Основы химии

Роль химии в строительстве. Применение полимеров и материалов на их основе. Строение атома. Порядок заполнения энергетических уровней и подуровней. Электронные формулы ионов. Периодический закон и система химических элементов. Термодинамическая система.

Рубрика Химия
Вид учебное пособие
Язык русский
Дата добавления 23.02.2016
Размер файла 346,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

47. Общие сведения о полимерах. Методы получения полимеров (полимеризация, поликонденсация, примеры реакций)

Полимерами называют вещества, молекулы которых (макромолекулы) состоят из одного или большего числа составных звеньев. Молекулярная масса (число атомов) полимеров может изменяться от нескольких тысяч до многих миллионов. При реакции полимеризации высокомолекулярные органические соединения (полимеры) образуются из низкомолекулярных (мономеров) без выделения побочных продуктов, поэтому образующиеся полимеры имеют тот же состав, что и исходные вещества. Методом полимеризации получают такие синтетические полимеры как полиэтилен, поливинилхлорид, полистирол, полиизобутилен, полиакрилаты и другие материалы, используемые при производстве облицовочных синтетических материалов. При методе поликонденсации процесс образования высокомолекулярных органических соединений (полимеров) из исходных низкомолекулярных веществ (мономеров) сопровождается выделением побочных низкомолекулярных продуктов - воды, водорода, аммиака и др. В связи с этим химический состав образовавшегося синтетического полимера отличается от исходных веществ. Таким методом получают следующие полимеры: фенолоформальдегидные, мочевиноформальдегидные, полиэфирные, полиуретановые, эпоксидные, кремнийорганические и др.

48. свойства полимеров. Полимеры термореакционные (примеры). Применение полимеров в строительстве

Особые механические свойства эластичность - способность к высоким обратимым деформациям при относительно небольшой нагрузке (каучуки); малая хрупкость стеклообразных и кристаллических полимеров (пластмассы, органическое стекло); способность макромолекул к ориентации под действием направленного механического поля (используется при изготовлении волокон и плёнок). Особенности растворов полимеров: высокая вязкость раствора при малой концентрации полимера; растворение полимера происходит через стадию набухания Особые химические свойства: способность резко изменять свои физико-механические свойства под действием малых количеств реагента (вулканизация каучука, дубление кож и т. п.) Особые свойства полимеров объясняются не только большой молекулярной массой, но и тем, что макромолекулы имеют цепное строение и обладают гибкостью. Термореактивные полимеры при нагреве подвергаются необратимому химическому разрушению без плавления. Молекулы термореактивных полимеров имеют нелинейную структуру, полученную путём сшивки (например, вулканизация) цепных полимерных молекул. Упругие свойства термореактивных полимеров выше, чем у термопластов, однако, термореактивные полимеры практически не обладают текучестью, вследствие чего имеют более низкое напряжение разрушения. Бетон - главный строительный материал последнего столетия. Его основные недостатки с успехом корригируются полимерами, вводимыми в процессе производства прямо в состав бетона, которые частично или полностью заменяют минеральные вяжущие. В результате, выпускаемые промышленностью в широком ассортименте современные полимерцементные бетоны, полимербетоны и бетонополимеры более коррозиеустойчивы, морозостойки, износостойки, обладают непроницаемостью для жидкостей и устойчивостью к действию кислот, менее хрупки. Использование поливинилхлорида в строительстве и архитектуре. Именно в строительную отрасль уходит более половины всего ПВХ, который производится в мире. Это самый распространённый сейчас полимерный строительный материал. ПВХ широко используют не только при изготовлении окон, которые в последние десятилетия сделали мировую энергосберегающую революцию. Из ПВХ изготавливают линолеум, плёнки для натяжных потолков, различные профили. Его используют также для изготовления сантехнических труб, для электроизоляции кабелей и электропроводов. Полимеры в древесностружечных плитах. Армирующие полимеры - стеклопластики, органическое стекло, древесно-слоистые пластики и винипласт используют при изготовлении ДСП, ЛДСП, КДСП и МДФ. Полимерные отделочные материалы Виниловые обои, материалы для отделки стен и потолков на полимерной основе, различные декоративные и моющиеся плёнки, защитные и декоративные покрытия - эти материалы встречаются теперь чаще, чем натуральные. Трубы из полимеров Срок службы качественной трубы из полиэтилена может быть больше аналогичной металлической на порядок. Эти трубы надёжнее, дешевле, не подвержены коррозии и гигиеничнее. При их производстве используют так называемые "инженерные" пластмассы. Полимеры в лакокрасочных изделиях. Используются практически во всей продукции этого сегмента. Составляющие - природные и искусственные смолы, эфиры целлюлозы, полимерные красители.

49. Керамика. Реакции, протекающие при обжиге керамики. Применение керамики в строительстве

Керамика -- изделия из неорганических материалов (например, глины) и их смесей с минеральными добавками, изготавливаемые под воздействием высокой температуры с последующим охлаждением.[1] Основные фазовые превращения составляющих глинистого сырья при производстве керамических материалов по традиционной технологии заключаются в следующем. На начальной стадии обжига происходят процессы разрушения исходных минералов за счет дегидратации, диссоциации, аморфизации составляющих. После этого при более высоких температурах начинаются процессы упрочнения за счет спекания, сначала твердофазового, а потом жидкостного. При 700…900 оС керамическая масса представляет собой гетерогенную смесь аморфизированных глинистых минералов, зерен кварца и полевого шпата в контакте с модифицирующими катионами оксидов калия, натрия, железа, кальция и магния. Дальнейшее повышение температуры приводит к взаимодействию между этими компонентами, в основном за счет объемной диффузии. Фактором обмена служат модифицирующие катионы.1. СТЕНОВЫЕ МАТЕРИАЛЫ. Основными в этой группе являются: кирпич глиняный обыкновенный и так называемый эффективный кирпич - глиняный пустотелый и пористый пластического формования, глиняный пустотелый полусухого прессования и строительный легкий. Камни керамические пустотелые пластического формования также применяются в качестве стенового материала. Находят применение в качестве стенового материала крупноразмерные виброкирпичные панели заводского изготовления.2. ОБЛИЦОВОЧНЫЕ ИЗДЕЛИЯ. Керамические изделия, применяемые для облицовки зданий, делятся на две группы - для облицовки фасадов зданий и для внутренней облицовки помещений. В настоящее время основными видами облицовочных керамических материалов для фасадов зданий являются, камни, плиты и плитки. Кирпич и камни делают сплошными и пустотелыми. Плиты в зависимости от конструкции, способов изготовления и крепления подразделяют на закладные, устанавливаемые одновременно с кладкой стен, и прислонные, устанавливаемые на растворе после возведения и осадки стен. Фасадные плиты изготовляют различной формы: плоские для облицовки плоскости стен, угловые - для облицовки наружных углов, откосов и проемов и перемычные; для облицовки перемычек над оконными и дверными проемами. Плитки фасадные малогабаритные выпускают с наружной гладкой и фактурной поверхностью, а на тыльной стороне делают углубления для лучшего сцепления с цементным раствором. Для ускорения отделочных работ тонкие фасадные плитки наклеивают на бумажную основу в виде ковров с различным рисунком. Такие плитки носят название ковровой керамики. Керамические материалы для внутренней облицовки помещений не подвергаются действию отрицательных температур и резких перемен погоды, поэтому они не должны отвечать всем требованиям, предъявляемым к материалам для внешней облицовки зданий. Однако точность размеров, правильность формы и одинаковая окраска приобретают особо важное значение. Вследствие этого для материалов внутренней облицовки поставлены более жесткие требования по внешнему виду, чем к материалам для наружных работ. Для внутренней облицовки помещений применяют в основном керамические плитки различной формы и толщины; (28 типов по ГОСТ 6141--63).Керамическими плитками для полов настилают полы в вестибюлях общественных зданий, банях, прачечных, санитарных узлах, лечебных помещениях и на предприятиях химической промышленности. Эти плитки практически водонепроницаемы, т. е. надежно защищают несущие конструкции перекрытий от увлажнения, стойко сопротивляются истирающим воздействиям, не дают пыли, легко моются, не впитывают жидкостей и хорошо противостоят действию кислот и щелочей.3. Санитарно-технические изделия и канализационные трубы. Различают три группы санитарно-технических изделий: из твердого фаянса, отличающиеся пористым черепком, из санитарного фарфора, обладающие спекшимся черепком, и из полуфарфора, имеющие полуспекшийся черепок. Санитарно-технические изделия должны обладать высокой механической прочностью и теплостойкостью. Для их изготовления необходимо высококачественное сырье, строгое соответствие массы установленной рецептуре и точное соблюдение технологического режима производства. К санитарно-техническим изделиям относится оборудование санитарных узлов и кухонь жилых, общественных и промышленных зданий. Ассортимент изделий этой группы весьма разнообразен - ванны, умывальники, унитазы, радиаторы и др. Изделия должны иметь правильную форму, без прогибов, искривлений и трещин, равномерный покров блестящей глазури (белой или цветной), устойчивой против образования мелких трещин (цека); при простукивании изделия должны издавать чистый (не дребезжащий) звук, указывающий на обжиг их до соответствующей температуры и отсутствие трещин. Канализационные трубы, изготовляемые диаметром от 150 до 600 мм, имеют плотный спекшийся черепок. Они покрываются глазурью изнутри и снаружи и отличаются большой устойчивостью к действию агрессивных вод и блуждающих электрических токов. Изготовляемые на основе местных материалов, они имеют невысокую стоимость сравнительно с трубами других видов.4. ПРОЧИЕ КЕРАМИЧЕСКИЕ ИЗДЕЛИЯ. Здесь следует сказать о глиняной черепице, представляющей собой спекшееся изделие в виде прямоугольных плиток или желобов и широко (особенно на юге и западе страны) используемой как кровельный материал. Выпускается черепица четырех видов: штампованная пазовая и ленточная, плоская ленточная и коньковая.

50. Получение и применение стекла. Ситаллы. Стеклопластика

Обычное стекло можно получить сплавлением кварцевого песка (SiO2), технической соды (Na2CO3) и мела (CaCO3). При нагревании сода и мел разлагаются с выделением углекислого газа:

Na2CO3 => Na2O + CO2 и CaCO3 => CaO + CO2.

Далее кислотный оксид кремния (IV) начинает реагировать с основными оксидами натрия и кальция с образованием аморфной полимерной структуры, которая при застывании образует прозрачное, хрупкое и химически инертное вещество со свойствами изолятора - это и есть обычное стекло. Хим. формулу такого стекла можно записать по-разному:

6 SiO2 + Na2O + CaO => Na2СaSi6O14 или 6 SiO2 + Na2O + CaO => Na2O*CaO*6SiO2.

Важно помнить, что при этом образуются полимерные силикатные анионы состава Si6O14(4-). Сегодня использование стекла настолько широко, что трудно себе представить, как можно было обходиться без него много лет тому назад. Из стекла делается сегодня не только ответственная часть окон, но и аксессуары для одежды, мебель и другие предметы интерьера. Стекло активно используется в промышленности, различных сферах народного хозяйства. Свойства стекла научились использовать даже в условиях, несовместимых с его применением. Всем известно, что стекло обладает большой хрупкостью. От механических воздействий и вибрации оно может трескаться и разбиваться. Поражение осколками - очень опасно для здоровья человека. Но специальные меры обработки и использования предполагают безопасное его использование в различных условиях. Ситаллы (от "стекло и кристаллы") - стеклокристаллические (микрокристаллические) материалы, состоящие из одной или нескольких кристаллических фаз, равномерно распределенных в стекловидной фазе. Главная особенность ситаллов - тонкозернистая равномерная стеклокристаллическая структура. От неорганических стекол они отличаются кристаллическим строением, а от керамических материалов - более зернистой и однородной микрокристаллической структурой. Получают путем направленной (катализированной) кристаллизации стекол специальных составов, протекающей в объеме заранее отформованного изделия. Различают технические ситаллы (изготовляемые на основе искусственных композиций из различных химических соединений - оксидов, солей), петроситаллы (из горных пород - базальтов, диабазов и др.) и шлакоситаллы (из металлургических или топливных шлаков). Стеклопластики - вид композиционных материалов - пластические материалы, состоящие из стекловолокнистого наполнителя (стеклянное волокно, волокно из кварца и др.) и связующего вещества (термореактивные и термопластичные полимеры). Из стеклопластиков производят следующие изделия: дверные, оконные и другие профили, бассейны, купели, водные аттракционы, водные велосипеды, лодки, рыболовные удилища, таксофонные кабины, кузовные панели и обвесы для грузовых и легковых автомобилей, диэлектрические лестницы и штанги для работ в опасной близости от конструкций под напряжением.

51. Воздушные вяжущие вещества: воздушная известь, магнезиальный цемент, гипсовые вяжущие, жидкое стекло (получение, отвердение и применение)

Воздушная известь - одно из древнейших вяжущих, широко применяемых в строительстве и промышленности. Известь -продукт умеренного обжига кальциевых и кальциево-магниевых карбонатных пород до возможно полного удаления углекислого газа. В результате обжига образуется продукт белого цвета, называемый негашеной комовой известью (кипелкой). Сырьем для получения извести являются распространенные осадочные горные породы: известняки, доломиты, мел, доломитизированные известняки, содержащие не более 8 % глины. В сырье преобладает карбонат кальция СаС 03, в небольшом количестве содержатся карбонат магния MgCCb и некоторые примеси. Сырье обжигают в шахтных или вращающихся печах при температуре 900... 1200 °С:

СаСОз - СаО + C02t; MgC03 - MgO + C02t.

Твердение. Известковое тесто состоит из насыщенного водного раствора Са(ОН)2 и нерастворившихся мельчайших частиц извести. По мере испарения из него воды образуется пересыщенный раствор Са(ОН)2, из которого выпадают кристаллы, скрепляющие отдельные частицы в единый монолит. Поэтому известковое тесто, защищенное от высыхания, неограниченно долго сохраняет пластичность, т. е. у извести отсутствует процесс схватывания. Строительную воздушную известь применяют для приготовления кладочных и штукатурных растворов, бетонов низких марок, работающих в сухих условиях, силикатного кирпича, ячеистобетонных изделий автоклавного твердения, известковых красок, смешанных гидравлических вяжущих и других материалов. Молотую известь с активными минеральными добавками применяют в штукатурных растворах для подземной части зданий и в растворах, твердеющих во влажных условиях. Воздушная известь всех видов - довольно сильная щелочь. Поэтому при работе с ней необходимо принимать меры, предотвращающие контакт извести с открытыми участками кожи и особенно дыхательными путями и глазами. Магнезиальный цемент (магнезиальное вяжущее) - вид неорганического вяжущего вещества на основе оксида магния, затворяемого хлоридом и/или сульфатом магния. Способ получения известного вяжущего включает операцию смешивания каустического магнезита с водным раствором сульфатов и хлоридов магния. Гидроксид и оксихлорид магния образуются преимущественно в виде коллоидных частиц на стадии гидролиза соли MgCl2 путем непрерывного связывания воды затворителя в оксигруппы гидроксида магния и в оксигруппы оксихлорида магния до момента затвердевания системы. Кристаллизация же коллоидных частиц происходит практически мгновенно. Магнезиальный цемент используют для устройства полов, производства стекломагниевых листов (СМЛ), элементов декора. Низкообжиговые гипсовые вяжущие вещества получают при нагревании двухводного гипса CaSO4-2H2O до температуры 150...160°С с частичной дегидратацией двуводного гипса и переводом его в полуводный гипс CaSO4-5H2 Высокообжиговые (ангидритовые) вяжущие получают обжигом двуводного гипса при более высокой температуре до 700... 1000°С с полной потерей химически связанной воды и образованием безводного сульфата кальция - ангидрита CaSO4. К низкообжиговым относится строительный, формовочный и высокопрочный гипс, а к высокообжиговым - ангидритовый цемент и эстрихгипс. При затворении порошка гипса водой полуводный сернокислый кальций CaSO4-05H2O, содержащийся в нем, начинает растворяться до образования насыщенного раствора и одновременно гидратироваться. В результате образовавшийся насыщенный раствор полугидрата оказывается пересыщенным по отношению к двугидрату. Пересыщенный раствор в обычных условиях не может существовать - из него выделяются мельчайшие частицы твердого вещества - двуводного сернокислого кальция. По мере накопления этих частиц они склеиваются между собой, вызывая загустевание (схватывание) теста. Затем мельчайшие частицы гидрата начинают кристаллизоваться, определяя этим образование прочного гипсового камня. Дальнейшее увеличение прочности гипса происходит вследствие высыхания твердеющей массы и более полной кристаллизации при этом. Твердение гипса можно ускорить сушкой, но при температуре не выше 65°С во избежание обратной дегидратации двуводного гипса. Применяется гипсовое вяжущее для производства гипсовых и гипсобетонных строительных изделий для внутренних частей зданий (перегородочных плит, панелей, сухой штукатурки, приготовления гипсовых и смешанных растворов, производства декоративных и отделочных материалов, например искусственного мрамора), а также для производства гипсоцементно-пуццолановых вяжущих. Жимдкое стеклом - водный щелочной раствор силикатов натрия Na2O(SiO2)n и (или) калия K2O(SiO2)n[1]. Реже в качестве жидкого стекла используют силикаты лития, например, в электродном покрытии. В настоящее время изготовляется путем обработки в автоклаве кремнезёмсодержащего сырья концентрированными растворами гидроксида натрия или сплавлением кварцевого песка с содой. Известны также способы получения жидкого стекла, основанные на прямом растворении кремнистого сырья Областей применения жидкого стекла очень много. Его, в частности, применяют для изготовления кислотоупорного и гидроупорного цемента и бетона, для пропитывания тканей, приготовления огнеупорных красок и покрытий по дереву (антипирены), укрепления слабых грунтов, в качестве клея для склеивания целлюлозных материалов, в производстве электродов, при очистке растительного и машинного масла и др. Опоки, трепелы, диатомиты и др.) в растворах щелочей при атмосферном давлении и относительно невысокой температуре (температура кипения раствора щелочи). Процесс твердения растворимого стекла существенно ускоряется при повышении температуры и особенно при добавлении к нему веществ, ускоряющих гидролиз и выпадение геля кремниевой кислоты, например кремнийфтористого натрия. Кремнефторид натрия в воде гидролизуется

Na2SiF8 + 4Н 2О = Si(OH)4 + 2NaF + 4HF

а затем проходит реакцияHF + NaOH = NaF + Н.,0Образующийся при этом фтористый натрий мало растворим в воде, поэтому процесс расщепления силикатов жидкого стекла и выделения геля кремниевой кислоты (клеящего вещества) ускоряется, что приводит к быстрому твердению системы.

52. Гидравлические вяжущие вещества (реакции, протекающие при получении портландцемента, реакции, протекающие при затворении порталнцемента водой)

Сушки (температура материала 100…200 °C - здесь происходит частичное испарение воды); подогрева (200…650 °C - выгорают органические примеси и начинаются процессы дегидратации и разложения глинистого компонента). Например, разложение каолинита происходит по следующей формуле:

Al2O3•2SiO2•2H2O > Al2O3•2SiO2 + 2H2O;

далее при температурах 600…1 000 °C происходит распад алюмосиликатов на оксиды и метапродукты декарбонизации (900…1 200 °C) происходит декарбонизация известнякового компонента: СаСО 3 > СаО + СО 2, одновременно продолжается распад глинистых минералов на оксиды. В результате взаимодействия основных (СаО, MgO) и кислотных оксидов (Al2O3, SiO2) в этой же зоне начинаются процессы твердофазового синтеза новых соединений (СаО• Al2O3 - сокращённая запись СА, который при более высоких температурах реагирует с СаО и в конце жидкофазового синтеза образуется С 3А), протекающих ступенчато; экзотермических реакций (1 200…1 350 °C) завершится процесс твёрдофазового спекания материалов, здесь полностью завершается процесс образования таких минералов как С 3А, С 4АF (F - Fe2O3) и C2S (S - SiO2) - 3 из 4 основных минералов клинкера; спекания (1 300>1 470>1 300 °C) частичное плавление материала, в расплав переходят клинкерные минералы кроме C2S, который взаимодействуя с оставшимся в расплаве СаО образует минерал АЛИТ (С 3S) охлаждения (1 300…1 000 °C) температура понижается медленно. Часть жидкой фазы кристаллизуется с выделением кристаллов клинкерных минералов, а часть застывает в виде стекла. Химические реакции. Сразу после затворения цемента водой начинаются химические реакции. Уже в начальной стадии процесса гидратации цемента происходит быстрое взаимодействие алита с водой с образованием гидросиликата кальция и гидроксида:

2(3CaOЧSiO2) + 6Н 2О = 3CaOЧ2SiО 2Ч3H2О + ЗСа(ОН)2.

После затворения гидроксид кальция образуется из алита, так как белит гидратируется медленнее алита и при его взаимодействии с водой выделяется меньше Са(ОН)2, что видно из уравнения химической реакци

и:

2(2CaOЧSiO2) + 4Н 2О = 3CaOЧ2SiO2Ч3H2O + Са(ОН)2.

Взаимодействие трехкальциевого алюмината с водой приводит к образованию гидроалюмината кальция:

ЗСаОЧА 12О 3 + 6Н 2О = ЗСаОЧА 12О 3Ч6Н 2О.

Для замедления схватывания при помоле клинкера добавляют небольшое количество природного гипса (3-5% от массы цемента). Сульфат кальция играет роль химически активной составляющей цемента, реагирующей с трехкальциевым алюминатом и связывающей его в гидросульфоалюминат кальция (минерал эттрингит) в начале гидратации портландцемента:

ЗСаОЧА 12О 3 + 3(CaSO4Ч2H2O) + 26Н 2О = 3CaOЧAl2O3Ч3CaSO4Ч32H2O.

В насыщенном растворе Са(ОН)2 эттрингит сначала выделяется в коллоидном тонкодисперсном состоянии, осаждаясь на поверхности частиц ЗСаОЧА 12О 3, замедляет их гидратацию и затягивает начало схватывания цемента. Кристаллизация Са(ОН)2 из пересыщенного раствора понижает концентрацию гидроксида кальция в растворе, и эттрингит уже образуется в виде длинных иглоподобных кристаллов. Кристаллы эттрингита и обусловливают раннюю прочность затвердевшего цемента. Эттрингит, содержащий 31-32 молекулы кристаллизационной воды, занимает примерно вдвое больший объем по сравнению с суммой объемов реагирующих веществ (С 3А и сульфат кальция). Заполняя поры цементного камня, эттрингит повышает его механическую прочность и стойкость. Структура затвердевшего цемента улучшается еще и потому, что предотвращается образование в нем слабых мест в виде рыхлых гидроалюминатов кальция. Четырехкальциевый алюмоферрит при взаимодействии с водой расщепляется на гидроалюминат и гидроферрит:

4СаОЧА 12О 3ЧFе 2О 3 + mЧН 2О = ЗСаОЧА 12О 3Ч6Н 2О + CaOЧFe2O3ЧnH2O.

53. Виды коррозии бетона: физическая, химическая (углекислотная, магнезиальная, сульфатная, щелочная, кислотная, газовая)

К числу физических факторов, вызывающих коррозию цементного камня и бетона, относят их попеременное увлажнение и высыхание, которое сопровождается деформациями усадки и набухания материала, отложение растворимых солей в порах цементного камня, попеременное замерзание и оттаивание бетона, особенно в водонасыщенном состоянии. Солевая форма коррозии (III вид коррозии). Отложение солей в порах цементного камня возможно и при химической коррозии, сопровождающейся, в частности, образованием гидротрисульфоалюмината кальция (эттрннгита), а также двуводного гипса. В чистом виде солевая форма физической коррозии проявляется в том случае, когда благодаря капиллярному подсосу солевые растворы систематически проникают в поры цементного камня при одновременном испарении из них воды. Концентрация солевых растворов постепенно возрастает до насыщенного состояния, после чего начинается выделение кристаллов, при определенных условиях до предела заполняющих поры. Такой процесс сопровождается сильным давлением кристаллов на стенки пор и капилляров и возникновением напряжений, вызывающих деформации в цементном камне и бетоне и даже их разрушение. Углекислотная коррозия. Углекислый газ СО 2, находящийся в воздухе, растворяется в воде, образуя угольную кислоту Н 2СО 3. При наличии в воде достаточного количества карбоната кальция СаСО, чтобы нейтрализовать угольную кислоту, Н 2СО 3 и СаСО 3 должны находиться в равновесном состоянии: СаСО 3 + Н 2СО 3 <-> Са (НСО 3)2. Эта угольная кислота не является агрессивной по отношению к цементному камню. Если количество углекислоты больше, чем равновесное, она становится агрессивной и способна разрушить цементный камень по реакциям:

Са (ОН)2 + Н 2СО 3 = СаСО 3 + 2Н 2О;СаСО 3 + Н 2СО 3 = Са (НСО 3)2.

Гидрокарбонат кальция легко растворяется и вымывается водой. Углекислотная коррозия происходит в результате действия растворов неорганических и органических кислот при их рН < 7. Не входят сюда кремнефтористо-водородная и поликремниевые кислоты. Кислоты содержатся в сточных, болотных водах; в выбросах промышленных предприятий может быть сернистый газ, хлор и другие, образующие с водой кислоты. Кислоты взаимодействуют с гидроксидом кальция, в результате чего получаются бессвязные кальциевые соли, легко вымываемые водой. Например, при действии соляной кислоты НСI на цементный камень получается растворимый хлорид кальция:

Са (ОН)2 + 2НСl = СаСl2 + 2Н 2О.

Органические кислоты - азотная, уксусная, молочная, винная, олеиновая, гуминовая, фульвовая и другие - также разрушают цементный камень. Магнезиальная коррозия. Чисто магнезиальная коррозия происходит при действии магнезиальных солей, кроме МgSО 4. Например, в морской воде содержится хлорид магния МgСI2, который взаимодействует с цементным камнем по реакции:

Са (ОН)2 + МgСl2 = СаСl2 + Mg(OH)2.

Образуется растворимый хлорид кальция и бессвязный гидроксид магния. Коррозия становится заметной при содержании в воде МgСI2 более 1,5-2%.Для защиты от коррозии второго вида следует применять плотные бетоны, делать пропитку бетона эпоксидными, полиэфирными и другими смолами, устраивать защитные покрытия. Сульфатная коррозия бетона (коррозия кристаллизации) - возникает при действии на бетон природных вод, содержащих сульфаты. Разрушение проявляется в виде разбухания и искривления конструктивных элементов. В этом случае не происходит удаления составляющих из объема цементного камня, а наоборот, в результате химических реакций между цементным камнем и веществами, поступающими из внешней среды, образуются новые соединения, объем которых больше объема цементного камня. Характерным примером такой коррозии является образование гидросульфоалюмината кальция, названного "Цементной бациллой". При наличии в цементе выше 0,6 % водорастворимых щелочных соединений (в пересчете на Na2О и К 2О) или при введении в бетонную смесь соответствующих количеств добавок - солей щелочных металлов и слабых кислот - они взаимодействуют с аморфным реакционноспособным кремнеземистым заполнителем - опаловидным кремнеземом с образованием растворимых силикатов натрия и калия. Это приводит к разрушению бетона продуктами реакции по механизму щелочной коррозии. Поэтому противоморозные добавки, содержащие гидролизующиеся соли натрия и калия - нитрит натрия и особенно поташ, запрещается применять в тех случаях, когда возникает опасность такого разрушения бетона. Сочетание этих добавок с пластифицирующими, суперпластификаторами или с воздухововлекающими (либо газообразующими) хотя и несколько снижает скорость щелочной коррозии бетона, не решает этой проблемы, т. е. не снимает приведенных ограничений на применение нитрита натрия и поташа. Коррозия бетона кислотная - разрушение бетона в результате взаимодействия его компонентов с кислотами. Кислоты могут разрушать цементный камень и карбонатный заполнитель. Соединения цементного камня, будучи основными по своей хим. природе, взаимодействуют с кислотами; при этом силикаты, алюминаты и алюмоферриты кальция разлагаются с образованием соответствующей соли кальция и несвязанных масс кремнекислоты, гидроксида алюминия и соединений железа. Газовая коррозия бетона в основном протекает из-за содержания в воздухе углекислого газа.

54. Методы защиты бетона от коррозии

Для защиты бетона и повышения его долговечности вам следует применять первичную и вторичную защиту. К методам первичной защиты относится введение различных модифицирующих добавок. Они могут быть пластифицирующие (увеличивающие), стабилизирующие (предупреждающие расслоение), водоудерживающие, а также регулирующие схватывание бетонных смесей, их плотность, пористость и т. д. К методам вторичной защиты относится нанесение различных защитных покрытий: Биоцидные материалы - уничтожают и подавляют грибковые образования на бетонных конструкциях. Принцип действия заключается в проникновении химически активных элементов в структуру бетона, и заполнении ими микротрещин и пор. Оклеечные покрытия - применяются при воздействии жидких сред (к примеру, если бетонная свая подтапливается подземными водами), в грунтах, а также в качестве непроницаемого подслоя в облицовочных покрытиях. Это могут быть рулоны нефтебитума, полиэтиленовая плёнка, полиизобутиленовые пластины и т. п. Уплотняющие пропитки - придают бетону высокие гидрофобные свойства, резко повышают водонепроницаемость и снижают водопоглощение материала. Благодаря этим свойствам их применяют в условиях повышенной влажности и в местах, где присутствует необходимость обеспечения специальных санитарно-гигиенических требований. Лакокрасочные и акриловые покрытия - образуют атмосферостойкую, прочную и долговечную защиту. Так, например, акрил предотвращает разрушение, создавая полимерную пленку. Еще одним плюсом подобного метода борьбы с коррозий является защита поверхности от грибков и микроорганизмов. Лакокрасочные мастичные покрытия - используются при воздействии жидких сред, а также при непосредственном контакте бетона с твердой агрессивной средой. Антикоррозийные покрытия можно применять везде, где существует подобная необходимость для бетона. Конструкции из этого материала встречаются в полах и стенах жилых помещений, фундаменте, гаражных комплексах, оранжереях, теплицах, очистных сооружениях, коллекторах. Также при выборе защитных средств вам следует учитывать особенности воздействия среды, возможное физическое и химическое воздействие.

Размещено на Allbest.ru


Подобные документы

  • Периодический закон и Периодическая система химических элементов Д.И. Менделеева как основа современной химии. Исследования, открытия, изыскания ученого, их влияние на развитие химии и других наук. Периодическая система химических элементов и ее роль.

    реферат [38,8 K], добавлен 03.03.2010

  • История открытия периодического закона Д.И. Менделеева, его авторская и современная формулировка. Важнейшие направления развития химии на основе данного закона. Структура системы химических элементов. Строение атома, основные положения его ядерной модели.

    презентация [3,1 M], добавлен 02.02.2014

  • Электронное строение атомов элементов периодической системы. Устойчивость электронных конфигураций. Характеристика семейств элементов. Изучение принципа наименьшей энергии и правила Хунда. Порядок заполнения атомных орбиталей в основном состоянии атома.

    презентация [676,5 K], добавлен 22.04.2013

  • Зарождение химии в Древнем Египте. Учение Аристотеля об атомах как идейная основа эпохи алхимии. Развитие химии на Руси. Вклад Ломоносова, Бутлерова и Менделеева в развитие этой науки. Периодический закон химических элементов как стройная научная теория.

    презентация [1,8 M], добавлен 04.10.2013

  • Схематическое представление энергетических решений уравнения Шредингера для атома водорода. Строение многоэлектронных атомов, принцип Паули. Принцип наименьшей энергии, правило Хунда. Характеристика электронных уровней, их связь со свойствами элементов.

    презентация [344,1 K], добавлен 11.08.2013

  • Роль химии в развитии естественнонаучных знаний. Проблема вовлечения новых химических элементов в производство материалов. Пределы структурной органической химии. Ферменты в биохимии и биоорганической химии. Кинетика химических реакций, катализ.

    учебное пособие [58,3 K], добавлен 11.11.2009

  • Основные понятия и законы химии. Классификация неорганических веществ. Периодический закон и Периодическая система элементов Д.И. Менделеева. Основы термодинамических расчетов. Катализ химических реакций. Способы выражения концентрации растворов.

    курс лекций [333,8 K], добавлен 24.06.2015

  • Формулировка периодического закона Д. И. Менделеева в свете теории строения атома. Связь периодического закона и периодической системы со строением атомов. Структура периодической Системы Д. И. Менделеева.

    реферат [9,1 K], добавлен 16.01.2006

  • Развитие периодического закона в XX веке. Периодические свойства химических элементов: изменение энергии ионизации, электроотрицательности, эффекты экранирования и проникновения. Изменение величин атомных и ионных радиусов. Общие сведения о неметаллах.

    презентация [155,9 K], добавлен 07.08.2015

  • Основные классы неорганических соединений. Распространенность химических элементов. Общие закономерности химии s-элементов I, II и III групп периодической системы Д.И. Менделеева: физические, химические свойства, способы получения, биологическая роль.

    учебное пособие [3,8 M], добавлен 03.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.