Химия и физика молока
Химический состав молока, факторы, влияющие на его состав и свойства. Природные и синтетические антиокислители. Физические свойства молока. Фракционный состав и физико-химические свойства казеина. Структура белков и органолептические свойства молока.
Рубрика | Химия |
Вид | курс лекций |
Язык | русский |
Дата добавления | 19.01.2016 |
Размер файла | 145,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Повышению окислительно-восстановительного потенциала, т. е. усилению окислительных свойств молока, способствуют металлы (Сu, Fe) и аэрация (перемешивание). От величины окислительно-восстановительного потенциала зависят интенсивность протекания в молочных продуктах (сыры, кисло-молочные продукты) биохимических процессов, (протеолиз, распад АК, лактозы, липидов) и накопление ароматических веществ (диацетила).
Возникновение пороков в молоке и молочных продуктах таких пороков вкуса, как окисленный, металлический и салистый привкусы, обусловлены повышением окислительно-восстановительного потенциала среды.
Значение рН в молочной промышленности
От величины рН зависят многие производственные показатели:
-- коллоидное состояние белков молока и сл-но стабильность полидисперсной системы молока;
-- условия роста полезной и вредной микрофлоры с ее влиянием на процессы созревания;
-- скорость образования типичных компонентов вкуса и аромата отдельных молочных продуктов;
-- состояние равновесия между ионизированным и коллоидно распределенным фосфатом кальция и обусловленное этим термоустойчивость белковых веществ;
-- активность нативных и бактериальных ферментов;
-- очищающе-дезинфицирующая способность различных моющих и дезинфицирующих средств;
-- коррозийное действие золей и моющих растворов, а также степень загрязненности сточных вод молочных предприятий.
РН для сырого молока -- показатель качества, а для молочных продуктов являются показателем качества и фактором управления производственным процессом.
рН -- как показатель качества. Установлен достаточно четко, тем не менее применение рН в качестве показателя качества еще не в полной мере предусмотрено национальными стандартами отдельных стран. В мировом масштабе наблюдается тенденция к включению рН молочных продуктов, главным образом сычужных сыров, в оценку их качества. Молочные продукты удовлетворительного качества характеризуются определенным значением рН, например, цельное молоко -- 6,6 -- 6,8; сгущенное -- 6,1 -- 6,4; йогурты -- 4,0 -- 4,3; творожная сыворотка -- 4,3 -- 4,6 и т. д.
По величине рН можно судить о способности молока к свертыванию:
маститное молоко -- 6,8;
нормальное свежее -- 6,6 -- 6,8;
начинающее скисать -- 6,3;
свертывание при нагревании -- 5,7;
свертывание с образованием сгустка -- 5,3 -- 5.5.
Величина рН меняется при внезапных колебаниях температуры, причем перепад температуры вызывает отклонение рН в кислую зону. Внезапное повышение температуры ведет к отклонению рН в щелочную зону.
рН -- как фактор управления производственным процессом.
При различных технологических процессах рекомендуется следить за изменением величины рН, т. к. от этого зависят качество и выход готового продукта. Например, при регулировании созревания сливок при производстве кислосливочного масла требуемая величина рН должна лежать в пределах 4,7 -- 4,95. Если она сокращена, то продукт переквашен, появляется порок -- кислый металлический привкус, если превышено рН, то образуется недостаточное количество диацетила -- порок пустой, творожный вкус; или сычужное свертывание проводят при рН 6,1 -- 6,4; в свежем сыре 4,7 -- 5,3; зрелый сыр -- 5,2 -- 57; сокращении или превышения вызывает пороки консистенции и т. д.
Активность водородных ионов существенно влияет на жизненные функции микрофлоры. Оптимум роста микроорганизмов лежит в узком диапазоне рН, и его надо поддерживать на заданном уровне, особенно при подготовке необходимых питательных сред для микробиологического контроля качества и в целях создания наиболее благоприятных условий для роста микроорганизмов в системе биологического самоочищения сточных вод молочных предприятий.
Определение величины рН необходимо не только в целях поддержания оптимальной среды для роста м. о., но и для предотвращения микробиологических пороков качества. так удалось доказать, что развитие колоний черной плесени в сыре «Том Вандуз» происходит только при значении рН5,5.
Диапазон активности водородных ионов, который для микроорганизмов при биологическом самоочищении считается не опасным, лежит в пределах рН от 6,0 до 8,5. Более высокие и низкие значения рН могут привести к нарушениям в процессе биологического распада, особенно в том случае, если в отстойнике происходит быстрая смена сильно кислых и сильно щелочных сточных вод. Так как сточные воды с рН6,5 оказывают коррозийное действие на бетонные сооружения, то остается только узкий диапазон рН от 6,5 до 8,5 при котором сточные воды молочных предприятий можно отводить в канализационную систему и отстойники, не боясь при этом их разрушающего действия.
Теплофизические и оптические свойства молока
1).Удельная теплоемкость.
2).Коэффициент теплопроводности и температуропроводности.
3).Показатель преломления.
Теплофизические свойства молока
Для расчетов затрат теплоты или холода на нагревание или охлаждение молока и молочных продуктов необходимо знать их теплофизические свойства. Наиболее важными из них являются удельная теплоемкость, коэффициенты теплопроводности и температуропроводности, которые связаны между собой соотношением а=(ср), где а -- коэффициент температуропроводности м2/с, -- коэффициент теплопроводности, ВТ/(мк), С -- удельная теплоемкость, ДЖ/(кгк) ; р -- плотность продукта; кг/м3
Теплофизические свойства молока и молочных продуктов зависят от температуры, содержания сухих веществ (главным образом от количества и дисперсности), воды и т. д.
Удельная теплоемкость цельного молока в интервале температур 273--333 К (0--60оС) изменяется незначительно, она является постоянной и равна 3900 ДЖ(кгк) или 3,9 КДЖ/(кгк). Удельная теплоемкость сливок уменьшается с увеличением жирности.
Удельная теплопроводность молочных продуктов
Наименование |
С, ДЖ(кгк) |
.ВТ(м.к) |
а108м2С |
|
Молоко сухое цельное пленочной сушки |
2093 |
0,16 |
13,1 |
|
распылительной сушки |
1926 |
0,19 |
15 |
|
сухое обезжиренное |
1717 |
0,12 |
12,5 |
|
Масло, полученное методом сбивания |
5129 |
0,2 |
4,7 |
|
полученное методом преобразования высокожирных сливок |
5200 |
0,2 |
4,3 |
|
Творог жирный |
3266 |
0,43 |
12,4 |
|
Сыр |
2428 |
0,35 |
13,3 |
|
Пахта |
3936 |
0,45 |
11,4 |
|
Сыворотка молочная (0,25% жира) |
4082 |
0,54 |
12,8 |
Коэффициент теплопроводности молока при 20оС равен 0,5 Вт (м.к). Она увеличивается с повышением температуры и ее можно рассчитать по формуле
= 0,22+0,0011Т
Теплопроводность сливок увеличивается с повышением температуры и уменьшается с увеличением содержания жира. При температуре 273оК.. сливок как функцию жирности (в интервале от 20 до 45%) рассчитывают по формуле
= 0,36-0,0014Ж
Коэффициент температуропроводности. Он зависит от температуры, жирности, влажности, плотности и пористости пищевых продуктов. Коэффициент температуры молока при 20оС равен 1310-8м2/с. Его значение увеличивается с повышением температуры молока, что объясняется возрастанием при этом величины теплопроводности и уменьшением объемной теплоемкости, с которыми он связан зависимостью.
а = (ср)
В интервале температур 273-353 К а (в м2с) молока как и функцию температуры рассчитывают по формуле:
а108=4,1+0,0325Т
Коэффициент температуропроводности сливок уменьшается с увеличением жирности и возрастает с повышением температуры.
Показатель преломления -- представляет собой постоянную вещества при определенной температуре и определенной длине волны и служит для идентификации чистых жидкостей. Молоко непрозрачно из-за присутствия в ней жира и белка. Жировые шарики отражают большую часть падающего света, поэтому перед проведением рефрактометрических исследований следует удалить жир из молока. Но и казеин делает нечеткой разделительную линию в рефрактометре, и тоже влияет на результаты измерения.
Показатель преломления обезжиренного молока при 20оС колеблется от 1,344 до 1,348. Он складывается из показателей преломления воды (1,3329) и составных частей обезжиренного остатка молока -- лактозы, казеина, сывороточных белков, солей, небелковых азотистых соединений и прочих компонентов. Поэтому по величине показателя преломления молока и молочной сыворотки с помощью специальных рефрактометров можно контролировать содержание в молоке СОМО, белков, лактозы. Например, количество белков определяют по разности между показателями преломления исследуемого молока и его сыворотке после осаждения белков раствором СаСl2 при кипячении, а содержание СОМО -- по разности между показателями преломления молока и дистиллированной воды.
С помощью рефрактометрического метода можно осуществлять косвенный контроль натуральности молока. Показатель преломления (число рефракции) сыворотки, натурального молока является величиной относительно постоянной, равной 1,342-1,343. При добавлении к молоку воды число рефракции молочной сыворотки понижается пропорционально количеству добавленной воды -- в среднем на 0,2 единицы на каждый процент воды.
Большее значение имеют рефрактометрические исследования для определения числа преломления молочного жира, и следовательно, для быстрого нахождения йодного числа.
Изменение белков при различной обработке молока
1). Изменение структуры и свойств белков при гомогенизации.
2). Изменение структуры и свойств белков при новых методах обработки молока.
Гомогенизация оказывает сильное воздействие на молочный жир, но изменениям подвергаются белки и соли молока. В результате гомогенизации меняются и технологические свойства молока -- вязкость, кислотность, продолжительность сычужного свертывания, структурно-механические и синеретические свойства сычужных и кислотных сгустков, а также термоустойчивость гомогенизированных молочных эмульсий при последующей тепловой обработке.
Гомогенизация применяется для диспергирования жировой фазы молока. При гомогенизации цельного молока и сливок на вновь образующейся поверхности жировых шариков адсорбируются белки молочной плазмы и их фрагменты.
Об этом свидетельствуют данные, представленные в таблице.
Массовая доля белков, %
Компонент |
До гомогенизации |
После гомогенизации |
|||
Оболочка жирового шарика |
Плазма молока |
Оболочка жирового шарика |
Плазма молока |
||
Белок |
4,3 |
96,6 |
8 |
92 |
|
Фосфопетиды |
67,4 |
32,6 |
54,1 |
45,9 |
|
Холестерон |
86 |
14 |
70,2 |
29,8 |
|
Кислая фосфатиз. |
72,7 |
27,3 |
36,0 |
63,1 |
Дисперование казеина в цельном гомогенизированном молоке может быть вызвано только действием адсорбционных сил, возникающих при увеличении поверхности жировой фазы, а гидромеханические силы в клапанной щели гомогенизатора на казеиновые мицеллы не действуют.
В процессе гомогенизации меняется форма и структура казеиновых мицелл, они приобретают неровные края, их поверхность как бы разрыхляется, оголяются гидрофобные участки, при этом происходит как диспергирование, так и агрегирование частиц.
Поверхностная денатурация сопровождается необратимыми изменениями четвертичной, третичной и вторичной структур белковых молекул. Поверхностная денатурация оболочечного казеина сопровождается некоторым понижением его термоустойчивости, что может привести к снижению тепловой стабильности гомогенизиров. в/ж молочных эмульсий.
Если предположить, что на жировых шариках после гомогенизации адсорбируются не целые мицеллы, а их фрагменты и субмицеллы, то преобладание в оболочечном белке __-казеина можно объяснить двумя причинами. Во-первых, при гомогенизации разрушаются в основном крупные мицеллы, которые содержат больше ___-казеина. Во-вторых, __-казеин характеризуется высокой способностью адсорбироваться на жировых шариках вследствие наличия гидрофобного __-конусового пептида, содержащего 23АК остатка. Также адсорбиционной способностью обладает и __-казеин, содержание его в хранившем молоке увеличивается.
В состав оболочек жировых шариков кроме казеина и входят сыворотные белки, которые вовлекаются на поверхность шариков после денатурации и комплексообразования с казеином. Особенно такое состояние характерно для гомогенизированного пастеризованного молока, где от____ более высокая степень адсорбулина жировыми шариками молочных белков.
Во время гомогенизации имуноглобулина взаимодействуют с ___-казеином, что влияет на потерю способности молока аглютгенировать жировые шарики после гомогенизации. Сывороточные белки непрочно закреплены во внешнем слое оболочек и легко удаляются из него при промывке жировых шариков.
Таким образом, не все белки подвергаются изменению, меняются оболочные белки, а белки плазмы структуру и свойства не меняют, но некоторая их часть расходуется на построение оболочек жировых шариков. Это казеин, его крупные мицеллы. Таковые изменения белков, изменение солевого баланса молока влияют на термоустойчивость, способность образовывать сгустки и другие технологические свойства гомогенизирования молочных продуктов.
Гомогенизация молочного сырья наряду с положительными сторонами -- снижением продолжительности сычужного свертывания и потерь жира с сывороткой; имеет ряд недостатков -- уменьшается прочность получаемых сычужных и кислотных сгустков, снижает скорость синере_иса, увеличивает потери белка при обработке сырного серна и др. Для устранения этих недостатков рекомендуется раздельная гомогенизация, а также модифицирование состава оболочек жировых шариков путем внесения в молоко казеина, натрия и других белковых добавок.
После гомогенизации тепловая стабильность молочных эмульсий понижается и тем значительнее, чем выше содержание жира в эмульсии и давление гомогенизации и чем ниже температура гомогенизации.
Гомогенизация не изменяет тепловую стабильность молочной плазмы. Термоустойчивость гомогенизированных эмульсий объясняется устойчивостью жировых шариков.
Тепловая коагуляция гомогенизированных молочных эмульсий объясняется тем, что здесь в роли коагулянтов выступают не казеиновые мицеллы, а жировые шарики, содержащие основной компонент -- казеин. В начале нагревания молочной эмульсии первыми теряют свою стабильность сывороточные белки, которые после агрегации осаждаются вместе с коллоидным фосфатом кальция на оболочках жировых шариков и поверхности казеиновых мицеллы образуя плиты, далее изменяют казеин. В результате всех процессов поверхность жировых шариков и казеиновых мицелл теряет гидратную оболочку и агрегируют. Для повышения __-устойчивости гомогенизир. молочной эмульсии.
-- рекомендуется использовать свежее молоко и сливки;
-- правильно подбирать режимы (температуру и давление) гомогенизации;
-- внесение ПАВ перед гомогенизацией в молоко и сливки с целью изменения качественного состава и структуры адсорбиционных оболочек жировых шариков;
-- т. е. при этом снижается адсорбция на поверхности жировых шариков белков плазмы и получают более стабильные системы.
2. Перспективные способы обработки молока -- мембранные методы.-- Ультрафильтрация. Используют при производстве концентратов сывороточных белков, сыров, творога, к/м напитков и других молочных продуктов.
УФ-молока при производстве сыров, вызывает особые трудности, связанные с изменениями свойств молочных белков. УФ-молока перед сычужным свертыванием экономически целесообразна, т. к. оно позволяет стандизировать содержание белка в исходном молоке и сокращать расход сычужного фермента и потери белка с сывороткой, способствует повышению выхода сыра. Но такое достигается, если низкая и средняя степени концентрирования (в 2 раза при выработке твердых сычужных сыров и в 3,5-4,5 раза при производстве мягких сыров). Если молоко концентрируется в 5 и более раз, то при этом снижается скорость синередиса сгустков и ухудшение консистенции и вкуса сыра, вследствие внедрения в структуру сгустка сывороточных белков.
Наиболее эффективно процесс гомообразования проходит при содержания 1_-15% белков в молочной смеси, при этом сокраается расход сычужного фермента без существенного увеличения продолжительности свертывания и ухудшения структурно-механических составов сгустка.
Перспективным является применение УФ-концентрата молока при выработке к/м продуктов. Однако внедрение мембранной технологии для обработки молока ограничено из-за высокой стоимости оборудования; трудностей, связанных с очисткой мембран и пр. Используют УФ и диафильтрации при обработке молочной сыворотки -- и получают концентраты сывороточных белков с различными белково-углеводным и минеральным составом.
Переработка молочного сырья на основе безмембранного ___
Способ основан на самопроизвольном разделении двухфазной системы биополимеров (обезжиренное молоко -- раствор полисахарида) на две фазы: нижнюю -- концентрат казеина и верхнюю -- безказеиновая фаза -- жидкий структурирующий пищевой концентрат.
При этом казеин концентрируется в 5-7 раз не изменяя своего растворимого коллоидного состояния, по технологическим и функциональным свойствам он подобен казеинату натрия. его можно использовать в качестве белковых добавок, эмульгатора и стабилизатора коллоидных систем.
Структурирующий пищевой концентрат представляет собой растворимый комплекс сывороточных белков и углеводов (лактозы и поинсахаридов), обладающий высокими студнеобразующими и пенообразующими свойствами. С целью повышения биологической ценности и увеличения сроков хранения его применяют в производстве мороженого, кремов суфле и других структурированных пищевых продуктов.
В качестве полисахарида использовали пектин, или метилцеллюлозу.
Фракционный состав казеина
1). Характеристика основных фракций.
2). Физико-химические свойства казеина.
В свежевыдоенном молоке казеин присутствует в форме мицелл, построенных из казеиновых комплексов. Казеиновый комплекс состоит агломерата (скопления) основных фракций: , , Y, Н -казеинов, которые имеют несколько генетических вариантов.
Согласно последним данным казеин можно разделить по схеме (рис.1), составленной на основе ревизии комитета по номенклатуре и методологии белков ассоциации американских ученых в области молочной промышленности.(ADSA).
Все фракции казеина содержат фосфор, в отличие от сывороточных белков. Группа s-казеинов обладает наибольшей электрофоретической подвижностью из всех казеиновых фракций.
s1-казеин -- основная фракция s-казеинов. Молекулы s1-казеина состоят из простой номенклатурной цепи, содержащей 199 аминоклислотных остатков. Подобно -казеину и в отличие от Н-казеина не содержит цистин. s2-казеин -- фракция s-казеинов. Молекулы s2-казеина состоят из простой полептиптидной цепи, содержащей 207 аминокислотных остатков. Имеет свойства, общие как с s1-казеином, так и с Н-казеином. Подобно Н-казеину и в отличие от s1-казеина содержит два остатка цистеина:
s-казеин -- фракция s-казеинов. Содержание ее составляет 10% от содержания s1-казеина. Имеет структуру, идентичную структуре s1-казеина, за исключением расположения фосфатной группы.
-казеин, молекулы его состоят из простой политептидной цепи, содержат 209 аминокислотных остатков. Не имеет в своем составе цистеина и при концентрации ионов кальция, равной концентрации, их в молоке, нерастворим при комнатной температуре. Эта фракция наиболее гидрофобная, благодаря высокому содержанию пролина.
Н-казеин -- имеет хорошую растворимость, ионы кальция не осаждают его. При действии сычужного и других протеолитических ферментов Н-казеин -- распадается на пары -- Н-казеин, осаждающийся вместе с s1, s2 -- - казеинами. Н-казеин является фосфогликопротеидом: содержит -- триуглеводгалактозу, галактозамин и N-ацетил --нейралиновую (сиаловую) кислоту.
Группа -казеинов являются фрагментами -казеина, образовавшиеся путем протеолиза -казеина ферментами молока.
Сыворотные белки -- являются термолабильными. Начинают свертываться в молоке при температуре 69оС. Это простые белки, они построены практически только из аминокислот. Содержат в значительном количестве серосодержащие аминокслоты. Не коагулируют под действием сычужного фермента.
Лактоальбуминовая фракция -- это фракция термолабильных сывороточных белков, которая не осаждается из молочной сыворотки при полунасыщении ее сульфатом аммония. Она -- представлена -лактоглобулином и -лактоальбумином и альбумином сыворотки крови.
-лактоглобулин -- основной белок сыворотки. Нерастворим в воде, растворяется только в разбавленных растворах солей. Содержит свободные сульфгидрильные группы в виде остатков цистеина, которые участвуют в образовании привкуса кипяченого молока при тепловой обработке последнего. -лактоальбумин -- второй основной белок сыворотки. Выполняет особую роль в синтезе лактозы, является компонентом фермента лактозосинтетазы, который катализирует образование лактозы из уридин-дифосфатгалактозы и глюкозы.
Альбумин сыворотки крови попадает в молоко из крови. Содержание этой фракции в молоке коров, больных маститом, значительно больше, чем в молоке здоровых коров.
Иммуноглобулины -- это фракция термолобильных сывороточных белков, осаждаемая из молочной сыворотки при полунасыщении ее сульфатом аммония или насыщении сульфатом магния. Она является гликопротеидами. Объединяет группу высокомолекулярных белков, имеющих общие физико-химические свойства и содержащих антитела. В молозиве количество этих белков очень велико и составляет 50-75% от содержания всего белка молозива.
Иммуноглобулины очень чувствительны к нагреванию. Иммуноглобулин разделяют на три класса: Uг. , Ur M (M) и Ur А (А), а класс Ur в свою очередь делится на 2 подкласса: Ur (1) и Ur 2 (2).Основной фракцией иммуноглоубинов является Ur 1
Протеозо-пептонная фракция (20%) относится к термостабильным высокомолекулярным пептидам, которые не выпадают в осадок при выдерживании при 95оС в течение 20 мин. и последующем подкислении до рН 4,6, но осаждаются 12%-ной трихлоруксусной кислотой. Протеозо-пептонная фракция представляет собой смесь фрагментов молекул белков молока. Эта фракция является промежуточной между собственно белковыми веществами и полипептидами. Электрофорез в полиакриламидном Геле выявил около 15 электрофоретическки различных зон, основные из которых -- компоненты 3,5 и 8 -- характеризуются низким содержанием ароматических аминокислот и метионина и сравнительно высоким -- глутаминовой и аспаргиновой аминокислот. Содержат углеводы.
Физические свойства молока
1). Плотность, вязкость, поверхностное натяжение.
2). Осмотическое давление и температура замерзания.
3). Удельная электропроводность.
Плотность молока или объемная масса р при 20оС колеблется от 1,027 до1,032 г/см2, выражается и в градусах лактоденсиметра. Плотность зависит от температуры (понижается с ее повышением), химического состава (понижается при увеличении содержания жира и повышением при увеличении количества белков, лактозы и солей), а также от давления, действующего на него.
Плотность молока, определенная сразу же после доения ниже плотности, измеренной через несколько часов на 0,8-1,5 кг/м3. Это объясняется улетучиванием части газов и повышением плотности жира и белков. Поэтому плотность заготовляемого молока необходимо измерять не ранее чем через 2 часа после дойки.
Величина плотности зависит от лактационного периода, болезней животных, пород, кормовых рационов. Так. молозиво и молоко полученные от разных коров, имеют высокую плотность за счет повышенного содержания белков, лактозы, солей идругих составных частей.
Определяют плотность различными методами, технометрическими, ареометрическими и гидростатическими весами (плотность мороженого и молока в Германии).
На плотность молока влияют все его составные части -- их плотность, которые имеют следующую плотность:
г/см3
вода -- 0,9998; белок -- 1,4511; жир -- 0,931;
лактоза -- 1,545; соли -- 3,000.
Плотность молока изменяется от содержания сухих веществ и жира. сухие вещества повышают плотность, жир понижают. На плотность оказывают влияние гибратация белков и степень отвердевания жира. Последнее зависит от температуры, способа обработки и частично от механических воздействий. С повышением температуры плотность молока уменьшается. Это объясняется прежде всего изменением плотности воды -- главной составной части молока. В диапазоне температур от 5 до 40оС плотность свежего обезжиренного молока в пересчете на плотность воды с повышением температуры снижается сильнее. Такое отклонение не наблюдается в опытах с 5%-ным раствором лактозы.
Поэтому снижение плотности молока можно объяснить изменением гидратации белков. В диапазоне температур от 20 до 35оС можно наблюдать особенно сильное падение плотности сливок. Оно обусловлено фазовым переходом «твердый-жидкий» -- в молочном жире.
Коэффициент расширения молочного жира значительно выше, чем воды. По этой причине плотность сырого молока при колебаниях температуры изменяется сильнее, чем плотность обезжиренного молока. Эти изменения тем больше, чем выше содержание жира.
Между плотностью, содержанием жира и сухого обезжиренного остатка существует прямая связь. Так как содержание жира определяют традиционным методом, а плотность измеряют быстро ареометром, то можно быстро и просто рассчитать содержание сухих веществ в молоке без трудоемкого и длительного определения сухих веществ путем сушки при 105оС. Для чего используют формулы пересчета:
С=4,9Ж+А + 0,5; СОМО=Ж+А+ 0,76,
где С -- массовая доля сухих веществ, %
СОМО -- массовая доля сухого обезжиренного молочного остатка, %; Ж -- массовая доля жира, %; А -- плотность в градусах ареометра, (оА); 4.9, 4, 5; 0.5; 0.76 -- постоянные коэффициенты.
Плотность отдельных молочных продуктов как и плотность молока зависит от состава. Плотность обезжиренного молока выше, чем сырого и постоянные коэффициенты.
Плотность отдельных молочных продуктов как и плотность молока зависит от состава. Плотность обезжиренного молока выше, чем сырого и _________. С увеличением жира плотность сливок снижается. Устанавливать плотность твердых и пастообразных молочных продуктов труднее, чем жидких. У сухого молока различают фактическую плотность и насыпной вес. Для контроля фактической плотности используют специальные ---нометры. Плотность сливочного масла, как и сухого молока, зависит не только от количества влаги и сухого обезжиренного остатка, но и от содержания воздуха. Последний определяют флотационным методом. Это позволяет определить содержание воздуха в масле по его плотности. Метод этот приближенный, но на практике этого достаточно.
Плотность молока изменяется при фальсификации -- при добавлении Н2О понижается, и повышается при подснятии сливок или разбавлении обезжиренным молоком. Поэтому по величине плотности косвенно судят о натуральности молока при подозрении на фальсификацию. Однако молоко не удовлетворяющее требованиям ГОСТ 13264-88 по плотности, т. е. ниже 1,027 г/см3, но цельность которой подтверждена стойловой пробой, принимается как сортовое.
Вязкость или внутреннее трение, нормального молока при 20оС в среднем составляет 1,810-3Па.с. Она зависит главным образом от содержания казеина и жира, дисперсности мицелл казеина и шариков жира, степени их гидратации и агрегирования сывороточные белки и лактоза незначительно влияют на вязкость.
В процессе хранения и обработки молока (перекачивание, гомогенизация, пастеризация и т. д.) вязкость молока повышается. Это объясняется увеличением степени диспергирования жира, укрупнением белковых частиц, адсорбцией белков на поверхности шариков жира и т. д.
Практический интерес представляет вязкость сильноструктурированных молочных продуктов -- сметаны, простокваши, кисломолочных напитков и пр.
Поверхностное натяжение -- молока ниже поверхностного натяжения Н2О (равно 510-3 н/м при t -20оС). Более низкое по сравнению с Н2О значение поверхностного натяжения объясняется наличием в молоке ПАВ -- фосфолипидов, белков, жирных кислот и т. д.
Поверхностное натяжение молока зависит от его температуры, химического состава, состояния белков, жира, активности липазы, продолжительности хранения, режимов технической обработки и т. д.
Так, поверхностное натяжение снижается при нагревании молока и особенно сильно при его ___лизе. так как в результате гидролиза жира образуют ПАВ -- жирные кислоты, ди- и моноглицериды, понижающие величину поверхностной энергии.
Температура кипения молока несколько выше Н2О вследствие наличия в молоке солей и отчасти сахара. Она равно 100,2оС.
Удельная электропроводность. Молоко -- плохой проводник тепла. Ее обуславливают главным образом ионы Cl-, Na+, K+, N. Электрически заряженные казеин, сывороточные белки. Она равна 4610-2 См. м-1 зависит от лактационного периода, породы животных и др. Молоко, полученное от животных, больных маститом, имеет повышенное электро_______________________
Осмотическое давление и температура замерзания. Осмотическое давление молока близко по величине к осмотическому давлению крови животного и в среднем составляет 0,66 мга. Оно обусловлено высокодисперсными веществами: лактозой и хлоридами. Белковые вещества, коллоидные соли незначительно влияют на осмотическое давление, жир практически не влияет.
Осмотическое давление рассчитывают по температуре замерзания молока, которая равна -0,54оС по формуле согласно законам Рауля и Вант-Гоффа
Росм. = t2,269/К,
где t -- понижение температуры замерзания исследуемого раствора; С; 2,269 -- осмотическое давление 1 моль вещества в 1 л раствора, мпа; К -- криоскопическая постоянная растворителя, для воды равна 1,86.
Следовательно: Р осм. =0,542,269/1,86+0,66 мпа.
Осмотическое давление молока, как и других физиологических жидкостей животных поддерживается на постоянном уровне. Поэтому при повышении в молоке содержания хлоридов в результате изменения физиологического состояния животного, особенно перед концом лактации или при заболевании, происходит одновременное снижение количества другого низкомолекулярного компонента молока -- лактозы.
Температура замерзания также постоянная физико-химическое свойство молока, т. к. оно обуславливается только истинно расторимыми составными частями молока: лактозой и солями, причем последние содержатся в постоянной концентрации. Температура замерзания колеблется в узких пределах от -0,51 до -0,59оС. Она изменяется в течение лактационного периода при заболевании животного и при фальсификации молока воды или соды. И вследствие отклонения приращения лактозы. В начале лактации температуры замерзания понижается (-0,564оС) в середине -- повышается (-0,55оС); в конце снижается (-0,581оС).
Зависимость температуры замерзания от изменения концентрации представлено на схеме.
Температура оС
1. Снижение концентрации в результате добавления Н2О |
0,00 |
Температура замерзания воды |
|
2. Фальсификация молока |
-0,48 |
Фальсифицированное молоко |
|
3. Температура замерзания молока, приближаемая к температуре замерзания воды |
-0,54 |
Температура замерзания нормального молока |
|
4. Увеличение концентрации в результате добавления нейтрализующих средств -- фальсификация молока температура замерзания продолжает снижаться |
-0,63 |
Молоко содержит посторонние соли, нейтрализующие средства |
Физико-химические свойства казеина
Около 95% казеина находится в молоке в виде сравнительно крупных коллоидных частиц -- мицелл -- которые имеют рыхлую структуру, они сильно гидратированы.
В растворе казеин имеет ряд свободных функциональных групп, которые обуславливают его заряд, характер взаимодействия с Н2О (гидрофильность) и способность вступать в химические реакции.
Носителями отрицательных зарядов и кислых свойств казеина является и Y-карбоксильные группы аспаргиновой и глютаминовой кислот, положительных зарядов и основных свойств -- -аминогрупп лизина, гуанидовые группы аргинина и имидазольные группы гистидина. При рН свежего молока (рН 6,6) казеин имеет отрицательный заряд: равенство положительных и отрицательных зарядов (изоэлектрическое состояние белка) наступает в кислой среде при рН 4,6-4,7; следовательно - но в составе казеина преобладают дикарбоновые кислоты, кроме того, отрицательный заряд и кислые свойства казеина усиливают гидроксильные группы фосфорной кислоты. Казеин принадлежит к фосфоропротеидам -- в своем составе содержит Н3РО4 (органический фосфор), присоединенную моноэфирной связью к остаткам серина:
NH OH
R CH - CH2 - O - P = O = О
C OH
O
Казеин серинфосфорная кислота
Гидрофильные свойства зависят от структуры, заряда молекул, рН среды, концентрации в ней солей, а также других факторов.
Своими полярными группами и пептидными группировками главных цепей казеин связывает значительное количество Н2О -- не более 2 ч. на 1 ч. белка, что имеет практическое значение, обеспечивает устойчивость частиц белка в сыром, пастеризованном и стерилизованном молоке; обеспечивает структурно-механические свойства (прочность, способность отделить сыворотку) кислотных и кислотно-сычужных сгустков, образующихся при выработке кисломолочных продуктов и сыра, т. к. в процессе высокотемпературной тепловой обработке молока денатурируется -лактоглобулин взаимодействуя с казеином и свойства гидрофильные казеина усиливаются: обеспечивая влагоудерживающую и водосвязывающую способность сырной массы при созревании сыра, т. е. консистенция готового продукта.
Казеин-амфотерин. В молоке он имеет явно выраженные кислые свойства.
NН2 NН+
R R
СООН СОО-
Его свободные карбоксильные группы дикарбоновых АК и гидроксильные группы фосфорной кислоты взаимодействуя с ионами солей щелочных и щелочноземельных металлов (Na+, K+, Ca+2 , Mg+2) образуют казеинаты. Щелочные растворители в Н2О, щелочноземельные нерастворимы. Казеинат кальция и натрия имеют большое значение при производстве плавленых сыров, при котором часть казеината кальция превращается в пластичный эмульгирующий казеинат натрия, который все шире используется в качестве добавки при производстве пищевых продуктов.
Свободные аминогруппы казеина взаимодействуют с альдегидом (формальдегид)
CH2OH
R - NH2 + 2CH2O R - N
CH2OH
Эту реакцию используют при определении белка в молоке методом формального титрования.
Взаимодействие свободных аминогрупп казеина (в первую очередь -аминогрупп лизина) с альдегидными группами лактозы и глюкозы объясняется первая стадия реакции меланоидинообразования
O
R - NH2 + C - R R - N = CH - R + H2O
альдозиламин
H
Для практики молочной промышленности особый интерес представляет прежде всего способность казеина к коагуляции (осаждению). Коагуляцию можно осуществить с помощью кислот, ферментов (сычужного), гидроколлоидов (пектин).
В зависимости от вида осаждения различают: кислотный и сычужный казеин. Первый содержит мало кальция, так как ионы Н2 выщелачивают его из казеинового комплекса, сычужный казеин -- это смесь наоборот казеината кальция и он не растворяется в слабых щелочах в противоположность кислотному казеину. Различают два вида казеина, получаемого осаждением кислотами: кисломолочный творог и казеин-сырец. При получении кисломолочного творога кислота образуется в молоке биохимическим путем -- культурами микроорганизмов, причем отделению казеина предшествует стадия гелеобразования. Казеин-сырец получают путем добавления молочной кислоты или минеральных кислот, выбор которых зависит от назначения казеина, так как под их воздействием структура осажденного казеина различна: молочнокислый казеин -- рыхлый и зернистый, сернокислотный -- зернистый и слегка сальный; соляно-кислый -- вязкий и резинообразный. При осаждении образуются кальциевые соли применяемых кислот. Труднорастворимый в воде сульфат кальция нельзя полностью удалить при промывке казеина. Казеиновый комплекс довольно термоустойчив. Свежее нормальное молоко с рН 6,6 свертывается при температуре 150оС -- за несколько секунд, при температуре 130оС более чем за 20 минут, при 100оС -- в течение нескольких часов, поэтому молоко можно стерилизовать.
С коагуляцией казеина связана его денатурация (свертывание), она появляется в виде хлопьев казеина, либо в виде геля. При этом хлопьеобразование получает название коагуляции, а гелеобразование -- свертывание. Видимым макроскопическим изменениям предшествуют субмикроскопические изменения на поверхности отдельных мицелл казеина, они наступают при следующих условиях
-- при сгущении молока -- казеин мицеллы образует слабо связанные друг с другом частицы. В сгущенном молоке с сахаром этого не наблюдается;
-- при голодании -- мицеллы распадаются на субмицеллы, шарообразная форма их деформируется;
-- при нагревании в автоклаве 130оС -- происходит разрыв главных валентных связей и увеличивается содержание небелкового азота;
-- при сушке распылительной -- форма мицелл сохраняется. при контактном способе -- форма их изменяется, что влияет на плохую растворимость молока;
-- при сублимационной сушке -- изменение незначительны.
Во всех жидких молочных продуктах видимая денатурация казеина крайне нежелательна.
В молочной промышленности явление коагуляции казеина вместе с сывороточными белками получают копреципитаты, используют СаСl2, NH2 и гидроокись кальция.
Все процессы денатурации казеина, кроме высаливания считаются необратимыми, но это верно только в том случае, если под обратимостью процессов понимается восстановление нативных третичной и вторичной структур белков молока. Практическое значение имеет обратимое поведение белков, когда они из осажденной формы могут переходить снова в коллоидно-дисперсное состояние. Сычужное свертывание в любом случае представляет собой необратимую денатурацию, так как при этом расщепляются главные валентные связи. Сычужные казеины не могут перейти вновь в первоначальную коллоидную форму. И наоборот, обратимость может способствовать гелеобразованию пара -- Н-казеина сублимационной сушки при добавлении концентрированного раствора поваренной соли. Обратим также процесс образования мягкого геля, обладающего тиксотропными свойствами, в УВТ-молоке при комнатной температуре. На начальной стадии легкое встряхивание приводит к пептизации геля. Осаждение кислоты казеина -- обратимый процесс. В результате добавления соответственного количества щелочи казеин в виде казеината снова переходит в коллоидный раствор. Хлопьеобразование казеина имеет также большое значение с точки зрения физиологии питания. Мягкий сгусток образуется при добавлении слабокислых компонентов, например, лимонной кислоты, или удалении части ионов кальция методом ионообмена, а также при предварительной обработке молока протеолептическими ферментами, т. к. такой сгусток образует в желудке тонкий мягкий сгусток.
Изменение жиров при хранении
Современные представления о механизме окисления жиров.
При неблагоприятных условиях хранения в жирах протекают различные процессы, отрицательно влияющие на их пищевые качества.
Большинство изменений жиров наступает в результате гидролитических и окислительных процессов.
Гидролитические процессы в жирах протекают под влиянием Н2О и фермента липазы, которая содержится в жирах, а также появляется в результате жизнедеятельности микроорганизмов, развивающихся в жире. Процесс гидролиза идет ступенчато, т.е. сначала триглицирид переходит в диглицирид, затем моноглицирид. При распаде моноглицирида образуются глицерин и свободные жирные кислоты.
СН2 ОСОR CH2OH CH2OH CH2OH
CHOCOR + H2O CHOCOR1 CHOCOR1 + H2O CHOH+ECOOH
CHOCOR2 CHOCOR2 CH2OCOR2 CH2OCOR2
диглицирид моноглицирид
СН2 СН2ОН или в общем виде
СНОН + Н2О СНOН+RСООН СН2 ОСОR
CH2OCOR2 CH2OH CHO...
CH2OH
Процесс гидролиза значительно ускоряется в присутствии щелочей, но при этом появляются свободные жирные кислоты, а их соли, которые называются мылом.
СH2OCOR CH2OH
CHOCOR1 + 3 NaOH CHOH + 3RCOONa
CH2OOR2 CH2OH
Свободные жирные кислоты отрицательно влияют на количество жира, особенно, если образуют низкомолекулярный (уксус, масло, валериана), появляется неприятный вкус и запах. По количеству свободных жирных кислот судят о свежести жира по такому показателю, как к. г. жира.
Окислительные процессы -- это глубокий распад с образованием перекисей альдегида, кетона, оксикислот и др. Жиры, вследствие особенностей их химической структуры, легко подвергаются автокислению молекулярным О2. Согласно теории Н. Н. Семенова, этот процесс осуществляется по пути медленно развивающихся разветвленных цепных реакций. Идет по следующей схеме зараж. RT
1) RH + O2 -- R + O' OН
св.ж. перек. R
Наиболее трудно протекает образование первого свободного радикала, поскольку оно требует значительной энергии для разрыва связей между атомами молекулы. Далее процесс окисления все усиливается и в него постепенно вовлекается огромное количество молекул. Чем больше ненасыщенных связей в жировых кислотах, тем быстрее она подвергается окислению. Например, линолевая кислота подвергается в 10-12 раз быстрее, чем онеиновая. Насыщенные кислоты окисляются намного медленнее, но тоже могут переходить в гидроперекиси. Глубина и скорость окислительных процессов находятся в прямой зависимости от количества входящих в жиры глициридов полипептидных ж.к., а также от интенсивности соприкосновения жира с воздухом от температуры.
2 этап: продолжение цепи: О2 - вступает во взаимодействие со св. R1.
R1 + O2 ROO1
- обр. перекисгесный радикал, который обладает сильными окислительными свойствами, поэтому он может вступать во взаимодействие с неокисленной молекулой...., отнимая H там, где связь слабая.
3 этап:
RH + ROO ROOH + R1
- гидроперекиси нестойкие соединения, она разрушается с образованием двух новых радикалов.
ROOH + RO1 + OH1,
которые открывают атом Н от окисляемого органического вещества RH, создавая радикал R1. Этот радикал начинает цепную реакцию по ранее указанной схеме. Процесс идет непрерывно до момента разрыва цепи в результате возникновения менее активного радикала, который не вступает в реакцию с молекулой исходного окисляющегося вещества. Указываемое явление наблюдается при использовании различных замедлителей процесса окисления, которые могут вызвать обрыв цепи. Этот процесс рекомбинаклей, т. е. объединение радикалов, в результате образуются недеятельные соединения:
1) R1 R1 R - R R1 + ROO1 ROOR
ROO1 + ROO ROOOOR
О начале и глубине окисления судят по перекисному числу. Перекисное число принято выражать в % 2. В свежем жире перекиси отсутствуют или их уровень редко достигает 0,03%. Однако, когда перекисное число превышает 0,03 и содержание перекисей доходит до 0,06, -- жир, хотя и не имеет органических изменений, уже не подлежит дальнейшему хранению. Жиры с перекисным числом от 0,06 до 0,1 относят к категории жиров сомнительной свежести, более 1,0 -- к категории испорченных.
Гидроперекисные соединения неустойчивые к распадению на кетоны, альдегиды, оксисоединения. Происходит ухудшение органических показателей, порча жиров - прогоркание. Прогоркание жиров может происходит в результате химических или биохимических процессов.
Химическое прогоркание развивается в результате длительного контакта жира с атмосферным воздухом вследствие плохих условий хранения, а биохимическое - в результате загрязнения жира микрофлорой. Для определения глубины химического прогоркания жира в последнее время все чаще используют методы количественного определения карбонильных соединений - альдегиды и кетонов.
Карбонильное число обозначает карбонильное соединение _________________ на 1 кг жира. Изменение органических свойств жира более точно определяется карбонильным числом, нежели п.ч. существует и другой вид прогоркания жиров - осаливание. Для осаливания характерно образование значительного количества оксисоединений, которые возникают в результате распада на свету первичных органических перекисей, а также появление окиси и гидроокиси свободных радикалов. Содержание оксигрупп определяют ацетильным числом. Образовавшиеся оксикислоты обеспечивают жиру салистую мазсобразную консистенцию с неприятным специфическим запахом и вкусом. Этот процесс характерен для сливочного топленого масла и маргарина. Поверхность белеет и приобретает запах сала. Процесс автоокисления жиров ускоряется в присутствии виола, света, катализаторов - цинка, свинец, олово, а также - белки, ферменты микроорганизмов.
Автоокислению подвергаются не только нейтральные жиры, но и фосфотиды, так как они содержат большое количество ненасыщенных жирных кислот. В результате прогоркания и осаливания жир теряет не только вкусовые, но биологическую ценность.
Еще до начала начинается разрушение каротиноидов и токофералов, жир теряет специфическую окраску, а также лишается ав___ и важных для организма веществ. В процессе автоокисления в первую очередь разрушаются полиненасыщенные жировые кислоты, самая активная часть триглицеридов и фосфоплиидов. Жир приобретает вредные свойства и опасны для здоровья человека.
В результате воздействия кислорода воздуха, окисление жиров может происходить на различных этапах его получения: при хранении сырья, в процессе извлечения жира при переработке, использовании упаковок, и соблюдении режимов хранения. Поэтому сырье должно использоваться высокого качества, зрелые семена растительных масел. Идеальный жир не должен иметь никаких признаков окислительной порчи, в нем не должно содержаться веществ, способных инициировать и катализировать процессы окисления. Более того, желательно, чтобы жир содержал достаточное количество присущих ему природных антиокислителей, которые должны повышать стойкость жира в хранении.
Это может быть достигнуто проведением определенных процессов производства жира -- извлечение его из сырья, рафинации жира. Вести процессы так, чтобы как меньше были бы потери этих веществ.
Так как действие кислорода воздуха происходит при хранении сырья в процессе извлечения жира из сырья при хранении, то должен осуществляться комплекс мероприятий, обеспечивающих защиту жира от окисления. -- Соблюдать условия извлечения хранения сырья, вести процессы непрерывным способом; использовать жиростойкие упаковочные материалы, влагонепроницаемость, паронепроницаемость и газонепроницаемость.
И фактор -- необходимое соблюдение режимов и условий хранений.
Гидролиз и окисление фосфолипидов
Лецитин, кефалин и другие наиболее неустойчивые липидные компоненты молока и молочных продуктов. Они изменяются при гидролизе и окислении. Гидролиз их происходит при выработке и хранении сыра, масла и кисломолочных продуктов. Они гидролизуются под действием фосфолипидных микроорганизмов с образованием _____________; высокомолекулярных насыщенных и ненасыщенных жировых кислот, фосфотидных кислот, азотистых оснований и других соединений. Далее эти вещества могут вовлекаться в различные вторичные реакции. Так, ненасыщенные жировые кислоты окисляются О2 воздуха с образованием перекисных и карбонильных соединений, которые ухудшают органические свойства молочных продуктов. Азотистые основания (хомеи, этаноламии) под действием бактериальных ферментов распадаются до триметиламина, ацетальдегида и NH3, влияющих на вкус и запах молочных продуктов. Для сыров, масла, кисломолочных продуктов гидролиз фосфолипидов нежелателен так как он обусловливает появление прогоркания и других посторонних привкусов. При их выработке надо использовать бактериальные закваски с низкой фосфолипазной активностью. В производстве мягких сыров, наоборот выгодно использовать культуры м. о., обладающих высокой фосфолипидной активностью.
Фосфолипиды легко окисляются О2 воздуха, особенности в присутствии металлов. Сначала окисляют фосфолипиды плазмы молока, затем оболочек жировых шариков. Активность обусловлена наличием п. ж. к. -- арахидоновой. Окисление их вызывает дистабилизацию жировой фауны (в оболочках образуют «дырки», через которые могут выходить жидкие ______________, а также способствует лучшей атакуемости жира липазами и кислородом воздуха.
Брожение молочного сахара
1). Виды брожения лактозы.
2). Химизм отдельных видов брожения.
3). Механизм образования диацетила, ацетоина, ацетальдегида.
В основе изготовления целого ряда молочных продуктов лежат процессы глубокого распада молочного сахара под действием микроорганизмом, называемые брожением. Вместе с тем процессы брожения сахара могут быть причиной порчи молочных продуктов (излишняя кислотность, вспучивание творога, сметаны, сыра и т. д.). Существует несколько типов брожения лактозы, различающихся составом конечных продуктов.
Начальным этапом всех типов брожения является расщепление молочного сахара на глюкозу и галактозу под действием лактозы. Далее брожению подвергается глюкоза. Галактоза не сбраживается, но при участии некоторых ферментов и после изомеризации в глюкозофосфат включается в схему превращения глюкозы.
Все типы брожения до образования пировиноградной кислоты идут с получением одних и тех же промежуточных продуктов и по одному тому же пути. Далее пировиноградная кислота превращается в конечные продукты брожения - масляную кислоту, пропион, уксусы, масляные, спирт и др. соединения. Это зависит от особенностей микроорганизма и условий среды.
Различают следующие виды брожения:
Молочнокислое брожение - является основным при изготовлении заквасок, сыра и кисломолочных продуктов, а молочнокислые бактерии - важная группа ____________ для молочной промышленности.
Оно выражается следующим суммарным уравнением:
С6H12O6 2Cн3H6O3 + H2O,
кроме молочной кислоты, образующей и побочные продукты брожения. Молочнокислые бактерии по характеру продуктов сбраживания глюкозы относят к гомоферментативным или гетероферментативным. Первые образуют в основном молочную кислоту (более 90%) и незначительное количество побочных продуктов. Гетероферментативные бактерии около 50% глюкозы превращают в молочную кислоту, а остальное количество -- в этиловый спирт, CH3СООН и СО2. Это деление условное, т.к. обе группы могут вести себя как одни, так и другие.
Подобные документы
Изучение биохимической ценности молока и функций его белков. Анализ химических изменений белков молока при гидролизе. Аминокислотный, липидный, витаминный, углеводный, минеральный состав молока. Химические свойства казеина. Молоко в питании человека.
курсовая работа [61,1 K], добавлен 28.12.2010Оценка сложившегося административно-территориального устройства России. Исследование белков. Классификация белков. Состав и строение. Химические и физические свойства. Химический синтез белков. Значение белков.
реферат [537,6 K], добавлен 13.04.2003Хімічний склад, фізико-хімічні властивості та значення кислотності молока. Визначення титрованої кислотності незбираного молока. Залежність між активною та титрованою кислотністю продукту. Методика та послідовність визначення кислотності молока.
курсовая работа [35,4 K], добавлен 13.12.2015Строение и физико-химические свойства лактоферрина. Методы рентгеновской и оптической дифракции. Ознакомление с условиями проведения гель-хроматографии белков. Анализ олигомерных форм лактоферрина методами гель-хроматографии, светорассеяния и аббеляции.
дипломная работа [1,1 M], добавлен 28.04.2012История получения алюминия, его физические и химические свойства, химический состав, нахождение в природе и производство. Применение в качестве восстановителя, в ювелирных изделиях, стекловарении. Сплавы на основе алюминия, алюминий как добавка в сплавы.
реферат [33,6 K], добавлен 03.05.2010Физические свойства элементов главной подгруппы III группы. Общая характеристика алюминия, бора. Природные неорганические соединения углерода. Химические свойства кремния. Взаимодействие углерода с металлами, неметаллами и водой. Свойства оксидов.
презентация [9,4 M], добавлен 09.04.2017Строение и общие свойства аминокислот, их классификация и химические реакции. Строение белковой молекулы. Физико-химические свойства белков. Выделение белков и установление их однородности. Химическая характеристика нуклеиновых кислот. Структура РНК.
курс лекций [156,3 K], добавлен 24.12.2010Сущность и состав кислот, их классификация по наличию кислорода и по числу атомов водорода. Определение валентности кислотных остатков. Виды и структурные формулы кислот, их физические и химические свойства. Результаты реакции кислот с другими веществами.
презентация [1,7 M], добавлен 17.12.2011Общая характеристика меди. История открытия малахита. Форма нахождения в природе, искусственные аналоги, кристаллическая структура малахита. Физические и химические свойства меди и её соединений. Основной карбонат меди и его химические свойства.
курсовая работа [64,2 K], добавлен 24.05.2010Исследование образования олигомерных форм лактоферрина в нейтральном буфере в присутствии и отсутствии солей, а также влияния природных лигандов белка (АТР, АМР и олигосахарида) на процессы его олигомеризации. Физико-химические свойства лактоферрина.
дипломная работа [1,0 M], добавлен 22.04.2012