется на техническое, строительное и бытовое. В свою очередь строительное стекло делится на конструкционное, отделочное, звуко--и теплоизоляционное. По качеству поверхности стекло бывает полированное и неполированное, цветное и бесцветное. По способу упрочнения - обычное, отожженное, закаленное и упрочненное химическим или другим способом. По профилю выпускают стекло плоское, волнистое, гнутое и профильное.
Стекло неорганическое строительное нашло широкое применение в строительстве: для остекления световых проемов в стенах, фонарей (в крышах различных зданий).
Неорганическое стекло получают при остывании расплава, содержащего чистый кварцевый песок (кремнезем), сульфат натрия и известняк.
Наибольшее применение для остекления оконных и дверных блоков, перегородок получило стекло оконное листовое 1 и 2 сортов. Плотность этого стекла 2000-2600 кг/м 3, све--топропускание - 84-87 %, теплопроводность низкая. Промышленность выпускает также стекло листовое узорчатое 1 и 2 сортов, бесцветное и цветное с рельефным узором; стекло листовое термически полированное, стекло цветное листовое (красного, синего, зеленого, желтого цветов), гладкое, цветное и бесцветное; с гладкой, рифленой или узорчатой поверхностью; неармированное и армированное стальной сеткой (выпускается 3 типов: швеллерное профильное; коробчатое профильное - с одним или двумя швами; ребристое профильное); стекло листовое, армированное металлической сеткой, - бесцветное и цветное, гладкое и рифленое, узорчатое.
Органическое стекло - продукт ненасыщенных полиэфирных смол, прозрачный полимер. Подразделяется на техническое, конструкционное, листовое, светотехническое и часовое. Техническое органическое стекло - пластифицированный и непластифицированный полимер (сополимер) метилового эфира метакриловой кислоты, широко применяемый в различных отраслях промышленности и хозяйства вообще. Стандартом предусмотрены три марки стекла ТОСП - стекло техническое органическое пластифицированное; ТОСН - стекло техническое органическое непла--стифицированное; ТОСС - стекло техническое органическое сополимерное. Физико--механические свойства технического органического стекла: температура размягчения (в зависимости от толщины) - 92--130 °C, ударная вязкость - 6-9 кДж/м 2 (6-9 кгс - плотность при 20 °C), прозрачность (при толщине до 30 мм) - 85-88 %, усадка перегрева при 40 °C в течение 1 ч - 3,5-4 %, разрушающее напряжение при растяжении - 60-80 МПа (600-800 кгс/см 2), относительное удлинение при разрыве - 2-2,5 %.
Конструкционное органическое стекло выпускается трех марок: СОЛ - стекло органическое пластифицированное; СТ-1 - стекло органическое непластифицированное и 2-55 - стекло сополимерное. Эти марки органического стекла применяются в качестве конструкционного материала в приборо--и агрегатостроении.
2. Ситаллы, металлические стекла
Ситаллы (стеклокерамика) - стеклокерамические материалы на основе стекла, отличающиеся от последнего кристаллической структурой, подобной керамической, но с более мелкими (от долей до 1-2 мкм) кристаллами и более плотной их упаковкой, исключающей какую--либо пористость материала. Ситаллы изготовляют путем плавления стекольной шихты специальных составов с добавкой кристаллизации, охлаждения расплава до пластичного состояния и формования из него изделий методами стекольной технологии (прессованием, выдуванием, вытягиванием). Отформованные изделия подвергают специальной термической обработке для образования мелкокристаллической плотной структуры, характерной для ситаллов. Ситаллы по химическому составу подразделяют на следующие группы: СТЛ - сподуменовые; СТМ - кордиеритовые; СТБ - борнобариевые и борно--свинцовые, высококремнистые, фотоситалы. Ситаллы марки СТЛ имеют в своем составе литий, марки СТМ - магний. Ситаллы могут быть прозрачные, непрозрачные, белые, кремовые и цветные. По свойствам ситаллы делятся на: химически стойкие, износостойкие, оптические, электроизоляционные и теплостойкие. Химически стойкие и износостойкие ситаллы применяют для изготовления дымоходов, плунжеров, деталей химических насосов, реакторов и химической аппаратуры, где необходимы высокая теплостойкость и газожидкостная непроницаемость. При изготовлении синтетических волокон износостойкие ситаллы используют для ните--проводов и некоторых других деталей текстильных машин; кроме того, из них изготовляют приборы для измерения длин и углов различных изделий. Оптические ситаллы с ТКЛР (тепловая стойкость), близким к нулю, применяются прежде всего для изготовления астрономических зеркал и лазеров.
Электроизоляционные ситаллы благодаря своим электрическим свойствам, особенно при высоких температурах, используются для изготовления радиотехнических и электронных приборов и установок, различных приспособлений, работающих в условиях переменной температуры и влажности, а также изоляторов, работающих в режиме высокого напряжения. Теплостойкие ситаллы с ТЛКР, близким к нулю, применяются в качестве конструкционных материалов для устройств, работающих при переменных тепловых нагрузках, а также в производстве теплообменников.
Металлические стекла имеют такую же структуру, как у си--таллов, только покрытие металлическое. К основному составу при выработке таких стекол добавляются определенные соединения металлов (которые зависят от назначения и области применения металлических стекол), из которых при заданной температуре в специальной атмосфере (среде плавки) на поверхности стекломассы выделяется металлическое покрытие. Металлические стекла находят применение прежде всего в электротехнике.
Металлические стекла изготовляют и методом горячего напыления на стеклокристаллический материал (например, нанесение слоя алюминия толщиной 0,5-1 мм). Такое покрытие выдерживает быстрое изменение температуры, несмотря на значительное различие в ТЛКР алюминия и сте--клокристаллического материала.
3. Полиморфные модификации углерода и нитрида бора
В различных отраслях промышленности и прежде всего в машиностроении широко применяется кубический нитрил бора (КНБ) - кристаллическая кубическая модификация соединения бора с азотом, синтезируемая по технологии, свойственной производству синтетических алмазов. За счет варьирования технологическими факторами выпускают различные виды кубического нитрида бора - эльбор, эльбор--Р, кубо--нит, исмит, гексанит и др. Кубический нитрид бора и его разновидности измеряются каратами, их классификация по зернистости также близка к нормам, принятым для обработки сталей и сплавов на основе железа. В последние годы получены поликристаллы КНБ размером до 12 мм.
Широко применяются в машиностроении сверхтвердые материалы, полученные на основе нитрида бора - эльбор--Р и исмит. По режущим свойствам и износостойкости они в несколько раз превосходят металлокерамические твердые сплавы и минералокерамику. Резцы из эльбора--Р изготовляют двух видов: сборные, в которых заготовки из эльбора крепятся в переходной вставке, устанавливаемой в корпусе резца, и цельные, где заготовки (эльбора--Р) крепятся непосредственно в тело инструмента путем заливки их жидким (расплавленным) металлом. Применение эльбора--Р позволяет обеспечить высокую производительность и чистоту обрабатываемой поверхности. Наиболее эффективно применение эльбора--Р при обработке закаленных сталей точением вместо шлифования и при растачивании отверстий.
Сверхтвердый материал исмит, полученный на основе нитрида бора (модификация), обладает более высокой стойкостью, чем твердые сплавы, при точении закаленных сталей Размеры поликристаллов исмита позволяют оснащать ими проходные и расточные резцы, фрезы и другой лезвийный инструмент.
Кубической кристаллической модификацией углерода являются алмазы - природные и синтетические, которые нерастворимы в кислотах и щелочах, обладают высокой твердостью, используются для изготовления резцов, стеклорезов, наконечников для измерения твердости металлов и др.
4. Композиционные материалы
В различных отраслях хозяйства страны, в том числе и в строительстве, широко используются различные композиционные материалы на основе измельченной древесины: древесно--стружечные, древесно--волокнистые плиты, арболит, фибролит, плиты цементно--стружечные и древесно--кле--евые композиции.
Плиты древесно--стружечные изготавливают методом горячего прессования древесных частиц, смешанных со связующим. Такие плиты широко применяются в строительстве, в мебельном производстве. Размеры плит: длина в пределах от 1830 мм до 5680 мм, ширина - от 1220 мм до 2500 мм, толщина - от 8 мм до 28 мм.
По физико--механическим показателям древесно--стружечные плиты подразделяются на марки: П--А и П--Б - по качеству поверхности с обычной и мелкоструктурной поверхностью; по степени обработки поверхности - шлифованные и нешлифованные; по гидрофобным свойствам - с обычной и повышенной водостойкостью; имеют один недостаток - невысокая прочность на растяжение перпендикулярно пластам.
Древесно--волокнистые плиты изготавливают, применяя отходы переработки древесины хвойных и лиственных пород. В зависимости от плотности и прочности на изгиб плиты древесно--волокнистые классифицируют на мягкие (М-4, М-12, М-20), полутвердые (ПТ-100), твердые (Т-350, Т-400), сверхтвердые - (СТ-500). По техническим свойствам они изготавливаются био-, огне-, влагостойкими и звукопоглощающими. ДВП мягкая применяется в строительстве как материал для термо--и звукоизоляции стен, перегородок, потолков, междуэтажных перекрытий и т. д. ДВП полутвердые используют для обшивки стен и потолков жилых и общественных помещений. ДВП твердые и сверхтвердые широко применяются в мебельном производстве (для задних стенок корпусной мебели, нижние части ящиков и т. д.), в строительстве - для облицовывания стен, потолков и т. д. Такие плиты выпускаются толщиной 2,5--10 мм. ДВП средней твердости выпускаются в больших объемах за рубежом под маркой «плиты МДФ - Medium Density Firebrands» толщиной от 10 до 30 мм, для изготовления современной мебели как заменитель фанеры и натуральной древесины.
В последние годы в строительстве широко применяются различные изделия из арболита, который изготавливается с применением дробленых отходов деревообработки, связующего - портландцемента, добавок - хлористого кальция жидкого стекла, серно--кислого алюминия и извести.
Арболит применяется для производства стеновых панелей, различных теплоизоляционных изделий.
В качестве ограждающих конструкций при строительстве в сельской местности деревянных домов, ферм и различных построек часто применяются плиты цементно--стружечные, которые изготавливают, используя древесную стружку, портландцемент и химические добавки. Плиты выпускают следующих размеров: 1200? 3600 мм, толщиной 8--25 мм; их плотность - в пределах 1100-1400 кг/м 3, предел прочности при изгибе - 9--12 МПа.
Для изготовления формованной тары повсеместно используются древесно--клеевые композиции, состоящие из измельченной древесины и связующего - мочевиноформаль--дегидных смол с добавкой - парафином.
5. Синтетические облицовочные материалы
В последнее десятилетие для отделки интерьеров офисов, различных помещений и наружных работ широко применяются разнообразные синтетические облицовочные материалы, которые заменили дефицитный строганый шпон Причем они намного упростили технологию отделки, особенно такие облицовочные материалы, как пленки декоративные на клеевой основе и основе полимерных материалов (в сочетании). В настоящее время используется технология получения пленочных материалов с имитацией «реальных» пор. Такая пленка марки ПДСО и ПДО (без клеевого слоя) применяется для облицовывания мебели, внутренней отделки автомобилей. Пленка ПДО--А-020 используется в авиационной промышленности для отделки салонов самолетов.
Пленки на основе полимерных материалов изготовляют из композиций поливинилхлорида, полипропилена, полиэфира и др.
Вышеуказанные пленки ПДО и ПДСО являются поливи--нилхлоридными (импортные тоже).
В последнее время для облицовывания различных изделий из дерева (дверные полотна, мебель), а также стен и панелей, элементов интерьера стали применять поливинилфторидные пленки (ПВФ), имеющие хорошие эксплуатационные свойства. Для указанных целей, кроме пленки ПВФ, применяются самоприклеивающиеся пленки на основе сополимера ви--нилхлорида и винилацетата марки ВА, которые производятся фирмой «Скоч». Эти пленки выпускаются прозрачными, окрашенными, с эффектом металлизации.
Большим спросом у различных потребителей пользуются защитные липкие ленты на полимерной основе типов ЛТ-38, ЛТ-50, которые применяются для защиты кромочного материала от потеков лакокрасочного материала при отделке щитов. Липкие ленты представляют собой полимерную основу - пленку толщиной 35-50 мкм, на которую нанесен тонкий липкий слой.
При изготовлении столешниц, подоконников, дверей, санитарного оборудования часто применяются ламинаты (разновидности синтетических облицовочных материалов). Ла--минатыпредставляют собой термоупрочненный слоистый материал, полученный прессованием бумаги при высокой температуре.
Бумажная основа ламината пропитывается фенольной смолой, а наружные слои - меламиновой. Ламинаты устойчивы к износу, совместимы с продуктами питания, легко чистятся, не горючи, влагоустойчивы.
Для обивки мебели, отделки различных видов транспорта широко применяются искусственные кожи: винилискожа обивочная, пористо--монолитная винилискожа обивочная, кожа искусственная пористо--монолитная на трикотажной основе и др. Искусственные кожи пользуются большим спросом и у производителей обуви.
В последние годы стали применяться для отделки жилых и общественных интерьеров новые материалы - весьма оригинальные, с разнообразным дизайном искусственные камни, представляющие собой минерало--акриловые плиты. Они твердые, как натуральные камни, имеют разную структуру, устойчивы к истиранию, сравнительно легко обрабатываются. Для облицовывания фасадных поверхностей мебели для спальни, кабинетной, детской мебели применяются еще пористые монолитные пленки, имеющие верхнюю монолитную поверхность и нижний пористый слой (толщина ее 1,2-1,5 мм, ширина - 600--1360 мм, длина рулона - 30-50 м).
6. Декоративные бумажно--слоистые пластики
Декоративные бумажно--слоистые пластики применяются уже в течение многих лет для отделки жилых, общественных и производственных помещений, салонов различных транспортных средств, для облицовывания рабочих поверхностей кухонной, медицинской и торговой мебели. Пластики этого вида имеют хорошие физико--механические и декоративные свойства, хорошо обрабатываются, стойки к действию высоких температур, к ударам и истиранию, к действию воды, пара, а также пищевых и бытовых жидкостей (чая, кофе, водки, этилового спирта и т. д.). Плотность пластиков ДБС не менее 1,4 г/см 3, разрушающее напряжение при растяжении - не менее 63,6 МПа, при изгибе - 98 МПа (для марки А - 17,6 МПа), водопоглощение не более 4 %, теплостойкость - от + 120 до + 140 °C. Пластики ДБС подразделяются на марки А, Б, В - в зависимости от качества лицевой поверхности и физико--механических показателей. Пластик марки А применяют в условиях эксплуатации, требующих повышенной износостойкости, например для крышек столов. Пластик марки Б используют при менее жестких условиях эксплуатации - для отделки вертикальных поверхностей. Пластик марки В применяется в качестве поделочного материала.
Декоративные бумажно--слоистые пластики (ДБСП) представляют собой листовой материал из спрессованных бумаг, пропитанных термореактивными смолами. При изготовлении ДБСП на декоративный слой бумаги (одноцветной или с рисунком) накладывают защитный слой, пропитанный ме--ламиноформальдегидной смолой. Для изготовления защитной пленки применяют высокооблагороженную целлюлозу из древесины лиственных пород или хлопка.
ДБСП выпускают одноцветным, различных цветных печатных рисунков, имитирующих древесину ценных пород, камень, мрамор, ткань, кожу и т. д. По назначению эти пластики делят на конструкционные, облицовочные и формуемые. Конструкционные ДБСП имеют толщину более 1 мм, используются в различных конструкциях. Облицовочные пластики более эластичны и имеют толщину до 1 мм, применяются как отделочный материал. По условиям эксплуатации поверхности мебельных и других видов щитов облицовочные ДБСП подразделяются на две основные группы.
I группа - рабочие и лицевые поверхности торговой и другой мебели, подвергающиеся непосредственному воздействию внешней среды;
II группа пластиков ДБС идет на лицевые поверхности изделий кухонной, детской и другой мебели, не подвергающиеся постоянному воздействию влаги, теплоты и других факторов.
Формуемые ДБСП под действием теплоты и давления могут изменять свою форму. Они применяются для облицовывания фасонных деталей со сложными округленными формами или углами. Одним цельным листом формуемого пластика ДБС облицовывают пласть и кромку детали - такая технология называется постформингом.
Пластики ДБС выпускают длиной 400--3000 мм, шириной 400--1600 мм и толщиной 1,0; 1,3; 1,6; 2,0; 2,5 и 3,0 мм. Обратная сторона пластика толщиной 1,0; 1,3 и 1,6 мм должна быть шероховатой. Для приклеивания пластиков ДБС применяют различные клеи - ПВА, бустилат, эпоксидные, а также мастики КН-2.
Лекция № 14. Изоляционные материалы
1. Классификация теплоизоляционных материалов
При строительстве промышленных объектов, гражданских сооружений сопутствующие коммуникации тепловодоснаб--жения защищают от воздействия отрицательных температур с помощью теплоизоляционных материалов различного вида. Разделяют теплоизоляционные материалы на:
1) строительные;
2) полимерные.
Строительные теплоизоляционные материалы по структуре бывают:
1) волокнистые;
2) ячеистые;
3) зернистые.
А в зависимости от исходного сырья:
1) неорганические (пеностекло, легкие бетоны с наполнителями, минеральная вата);
2) органические (пенопласты, сотопласты, фибролит древесно--волокнистые и торфяные плиты и др.);
3) полимерные.
По форме и внешнему виду теплоизоляционные материалы подразделяют на:
1) штучные (плиты, полуцилиндры, блоки, кирпич легковесный и др.);
2) рулонные и шнуровые (жгуты, маты, шнуры);
3) рыхлые и сыпучие (стеклянная и минеральная вата, перлитовый песок и др.).
По жесткости теплоизоляционные материалы подразделяются на:
1) твердые, повышенной жесткости;
2) жесткие;
3) полужесткие;
4) мягкие.
По теплопроводности они делятся на три класса:
1) А - низкой теплопроводности;
2) Б - средней;
3) В - повышенной.
Основной показатель теплоизоляционных материалов - коэффициент теплопроводности, который для большинства из них находится в пределах 0,02--0,2 Вт/м? °С.
По возгораемости теплоизоляционные материалы выпускают:
1) несгораемые;
2) трудносгораемые;
3) сгораемые.
Полимерные теплоизоляционные материалы подразделяют на:
1) жесткие, с пределом прочности на сжатие 5 сж = 0,15 Мпа;
2) полужесткие;
3) эластичные с 5 сж = 0,01 МПа.
Полимерные теплоизоляционные материалы строительного назначения прочны, имеют широкий диапазон деформационных характеристик, химически и водостойкие.
2. Виды тепло--и звукоизоляционных материалов
Для теплоизоляции трубопроводов диаметром 15-25 мм и соответствующей запорной арматуры широко применяется полотно холстопрошивное из отходов стеклянного волокна марки ХПС--Т-5,0 и ХПС--Т-2,5, оно рассчитано на максимальную температуру в +450 °C, имеет среднюю плотность 400-500 кг/м 3, теплопроводность - 0,053 Вт/(м ? °С), рассчитаны на температуры до + 300 °C, трудносгораемое.
Маты из стеклянного штапельного волокна на синтетическом связующем марки МТ-35 предназначены для теплоизоляции трубопроводов диаметром от 57 до 426 мм, имеют среднюю плотность 60 кг/м 3, теплопроводность 0,047 Вт/(м ? °С), максимальная температура применения +180 °C, трудносгораемые.
Шнур теплоизоляционный из минеральной ваты марки 200 применяется для изоляции трубопроводов диаметром до 108 мм включительно и запорной арматуры соответственно, имеет плотность 220 кг/м 3, теплопроводность 0,056 Вт/(м ? °С), максимальная температура применения от +150 °C до +600 °C, в оболочке из стеклоткани несгораемый, в остальных случаях - трудносгораемый.
В последние годы в России широко применяются теплоизоляционные материалы из стеклянного штапельного волокна URSA. Изделия URSA применяются при строительстве всех типов зданий, для изоляции оборудования и трубопроводов, средств транспорта. Выпускаются в виде рулонов, плит плотностью 13-75 кг/м 3 и матов плотностью 10-25 кг/м 3, толщиной 40--140 мм.
В настоящее время большим спросом у различных потребителей пользуется теплоизоляционный материал пенофил российского производства. Этот материал состоит из вспененного полиэтилена и покрытия из полированной алюминиевой фольги, имеет низкий коэффициент теплопроводности, высокое сопротивление диффузии водяного пара; применяется для утепления стен, полов, для изоляции трубопроводов, емкостей и запорной арматуры в системах водоснабжения и отопления и др.
Российским ОАО «Кинекс» по итальянской технологии выпускается экструдированный пенополистирол «пено--плекс» - пенопласт с закрытой однородной ячеистой структурой.
По теплоизоляционным свойствам этот материал превосходит керамзитобетон и пенобетон в 5--10 раз, стекловату и минераловолокнистые плиты - в 2-3 раза, имеет плотность от 30 до 45 кг/м 3, плиты имеют ширину 600 мм и длину от 1 до 4,5 м и толщину от 30 до 100 мм; применяется для теплоизоляции крыш, полов, подвалов жилых и общественных зданий, бассейнов и др. Для звукоизоляции используются эластичные поливинилхлоридные пенопласты марок ПВХ--Э, винипор, Д, М и С, которые имеют открыто ячеистую пористость. Полужесткие пенопласт и винипор ПЖ используются для изготовления профильных изделий со звукопоглощающими свойствами.
Звукоизоляционными материалами являются также: пенопласт ПЭ-2, пенопласты ПЭ-5 и ПЭ-7; они же используются и для теплоизоляции. Звукопоглощающими и звукоизоляционными строительными материалами и изделиями могут служить те же материалы, которые применяются для теплоизоляции: стекловата, минеральная вата, пенопласты различных видов и марок.
3. Гидроизоляционные материалы
В строительстве, системе ЖКХ широко применяются различные гидроизоляционные материалы, которые предназначены для защиты строительных конструкций, зданий и сооружений от вредного воздействия воды и химически агрессивных жидкостей - щелочей, кислот и др.
По назначению гидроизоляционные материалы подразделяются на антифильтрационные, антикоррозионные (металлические), лакокрасочные, стеклоэмали, оксидные пленки, резиновые, пластмассовые и битумные смазки и герметизирующие (пасты, замазки или растворы). Гидроизоляционные материалы по виду основного материала бывают: асфальтовые (битум, асфальтовая мастика), минеральные (цементы, магнезиальные вяжущие, доломит, известково--нефелиновые вяжущие и др.) и металлические.
Подобные документы
Положительные и отрицательные свойства древесины, стандарты на виды лесопродукции, допустимые пороки, влажность и гигроскопичность, склонность древесины к гниению и возгоранию. Виды керамических изделий по назначению, требования к сырью для производства.
контрольная работа [914,5 K], добавлен 16.04.2010Алюминий и его сплавы: деформируемые, нормальной, высокой прочности и жаропрочные, сплавы для ковки и штамповки. Особенности термообработки сплавов алюминия с магнием (магналин), спекание с цинком и кремнием (цинковый силумин). Медь и её сплавы.
реферат [14,2 K], добавлен 28.12.2009Главная особенность дерева. Виды древесных пород, разновидности пихты. Строение древесного ствола. Пороки древесины: сучки, пятнистость. Загнивание и возгорание древесины, способы защиты. Особенность деревянных построек. Деревянная архитектура Томска.
контрольная работа [3,5 M], добавлен 19.01.2012Специальные виды цементов, их особые свойства и сферы применения. Физические, механические и технологические свойства древесины. Виды бетонов и их составляющие. Бетон и железобетон: их качества, технологические схемы производства и область применения.
контрольная работа [50,0 K], добавлен 22.02.2012Состав, строение, свойства строительных металлов. Поведение металлических строительных конструкций при пожаре. Методы огнезащиты металлических конструкций. Применение низколегированных сталей. Расчет предела огнестойкости железобетонной панели перекрытия.
курсовая работа [94,9 K], добавлен 30.10.2014Естественные и искусственные строительные материалы. Материалы из древесины, сохранившие ее природную физическую структуру и химический состав (лесоматериалы), их разделение на обработанные и необработанные. Основные свойства и пороки древесины.
курсовая работа [8,9 M], добавлен 16.12.2010Сведения о древесине: достоинства, недостатки, качество, область применения. Физические и механические свойства древесины, методы повышения ее долговечности. Свойства модифицированной древесины; полимеры-модификаторы. Строительные изделия из древесины.
реферат [202,9 K], добавлен 01.05.2017Общие сведения о строительных материалах. Строение и химический состав бетона, его физические и механические свойства. Наиболее известные виды кирпича, его визуальные и геометрические характеристики. Влажность древесины и свойства, связанные с ней.
презентация [3,2 M], добавлен 19.02.2014Классификация материалов, предназначенных для повышения архитектурно-декоративных и эксплуатационных характеристик зданий и сооружений, защиты конструкций от атмосферных воздействий. Отделочные материалы для фасадов зданий и внутренней отделки помещений.
реферат [213,0 K], добавлен 01.05.2017Пиломатериалы из древесины хвойных пород, отборного сорта. Изготовление клееной массивной древесины. Типы столярных плит. Получение и применение фенолоформальдегидных смол. Характеристика гитары как изделия из древесины. Свойства лакокрасочных материалов.
контрольная работа [396,2 K], добавлен 17.06.2009