Правила обследования несущих строительных конструкций зданий и сооружений

Подготовка и проведение обследования зданий и сооружений, оценка их технического состояния. Состав и характер проводимых предприятием работ, наличие у него Государственной лицензии. Проведение контрольных расчетов и оформление результатов обследования.

Рубрика Строительство и архитектура
Вид книга
Язык русский
Дата добавления 15.06.2009
Размер файла 77,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

8.6.8 В связи с отсутствием данных об изменении прочности древесины во времени расчетные сопротивления древесины конструкции в целом или ее частей, не пораженных гнилью, принимают по СНиП II-25 как для новой древесины. При поверхностном разрушении древесины гнилью размеры сечения деревянных элементов уменьшают на толщину слоя, пораженного гнилью, а кроме того, если среда влажная и древесина поражена мицелием, то при расчете следует ввести коэффициент 0,8.

9 НАГРУЗКИ И ВОЗДЕЙСТВИЯ

9.1 На основании имеющейся проектно-технической документации или технического задания на обследование определяют нормативные значения постоянных и временных нагрузок, действующих на конструкции:

от веса стационарного оборудования;

от веса складируемых материалов;

от мостовых, тельферных кранов, напольного транспорта и другого подъемного оборудования;

от веса ремонтных материалов и перемещаемого оборудования;

от временных равномерно распределенных нагрузок, указанных в таблице 3 СНиП 2.01.07;

от ветра;

от снега.

Коэффициенты надежности по этим нагрузкам принимают в соответствии со СНиП 2.01.07.

9.2 При обследовании объекта определяют следующие фактические нагрузки:

от собственного веса несущих и ограждающих конструкций;

от веса полов, перегородок и внутренних стен, опирающихся на несущие конструкции;

от веса технологической пыли, скапливающейся на покрытии и конструкциях.

Нагрузки от собственного веса сборных несущих конструкций определяют по чертежам и каталогам, действовавшим в период строительства обследуемого объекта, а при отсутствии чертежей -- по результатам обмеров, полученным при обследовании.

Вес монолитных железобетонных несущих конструкций определяют по результатам обмеров, полученным при обследовании.

Собственный вес металлических конструкций можно определять по результатам обмеров основных элементов. К основным элементам относятся:

в фермах -- пояса и стержни решетки;

в балках и сплошностенчатых колоннах -- пояса и стенка;

в сквозных колоннах -- пояса;

в связях -- пояса и элементы решетки.

Полный вес конструкций определяют умножением собственного веса основных элементов на строительный коэффициент веса, принимаемый по таблице В.1 приложения В.

9.3 Нагрузки от стационарного оборудования определяют на основании анализа технической документации, уточненной результатами натурного обследования, составляют схему расположения стационарного оборудования с привязкой к разбивочным осям здания и указанием способа опирания на конструкции. Фактический вес оборудования принимается по паспортам.

В необходимых случаях на схему дополнительно наносят расположение коммуникаций с указанием их веса и мест крепления к конструкциям.

9.4 Постоянные нагрузки на конструкциях покрытий и перекрытий (звуко- и теплоизоляционные материалы, стяжки, гидроизоляция кровель, покрытие полов) определяют по результатам вскрытий с определением плотности и толщины слоев или по результатам взвешиваний материалов на вырезанных участках площадью от 0,04 до 0,25 м2, при этом число вскрытий должно быть не менее трех на этаж и не менее шести -- на 500 м2 площади.

По результатам вскрытий вычисляется нормативная нагрузка

,

где qт -- среднее арифметическое значение нагрузки, полученной по всем вскрытым участкам;

t -- коэффициент Стьюдента (см. таблицу Б.1 приложения Б);

n -- число вскрытых участков;

S-- среднее квадратическое отклонение результатов взвешивания;

,

где qi -- вес i-го образца.

Коэффициент надежности по нагрузкам от собственного веса всех типов конструкций принимается равным 1,1.

9.5 Степень агрессивности среды определяют по СНиП 2.03.11 и пособиям.

9.6 При обследовании зданий и сооружений, эксплуатирующихся в сейсмических районах, целесообразно проводить микродинамические испытания по определению периода собственных колебаний, соответствующих ведущим формам, а также относительных перемещений рассматриваемых точек.

При проведении микродинамических испытаний используют:

вибродинамический метод с применением сейсмовибратрра с заданными параметрами нагружения, устанавливаемого или непосредственно на конструкции здания или на грунт;

импульсный метод с помощью удара по несущим конструкциям пластичным грузом массой 30--50 кг.

10 ПОВЕРОЧНЫЕ РАСЧЕТЫ КОНСТРУКЦИЙ И ИХ ЭЛЕМЕНТОВ

10.1 Расчет зданий и сооружений и определение усилий в конструктивных элементах от эксплуатационных нагрузок производятся на основе методов строительной механики и сопротивления материалов.

Расчеты могут осуществляться инженерными методами на ПЭВМ с использованием сертифицированных программ.

Расчеты выполняют на основании и с учетом уточненных обследованием:

геометрических параметров здания и его конструктивных элементов -- пролетов, высот, размеров расчетных сечений несущих конструкций;

фактических опираний и сопряжений несущих конструкций, их реальной расчетной схемы;

расчетных сопротивлений материалов, из которых выполнены конструкции;

дефектов и повреждений, влияющих на несущую способность конструкций;

фактических нагрузок, воздействий и условий эксплуатации здания или сооружения.

10.2 Реальная расчетная схема определяется по результатам обследования. Она должна отражать:

условия опирания или соединения с другими смежными строительными конструкциями, деформативность опорных креплений;

геометрические размеры сечений, величины пролетов, эксцентриситетов;

вид и характер фактических (или требуемых) нагрузок, точки их приложения или распределение по конструктивным элементам;

повреждения и дефекты конструкций.

При определении реальной расчетной схемы работы железобетонных конструкций необходимо, наряду с их геометрическими параметрами, учитывать систему фактического армирования и способы их сопряжения между собой.

10.3 Расчет несущей способности бетонных и железобетонных конструкций производят в соответствии со СНиП 2.03.01.

10.4 Расчет несущей способности стальных конструкций производят в соответствии со СНиП II-23.

10.5 Расчет несущей способности каменных и армокаменных конструкций производят в соответствии со СНиП II-22.

10.6 Расчет несущей способности деревянных конструкций производят в соответствии со СНиП II-25.

10.7 Расчет конструкций зданий и сооружений, эксплуатирующихся в сейсмических районах, производят в соответствии со СНиП II-7.

10.8 На основании проведенного расчета производят:

определение усилий в конструкциях от эксплуатационных нагрузок и воздействий, в том числе и сейсмических;

определение несущей способности этих конструкций.

Сопоставление этих величин показывает степень реальной загруженности конструкции по сравнению с ее несущей способностью.

10.9 На основании проведенного обследования несущих строительных конструкций, выполнения поверочных расчетов и анализа их результатов делается вывод о категории технического состояния этих конструкций и может быть принято решение об их дальнейшей эксплуатации.

В случае если усилия в конструкции превышают ее несущую способность, то состояние такой конструкции должно быть признано недопустимым или аварийным.

11 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ОБСЛЕДОВАНИЯ

11.1 По результатам проведенного обследования составляется акт, заключение или отчет о техническом состоянии конструкций здания или сооружения, в котором приводятся сведения, полученные из проектной и исполнительной документации, и материалы, характеризующие особенности эксплуатации конструкций, вызвавшие необходимость проведения обследования.

11.2 В итоговом документе по результатам обследования приводятся планы, разрезы, ведомости дефектов и повреждений или схема дефектов и повреждений с фотографиями наиболее характерных из них; схемы расположения трещин в железобетонных и каменных конструкциях и данные об их раскрытии; значения всех контролируемых признаков, определение которых предусматривалось техническим заданием или программой проведения обследования; результаты поверочных расчетов, если их проведение предусматривалось программой обследования; оценка состояния конструкций с рекомендуемыми мероприятиями по усилению конструкций, устранению дефектов и повреждений, а также причин их появления.

Данный перечень может быть дополнен в зависимости от состояния конструкций, причин и задач обследования.

11.3 Заключение или отчет подписывается лицами, проводившими обследование, руководством структурного подразделения и утверждается руководителем организации, проводившей работу, или уполномоченным на это лицом.

12 ТЕХНИКА БЕЗОПАСНОСТИ ПРИ ПРОВЕДЕНИИ ОБСЛЕДОВАНИЯ КОНСТРУКЦИЙ

12.1 Перед обследованием конструкций намечается план безопасного ведения работ как с временным прекращением эксплуатации, так и без прекращения эксплуатации здания или отдельных его участков. План должен предусматривать мероприятия, исключающие возможность обрушения конструкций, поражения людей газом, током, паром, огнем, наезда транспорта и т.п.

12.2 Для обеспечения непосредственного доступа к конструкциям могут быть использованы имеющиеся в здании средства: мостовые и подвесные краны, переходные площадки и галереи, технологическое оборудование и т.п. При отсутствии таковых устраивают подмости, леса и площадки, настилы, люльки, приставные лестницы, стремянки.

12.3 При производстве работ по обследованию конструкций работники, проводящие обследование, обязаны соблюдать требования СНиП 12-03-2001 и СНиП 12-04-2002 по технике безопасности и безопасности труда в строительстве.

12.4 Лица, проводящие натурные обследования, должны в соответствии с ГОСТ 12.0.004 пройти вводный (общий) инструктаж в отделе охраны труда предприятия, а также инструктаж непосредственно на объекте, где будет проводиться обследование, проводимый уполномоченным лицом. Проведение инструктажа фиксируется в специальном журнале с росписью лица, проводившего инструктаж, и работника, прошедшего инструктаж.

12.5 Лица, проводящие обследование, должны использовать необходимые защитные приспособления и спецодежду:

защитные каски по ГОСТ 12.4.087;

предохранительные пояса по ТУ 36-2103 с указанием места закрепления карабина и страховочных канатов по ГОСТ 12.4.107 (при необходимости);

спецодежду, которая не должна иметь болтающихся и свисающих частей во избежание зацепления с движущимися частями механизмов и токопроводящими элементами;

аппараты и приспособления для защиты глаз и дыхательных путей, применяющиеся на данном предприятии в соответствии с имеющимися вредными факторами: маски, очки, респираторы, противогазы, кислородные изолирующие приборы, вентилируемые скафандры и т.д.

12.6 Все работы по осмотру, обмерам и испытаниям конструкций на высоте более трех метров, как правило, проводятся с подмостей. Выполнение этих работ без подмостей допускается только при невозможности их устройства, с обязательным применением предохранительных приспособлений (натянутые стальные канаты, страховочные сетки и т.д.) и монтажных поясов.

12.7 Ежедневно перед началом работ необходимо провести проверку состояния лесов, подмостей, ограждений, люлек, лестниц; в случае их неисправности должны быть приняты необходимые меры по ремонту.

ПРИЛОЖЕНИЕ А (обязательное)

ПЕРЕЧЕНЬ НОРМАТИВНЫХ ДОКУМЕНТОВ, НА КОТОРЫЕ ИМЕЮТСЯ ССЫЛКИ В СП

СНиП 2.01.07-85*

Нагрузки и воздействия

СНиП 2.03.01-84*

Бетонные и железобетонные конструкции

СНиП 2.03.11-85

Защита строительных конструкций от коррозии

СНиП 3.03.01-87

Несущие и ограждающие конструкции

СНиП II-7-81*

Строительство в сейсмических районах

СНиП II-22-81

Каменные и армокаменные конструкции

СНиП II-23-81*

Стальные конструкции

СНиП II-25-80

Деревянные конструкции

СНиП 12-03-2001

Безопасность труда в строительстве. Часть 1. Общие требования

СНиП 12-04-2002

Безопасность труда в строительстве. Часть 2. Строительное производство

ГОСТ 7565-81*

Чугун, сталь и сплавы. Метод отбора проб для химического состава

ГОСТ 22536.0-87

Сталь углеродистая и чугун нелегированный. Общие требования к методам анализа

ГОСТ 18895-97

Сталь. Метод фотоэлектрического спектрального анализа

ГОСТ 7564-97

Прокат. Общие правила отбора проб, заготовок и образцов для механических и технологических испытаний

ГОСТ 1497-84*

Металлы. Методы испытаний на растяжение

ГОСТ 1759.0-87

Болты, винты, шпильки и гайки. Технические условия

ГОСТ 6996-66*

Сварные соединения. Методы определения механических свойств

ГОСТ 8462-85

Материалы стеновые. Методы определения пределов прочности при сжатии и изгибе

ГОСТ 5802-86

Растворы строительные. Методы испытаний

ГОСТ 16483.1-84

Древесина. Метод определения плотности

ГОСТ 16483.2-70*

Древесина. Методы определения условного предела прочности при местном смятии поперек волокон

ГОСТ 16483.3-84

Древесина. Метод определения предела прочности при статическом изгибе

ГОСТ 16483.5-73

Древесина. Методы определения предела прочности при скалывании вдоль волокон

ГОСТ 16483.7-71*

Древесина. Методы определения влажности

ГОСТ 16483.9-73*

Древесина. Методы определения модуля упругости при статическом изгибе

ГОСТ 16483.10-73*

Древесина. Методы определения предела прочности при сжатии вдоль волокон

ГОСТ 16483.11-72*

Древесина. Метод определения условного предела прочности при сжатии поперек волокон

ГОСТ 16483.12-72*

Древесина. Методы определения предела прочности при скалывании поперек волокон

ГОСТ 18610-82*

Древесина. Метод полигонных испытаний стойкости к загниванию

ГОСТ 20022.0-93

Защита древесины. Параметры защищенности

ГОСТ 28570-90

Бетоны. Методы определения прочности по образцам, отобранным из конструкций

ГОСТ 12.0.004-90

ССБТ. Организация обучения безопасности труда. Общие положения

ГОСТ 12.4.087-84

ССБТ. Строительство. Каски строительные. Технические условия

ГОСТ 12.4.107-82

ССБТ. Строительство. Канаты страховочные. Общие технические требования

ГОСТ 5382-91

Цементы и материалы цементного производства. Методы химического анализа

ГОСТ 12004-81*

Сталь арматурная. Методы испытаний на растяжение

ГОСТ 12730.0-78

Бетоны. Общие требования к методам определения плотности, влажности, водопоглощения, пористости и водонепроницаемости

ГОСТ 12730.1-78

Бетоны. Метод определения плотности

ГОСТ 12730.2-78

Бетоны. Метод определения влажности

ГОСТ 12730.3-78

Бетоны. Метод определения водопоглощения

ГОСТ 12730.4-78

Бетоны. Методы определения показателей пористости

ГОСТ 12730.5-84*

Бетоны. Методы определения водонепроницаемости

ГОСТ 23858-79

Соединения сварные стыковые и тавровые арматуры железобетонных конструкций. Ультразвуковые методы контроля качества. Правила приемки

ГОСТ 14098-91

Соединения сварные арматуры и закладных изделий железобетонных конструкций. Типы, конструкция и размеры

ГОСТ 16588-91

Пилопродукция и деревянные детали. Методы определения влажности

ГОСТ 22690-88

Бетоны. Определение прочности механическими методами неразрушающего контроля

ГОСТ 18105-86*

Бетоны. Правила контроля прочности

ГОСТ 17624-87

Бетоны. Ультразвуковой метод определения прочности

ГОСТ 17625-83

Конструкции и изделия железобетонные. Радиационный метод определения толщины защитного слоя бетона, размеров и расположения арматуры

ГОСТ 10060.0-95

Бетоны. Методы определения морозостойкости. Общие требования

ГОСТ 10060.1-95

Бетоны. Базовый метод определения морозостойкости

ГОСТ 10060.2-95

Бетоны. Ускоренные методы определения морозостойкости при многократном переменном замораживании и оттаивании

ГОСТ 10060.3-95

Бетоны. Дилатометрический метод определения морозостойкости

ГОСТ 10060.4-95

Бетоны. Структурно-механический метод ускоренного определения морозостойкости

ГОСТ 22904-93

Конструкции железобетонные. Магнитный метод определения толщины защитного слоя бетона и расположения арматуры

ГОСТ 10922-90

Арматурные и закладные изделия сварные, соединения сварные арматуры и закладных изделий железобетонных конструкций. Общие технические условия

ГОСТ 27809-95

Чугун и сталь. Методы спектрографического анализа

ОСР-97

Общее сейсмическое районирование Российской Федерации

ПРИЛОЖЕНИЕ Б (справочное)

СТАТИСТИЧЕСКАЯ ОЦЕНКА ПРОЧНОСТИ БЕТОНА

Статистическая оценка прочности бетона при обследовании конструкций применима в следующих случаях:

1. Прочность бетона определялась на основании испытания отобранных из конструкции образцов в соответствии с ГОСТ 28570.

2. Прочность бетона определялась методом отрыва со скалыванием.

3. Прочность бетона определяется по предварительно установленным экспериментально градуировочным зависимостям, по результатам параллельных испытаний одних и тех же участков конструкций методом отрыва со скалыванием и другими методами неразрушающего контроля (ультразвуковым, пластической деформации, упругого отскока или ударного импульса). При этом среднее квадратическое отклонение градуировочной зависимости Sт не должно превышать 15 % среднего значения прочности бетона образцов или участков конструкций, использованных при построении градуировочной зависимости, а коэффициент корреляции г должен быть не менее 0,7.

При наличии образцов, отобранных из конструкций, можно построить градуировочную зависимость между прочностью бетона образцов, испытанных на прессе, и косвенными характеристиками прочности этих же образцов, полученных при их испытании неразрушающими методами.

В случае построения градуировочной зависимости по данным параллельных испытаний одних и тех же участков методом отрыва со скалыванием и другим неразрушающим методом средняя квадратическая ошибка градуировочной зависимости ST определяется по формуле

,

где -- средняя квадратическая ошибка построенной градуировочной зависимости;

-- средняя квадратическая ошибка градуировочной зависимости метода отрыва со скалыванием, принимаемая: а) при анкерном устройстве с глубиной заделки 48 мм -- 0,04 от средней прочности бетона участков, использованных при построении градуировочной зависимости; б) глубиной 35 мм -- 0,05 средней прочности; в) глубиной 30 мм -- 0,06 средней прочности; г) глубиной 20 мм -- 0,07 средней прочности.

Класс бетона определяется по формуле

B = Rт(1 - tV),

где Rт -- средняя прочность бетона по результатам испытаний;

t -- коэффициент Стьюдента (см. таблицу Б.1);

V -- коэффициент вариации прочности, который определяется по формуле

V = Sт/Rm,

где Sm -- среднее квадратическое отклонение прочности.

При контроле прочности бетона по образцам или методу отрыва со скалыванием среднее квадратическое отклонение прочности бетона в конструкциях или в партии конструкций вычисляют по формуле

,

где Ri -- прочность бетона отдельного образца или участка конструкции, испытанного методом отрыва со скалыванием;

Rm -- средняя прочность бетона в конструкции или партии конструкций;

n -- число испытанных образцов или испытанных участков в конструкции. При контроле прочности бетона в конструкции или партии конструкций неразрушающими методами по градуировочной зависимости Sm определяется следующими формулами.

В случае когда за единичное значение прочности принимается прочность бетона на контролируемом участке

,

де Sн.м -- среднее квадратическое отклонение прочности, полученное по данным испытаний неразрушающими методами;

ST -- средняя квадратическая ошибка градуировочной зависимости;

r -- коэффициент корреляции градуировочной зависимости;

n -- число участков испытаний прочности в конструкциях.

В тех случаях когда в качестве единицы прочности бетона может быть принята средняя прочность бетона конструкции или части конструкции, вычисленная как среднее арифметическое значение прочности контролируемых участков конструкций, среднее квадратическое отклонение прочности бетона Sm определяется по формуле

,

где Р -- число контролируемых участков в конструкции.

Таблица Б.1 -- Значение коэффициента Стьюдента t при обеспеченности 0,95 (одностороннее ограничение)

Число испытаний

t

Число испытаний

t

1

6,31

11

1,80

2

2,92

12

1,78

3

2,35

13

1,77

4

2,13

14

1,76

5

2,01

15

1,75

6

1,94

20

1,73

7

1,89

25

1,71

8

1,86

30

1,70

9

1,83

40

1,68

10

1,81

1,64

ПРИЛОЖЕНИЕ В (справочное)

НОРМАТИВНЫЕ И РАСЧЕТНЫЕ ЗНАЧЕНИЯ МЕТАЛЛОВ И ИЗДЕЛИЙ ИЗ НИХ

Таблица В.1-- Строительные коэффициенты веса стальных сварных и клепаных конструкций

Наименование конструкций

Конструктивные решения

Коэффициент веса

Стропильные фермы

Из парных уголков, пролетом:

24 м

1,3

30-36 м

1,22

Из труб, пролетом 30-36 м

1,1

Подстропильные фермы

Из парных уголков пролетом:

12 м

1,25

18 м

1,3

24 м

1,35

Колонны

Сплошные, постоянного сечения по высоте

1,3

Сплошные, переменного сечения по высоте (ступенчатые)

1,5

Ступенчатые с нижней ступенью сквозной, верхней -- сплошной крайнего ряда

1,7

То же, среднего ряда

1,55

Подкрановые балки

Сплошные, пролетом:

6, 12, 18 м

1,2

24, 30 м

1,25

Сквозные, пролетом 18-30 м

1,15

Тормозные балки

Пролетом 6-18 м

1,2

Тормозные фермы

Пролетом 6-24 м

1,35

Связи

Крестовые

1,05

Портальные

1,15

Распорки, тяжи

1,05

Прогоны

Сплошные

1,05

Сквозные

1,2

Стропильные фермы

Пролетом:

18-24 м

1,37

30 м

1,33

Подстропильные фермы

Пролетом:

5-12 м

1,23

15-18 м

1,4

Колонны

Сквозные ступенчатые

1,85

Сплошные постоянного сечения

1,35

Подкрановые балки

Сплошные пролетом:

5-12 м

1,25

15-18 м

1,26

Сквозные пролетом

15-24 м

1,33

Тормозные балки

Пролетом 5-12 м

1,27

Тормозные фермы

Пролетом 5-18 м

1,36

Таблица В.2 -- Нормативное и расчетное сопротивления арматурных сталей

Виды арматуры

Нормативные сопротивления, МПа (кгс/см2)

Расчетные сопротивления,

МПа (кгс/см2)

Растянутой

Сжатой

1

2

3

4

Горячекатаная, круглая, полосовая, квадратная Ст0.

Постройка до 1955 г.

185 (1900)

155 (1600)

155 (1600)

Горячекатаная, круглая, полосовая, квадратная Ст0.

Постройка с 1955--1962 г.

185 (1900)

165 (1700)

165 (1700)

Горячекатаная, круглая (гладкая) класса А-I, а также полосовая, угловая и фасонная из группы марок стали Ст3.

Постройка до 1986 г.

235 (2400)

205 (2100)

205 (2100)

Холодносплющенная периодического профиля из стали марок Ст0 и Ст3.

Постройка до 1962 г.

445 (4500)

355 (3600)

355 (3600)

Горячекатаная периодического профиля, имеющая выступы с одинаковым заходом на обеих сторонах профиля (винт), класса A-II из стали марки Ст5.

Постройка до 1962 г.

275 (2800)

235 (2400)

235 (2400)

Горячекатаная периодического профиля, имеющая выступы с одинаковым заходом на обеих сторонах профиля (винт), класса А-II.

Постройка с 1962 по 1986 г.

295 (3000)

265 (2700)

265 (2700)

Горячекатаная периодического профиля, упрочненная вытяжкой, класса А-IIв.

Постройка с 1962 по 1976 г.

440 (4500)

315 (3250)

265 (2700)

Горячекатаная периодического профиля, имеющая выступы, с одной стороны правый заход, а с другой -- левый («елочка»), класса A-III.

Постройка до 1986 г.

390 (4000)

335 (3400)

335 (3400)

Горячекатаная периодического профиля, упрочненная вытяжкой, класса А-IIIв. Постройка с 1962 по 1976 г.

540 (5500)

390 (4000)

335 (3400)

Горячекатаная периодического профиля, класса A-IV.

Постройка с 1962 по 1976 г.

590 (6000)

495 (5000)

355 (3600)

Горячекатаная периодического профиля, класса A-IV и термически упрочненная класса At-IV.

Постройка с 1976 по 1986 г.

590 (6000)

490 (5000)

390 (4000)

Горячекатаная периодического профиля класса A-V и термически упрочненная класса At-V.

Постройка с 1976 по 1986 г.

790 (8000)

630 (6400)

390 (4000)

Горячекатаная периодического профиля, термически упрочненная, класса At-VI.

Постройка с 1976 по 1986 г.

980 (10000)

785 (8000)

390 (4000)

Проволока арматурная обыкновенная B-I.

Постройка до 1976 г.

Диаметр 6--8 мм

440 (4500)

245 (2500)

245 (2500)

То же, постройка с 1976 по 1986 г.

Диаметр 3--5,5 мм

540 (5500)

310 (3150)

310 (3150)

Проволока арматурная периодического профиля Bp-I.

Постройка с 1976 по 1986 г.

Диаметр 3--4 мм

540 (5500)

345 (3500)

345(3500)

» 5 мм

515 (5250)

335 (3400)

335(3400)

Проволока высокопрочная гладкая В-II. Постройка с 1962 по 1976 г.

Диаметр 2,5 мм

1960 (20000)

1105 (11300)

350

» 3 мм

1860 (19000)

1050 (10700)

(3600)

» 4 мм

1760 (18000)

990 (10100)

Проволока высокопрочная гладкая В-II. Постройка с 1976 по 1986 г.

Диаметр 3 мм

1860 (19000)

1205 (12300)

» 4 мм

1760 (18000)

1135 (11600)

390

» 5 мм

1665 (17000)

1080 (11000)

(4000)

» 6 мм

1570 (16000)

1010 (10300)

» 7 мм

1470 (15000)

950 (9700)

» 8 мм

1370 (14000)

880 (9000)

Проволока высокопрочная периодического профиля Вр-II. Постройка с 1962 по 1976 г.

Диаметр 5 мм

1665 (17000)

930 (9500)

» 6 мм

1570 (16000)

880 (9000)

350

» 7 мм

1470 (15000)

815 (8300)

(3600)

» 8 мм

1370 (14000)

765 (7800)

Проволока высокопрочная периодического профиля Вр-II. Постройка с 1976 по 1986 г.

Диаметр 3 мм

1760 (18000)

1135 (11600)

» 4 мм

1665 (17000)

1080 (11000)

390

» 5 мм

1570 (16000)

1010 (10300)

(4000)

» 6 мм

1470 (15000)

950 (9700)

» 7 мм

1370 (14000)

880 (9000)

» 8 мм

1275 (13000)

825 (8400)

Таблица В.3 -- Минимальные значения временного сопротивления и предела текучести для сталей, выплавлявшихся в СССР в 1931--1980 гг. по действующим в то время ГОСТам

Марка стали

Стандарт, технические условия

Толщина проката, мм, или разряд толщин

Минимальные значения, кгс/см2

временное сопротивление

предел текучести

1

2

3

4

5

Cт0с

ГОСТ 380-41

Ст0

ГОСТ 380-50

4-40

3200

1900

Ст1

ОСТ 4125

4-40

3200

1900

Ст2

ОСТ 4125

4300

1900

ГОСТ 380-41

4-40

3400

2100

ГОСТ 380-50

3400

2200

Ст3

ОСТ 4125

3800

2200

ГОСТ 380-41

4-40

3800

2200

ГОСТ 380-50

3800

2400

ГОСТ 380-57

Разр. 1

3800

2400(2500)*

ГОСТ 380-60

Разр. 2

3800

200(2400)*

ГОСТ 380-60*

Разр.3

3800

2100/2200**

ГОСТ 380-71

До 20

3700/3800

2300/2400

ГОСТ 380-71*

21-40

3700/3800

2200/2300

41-100

3700/3800

2100/2200

Св. 100

3700/3800

1900/2000

Ст3

ОСТ 12535-38

3800

2300

Мостовая

ГОСТ 6713-53

4-40

3800

2400

Мостовая

ГОСТ 6713-53

4-40

3800

2300

Ст4

ОСТ 4125

4-40

4200

2300

ГОСТ 380-50

4200

2600

ГОСТ 380-60

Разр. 1

4200

2600

ГОСТ 380-60*

Разр. 2

4200

2500

Разр. 3

4200

2400

Ст5

ОСТ 4125

4-40

5000

2300

ГОСТ 380-50

5000

2800

ГОСТ 380-60

Разр. 1

5000

2800

ГОСТ 380-60*

Разр. 2

5000

2700

Разр. 3

5000

2600

СХЛ-2

ТУ НКЧМ-303

4-40

4800

3300

НЛ1

ГОСТ 5058-49

4-40

4200

3000

НЛ-2

ГОСТ 5058-49

4-40

4800

3400

МСтТ

ГОСТ 9458-60

6-40

4400

3000

М12

ЧМТУ ЦНИИЧМ 54-58

21-32

4600

3300

09Г2

ГОСТ 5058-87

4-10

4600

3100

09Г2Д

11-24

4500

3000

25-30

4400

3000

ГОСТ 19281-73

4-20

4500

3100

ГОСТ 19281-73

21-32

4500

3000

09Г2С

ГОСТ 5058-65

4-9

5000

3500

09Г2СД

ГОСТ 19281-73

10-20

4800

3300

ГОСТ 19282-73

21-32

4700

3100

33-60

4600

2900

09Г2С термоупрочненная

ГОСТ 5058-65

10-32

5400

4000

10Г2С

ЧМТУ

4-10

5200

3600

ЦНИИЧМ 246-61

11-32

5000

3500

ГОСТ 5058-65

33-60

4800

3400

10Г2СД

ГОСТ 5058-57

4-32

5000

3500

10Г2С1 термоупрочненная

ГОСТ 5058-65

10-40

5400

4000

10Г2С1

ГОСТ 5058-65

4-10

5200

3600

10Г2С1Д

11-32

5000

3500

33-60

4800

3400

ГОСТ 19281-73

4-9

5000

3500

ГОСТ 19282-73

19-32

4800

3300

33-60

4600

3300

14Г2

ГОСТ 5058-65

4-9

4700

3400

ГОСТ 19281-73

ГОСТ 19282-73

10-32

4600

3300

14Г2 термоупрочненная

ГОСТ 5058-65

10-32

5400

4000

15ХСНД

ГОСТ 5058-57

(СХЛ-1, НЛ-2)

ГОСТ 5058-55

ГОСТ 19281-73

4-32

5000

3500

ГОСТ 19282-73

10ХСНД (СХЛ-4)

ГОСТ 5058-57

4-32

5400

4000

33-40

5100

3700

ГОСТ 5058-65

4-32

5400

4000

ГОСТ 19281-73

ГОСТ 19281-73

33-40

5200

4000

15ХСНД термоупрочненная

ГОСТ 5058-65

10-32

6000

5000

* В скобках даны возможные повышенные значения механических характеристик при поставке проката с дополнительной гарантией по пределу текучести.

** Механические характеристики для кипящих сталей (слева от черты) и для спокойных и полуспокойных (справа от черты).

Таблица В.4 -- Примерный химический состав отливок из серого чугуна

Чугун

Примерный химический состав, %

С

Si

Mn

Р

S

Cr

Ni

Не более

СЧ 00

3,0-3,5

1,8-2,4

0,6-1,0

0,6

0,15

0,15

0,5

СЧ 12-28

3,3-3,6

2,2-2,5

0,6-1,0

0,4

0,15

0,15

0,5

СЧ 15-32

3,2-3,5

2,0-2,4

0,7-1,1

0,4

0,15

0,15

0,5

СЧ 18-36

3,1-3,4

1,7-2,1

0,8-1,2

0,3

0,15

0,3

0,5

СЧ 21-40

3,0-3,3

1,3-1,7

0,8-1,2

0,3

0,15

0,3

0,5

СЧ 24-44

2,9-3,2

1,2-1,6

0,8-1,2

0,2

0,15

0,3

0,5

СЧ 28-48

2,8-3,1

1,1-1,5

0,8-1,2

0,2

0,12

0,3

0,5

СЧ 32-52

2,7-3,0

1,5-1,5

0,8-1,2

0,2

0,12

0,3

0,5

СЧ 36-56

2,6-2,9

1,1-1,5

1,0-1,4

0,2

0,12

0,3

0,5

1,3-1,8

0,8-1,2

0,5

СЧ 40-60

2,5-2,8

1,1-1,3

1,0-1,4

0,02

0,02

0,3

0,5

1,3-1,8

0,8-1,2

0,5

СЧ 44-64

2,5-2,7

2,5-2,9

0,2-0,4

0,02

0,02

0,3

0,5

0,3

Таблица В.5 -- Расчетные сопротивления R, кгс/см2, для отливок из серого чугуна. Год постройки до 1981 г.

Напряженное состояние

Условные обозначения

Расчетные сопротивления МПа (кгс/см2) отливок из серого чугуна

СЧ 12-28

СЧ 18-36

СЧ 24-44

СЧ 15-32

СЧ 21-40

СЧ 28-48

Растяжение центральное и при изгибе

Rt

45(450)

55(550)

80(800)

Сжатие центральное и при изгибе

Rc

150(1500)

190(1900)

260(2600)

Сдвиг (срез)

Rs

35(350)

45(450)

60(600)

Смятие торцевой поверхности (при наличии пригонки)

Rp

225(2250)

280(2800)

390(3900)

ПРИЛОЖЕНИЕ Г (справочное)

ВОЗДЕЙСТВИЕ ПОЖАРА НА ПОКАЗАТЕЛИ ПРОЧНОСТИ БЕТОНА И АРМАТУРЫ

Таблица Г.1 -- Значение максимальных температур нагрева бетона

Цвет бетона

Максимальная температура нагрева бетона, °С

Возможные дополнительные признаки

Нормальный

300

Нет

Розовый до красного

300-600

Начиная с 300 °С -- поверхностные трещины, с 500 °С -- глубокие трещины, с 572 °С -- раскол или выкол заполнителей, содержащих кварц

Серовато-черный до темно-желтого

600-950

700--800 °С -- отколы бетона, обнажающие в ряде случаев арматуру, 900 °С -- диссоциированный известняковый заполнитель и цементный дегидратированный камень сыплются, крошатся

Темно-желтый

Более 950

Много трещин, отделение крупного заполнителя от растворной части

Таблица Г.2 -- Снижение прочности бетона на сжатие после пожара

Вид твердения бетона и условия твердения

Снижение прочности бетона после пожара, %, при максимальной температуре его нагрева, °С

60

120

150

200

300

400

500

Тяжелый с гранитным заполнителем, естественное

30

30

30

30

40

60

70

То же, тепловлажностная обработка

15

20

20

20

20

30

45

То же, с известняковым заполнителем

15

20

20

25

25

40

60

Легкий с керамзитовым заполнителем, тепловлажностная обработка

10

10

10

10

10

15

20

Примечания

1 В таблице указано, на сколько процентов снижается значение прочности бетона после пожара по сравнению со значением прочности бетона до пожара.

2 Прочность бетона после его нагрева до температур ниже 60 °С принимается равной ее значению до пожара.

3 После нагрева до температур выше 500 °С значения прочности бетона принимаются равными нулю.

4 Промежуточные значения снижения прочности бетона устанавливаются линейной интерполяцией.

Таблица Г.3 -- Снижение прочности арматуры после пожара

Положение арматуры в конструкции, наличие предварительного напряжения

Класс арматуры

Снижение прочности арматуры после пожара, %, при максимальной температуре ее нагрева, °С

300

400

500

За пределами зоны анкеровки

A-I, A-II, A-III

Нет

Нет

Нет

независимо от преднапряжения

А-IV, A-V, А-VI

»

5

10

Ат-IV, At-V, At-VI

»

10

20

B-II, Bp-II, К-7

»

30

60

В зоне анкеровки арматуры,

A-II, A-III, A-IV

Нет

20

40

ненапрягаемой

A-V, Ат-III, At-IV

At-V

То же, предварительно

A-IV, Ат-IV

»

25

50

напряженной

At-V, A-V

»

30

60

A-VI, At-VI

»

35

70

Bp-II, K-7

»

45

90

B-II

»

60

--

Примечания

1 В таблице указано, на сколько процентов снижается значение прочности арматуры после пожара по сравнению со значением прочности арматуры до пожара.

2 Прочность арматуры (за исключением класса В-II) после нагрева до температуры выше 500 °С принимается равной нулю; для класса В-II это значение принимается после температуры нагрева выше 400 °С.

3 Промежуточные значения снижения прочности арматуры устанавливаются линейной интерполяцией.

ПРИЛОЖЕНИЕ Д (справочное)

СВЕДЕНИЯ О РАЗРАБОТЧИКАХ СВОДА ПРАВИЛ

Настоящий Свод правил разработан группой специалистов в составе:

ФГУП «КТБ ЖБ»

инженер Н.В. Волков

инженер А.А. Гребеник

канд. техн. наук Г.Г. Гурова

канд. техн. наук А.Н. Давидюк

инженер Ю.Д. Рыбаков

инженер Е.С. Фискинд

ГУП «НИИЖБ»

д-р техн. наук, профессор В.А. Клевцов

ЦНИИ -- 26

канд. техн. наук Г.П. Тонких

В разработке Свода правил принимали участие:

ГУП «ЦНИИСК им. Кучеренко»

канд. техн. наук А.В. Грановский

д-р техн. наук, профессор Л.М. Ковальчук

д-р техн. наук В.И. Обозов

ГУП «НИИ Мосстроя»

д-р техн. наук, профессор В.В. Ремнев

Оказывали консультативную помощь:

ГУП «НКТЦ»

канд. экон. наук В.А. Коваленко

канд. техн. наук B.C. Щукин

ЗАО ЦНИИ ПСК им. Н.П. Мельникова

инженер В.В. Севрюгин

инженер Г.И. Соловьев

Ключевые слова: обследование строительных конструкций, техническое состояние, несущая способность конструкций, усиление конструкций, эксплуатационные показатели здания, реконструкция здания.


Подобные документы

  • Оценка технического состояния как установление степени повреждения и категории технического состояния строительных конструкций или зданий и сооружений, этапы и принципы ее проведения. Цели обследования строительных конструкций, анализ результатов.

    контрольная работа [26,6 K], добавлен 28.06.2010

  • Цель и виды технического обследования. Проведение обмерных работ, определение фактических размеров зданий, сооружений, внутренних помещений. Измерение отклонений положения и прогибов горизонтальных конструкций. Методы контроля прочности сооружений.

    презентация [1,0 M], добавлен 26.08.2013

  • Общие правила проведения обследования и мониторинга технического состояния зданий и сооружений. Наблюдение за зданиями, находящимися в аварийном состоянии. Примеры проектирования и эксплуатации схем мониторинга конструкций и оснований высотных зданий.

    реферат [1,9 M], добавлен 11.06.2011

  • Обследование технического состояния строительных конструкций является самостоятельным направлением строительной деятельности. Оно занимается обеспечением эксплуатационной надежности зданий и разработкой проектной документации по реконструкции зданий.

    контрольная работа [27,8 K], добавлен 21.01.2009

  • Цели, задачи обследования технического состояния зданий и сооружений. Методы определения физико-химических характеристик материалов конструкций. Результаты визуального обследования здания. Параметры дефектов и повреждений, контролируемых при обследовании.

    курсовая работа [7,4 M], добавлен 23.12.2012

  • Определение общего состояния строительных конструкций зданий и сооружений. Визуально-инструментальное обследование, инженерно-геологические изыскания. Определение физико-химических характеристик материалов конструкций. Диагностики несущих конструкций.

    курсовая работа [36,7 K], добавлен 08.02.2011

  • Частичный или полный ремонт деревянных конструкций. Методика обследования деревянных частей зданий и сооружений. Фиксация повреждений деревянных частей зданий и сооружений. Защита деревянных конструкций от возгорания. Использование крепежных изделий.

    презентация [1,4 M], добавлен 14.03.2016

  • Организация и методика обследования конструкций, алгоритм оценки технического состояния зданий и сооружений. Обследование технического состояния здания на основе визуального осмотра обнаруженных дефектов на примере детской библиотеки И.А. Крылова.

    курсовая работа [868,8 K], добавлен 07.02.2011

  • Организация работ по технической эксплуатации зданий и сооружений. Виды ремонтов: текущий и капитальный. Техническое состояние здания и факторы, вызывающие изменения его работоспособности. Физический и моральный износ сооружений, срок их службы.

    реферат [37,9 K], добавлен 22.07.2014

  • Порядок и основные этапы, правила обследования зданий на предмет их пригодности, значение данного процесса в безопасной эксплуатации зданий. Виды повреждения строительных конструкций и степень их опасности, принципы нормирования и их обоснование.

    курс лекций [479,5 K], добавлен 12.03.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.