Хроматография как метод исследования
Сущность, история открытия и развития хроматографии. Классификация хроматографических методов анализа. Техника эксперимента в тонкослойной хроматографии. Характеристика газовой, распределительной, бумажной, осадочной и ионообменной хроматографии.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 24.06.2015 |
Размер файла | 608,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Катиониты получают сульфированием матрицы. Протон, ионносвязанный с сульфо-группой, может перемещаться и даже уходить за пределы смолы в раствор. При этом чтобы молекула была в целом электронейтральной, место протона занимает положительно заряженный ион, который из раствора переходит в смолу. Например, при действии Na+Cl - на катионо-обменную смолу в Н+-форме происходит реакция обмена:
Смола - SO4-H+ + Na- > Смола - SO3-Na+ + H+
Если реакция протекает до конца, то смола находится в натриевой (ионной) форме.
Анионообменные смолы получают хлорированием матрицы и последующим алкили-рованием алифатическим амином.
Наиболее распространены аниониты, имеющие четвертичные аммонийные группы, полученные при алкилировании триметиламином.
При изменении ионной формы смолы или в присутствии органических растворителей, таких, как ацетонитрил, тетрагидрофуран, может изменяться и объем смолы. Если смола уменьшается в объеме, упаковка в колонке оседает и образуется мертвый объем наверху колонки. Это оседание сопровождается потерей эффективности. Если смола набухает и упаковка в колонке увеличивается, то возрастает сопротивление в колонке, значительно уменьшает скорость потока и может даже привести к разрушению сорбента.
Невысокая стабильность ионогенных материалов является одним из недостатков ионообменной хроматографии, причем анионообменники менее стабильны, чем катионообменники. Для увеличения срока службы колонок используют предколонки, а также регенерацию колонок сильным растворителем. Катиониты, например, регенерируют обрабатывая 1 М азотной кислотой и продолжительно промывая той подвижной фазой, которая будет использована.
Ионообменники характеризуются степенью набухания и емкостью. Степенью набухания называют объем упакованного в колонну обменника (в мл), приходящийся на 1 г его в сухом виде, и имеет размерность мл/г. Максимальное количество ионов, которое может связать ионообменник, определяет его емкость, которая совпадает с концентрацией ионогенных групп. Ёмкость выражается числам ммоль эквивалентов обмениваемого иона на 1 г сухого обменника (ммоль экв/г) или на 1 мл упакованного в колонну набухшего ионообменника (ммоль экв/мл) при значениях рН, соответствующих его полной ионизации. Для высокомолекулярных ионов или амфолитов, например белков, вводят понятие «эффективная» емкость, кoтоpaя зависит от размера молекулы амфолита, расстояния между ионогенными группами и степени доступности всего объема пористой матрицы обменника для этих молекул. Понятия емкости и эффективной емкости могут не совпадать. Иногда приходится снижать полезную емкость сорбента за счет изменения рН, увеличивая при этом его эффективную емкость. Катионообменные смолы имеют емкость около 4,4 ммоль экв/г, а анионообменные - 3,5-4 ммоль экв/г для гелеобразной структуры и 2,5 ммоль экв/г для пористой. Обменная емкость изменяется при изменении рН. При низких рН происходит нейтрализация катионита при добавлении протона:
R-+H+ - R-H+,
а при высоких рН подобным образом при действии щелочи нейтрализуются аниониты:
R++OH- - R+OH-.
Поскольку ионообменная емкость сильных катионитов падает до нуля при низких рН, они не могут быть использованы при рН<1. Сильные аниониты должны применяться при рН<11, слабые катиониты при рН>6, а слабые аниониты при рН<8. Из рисунка видно, что сильные ионообменники могут быть использованы в более широком диапазоне рН, чем слабые. Этим объясняется широкое применение сильных ионитов, на которых может быть разделено большее количество веществ разных классов одновременно, особенно если используется градиентное изменение рН. Сильно удерживаемые вещества, нестойкие при крайних зна чениях рН, могут разделяться на слабых ионитах. Еще раз подчеркнем, что сильные иониты полностью ионизированы в диапазоне рН=2-11. Слабые иониты полностью ионизированы в ограниченной области рН, и их ионизацией можно управлять, меняя рН элюента в пределах диапазона рабочих значений рН.
Таким образом, к категории слабых могут быть отнесены ионообменники, значительно отличающиеся друг от друга. Для них характерно не только сужение рабочего диапазона рН, но и уменьшение прочности сорбции вещества внутри этого диапазона. Слабым ионообменникам, в частности анионитам с замещающими группами диэтиламиноэтила (ДЕАЕ), отдают предпочтение в тех случаях, когда необходимо элюирование в мягких условиях, например, при разделении белков и пептидов.
Наибольший интерес в качестве сорбентов для ионообменной хроматографии представляет химически модифицированный силикагель, получаемый прививкой к силикагелю ионогенных групп.
Таблица 5. Характеристика модифицированных силикагелей и ионообменных смол
Характеристика |
Силикагель |
Смола (сополимеры полистирола с дивинилбензолом) |
|
Типичный диаметр частицы в мкм |
5-10 |
7-10 |
|
Типичная ионообменная емкость, в мэкв/г |
0,5-2 |
3-5 |
|
Стойкость к деформации давлением |
Очень хорошая |
От удовлетворительной до плохой (в зависимости от степени сшивки) |
|
Форма |
Сферическая или неправильная |
Сферическая |
|
Перепад давления на колонке |
Высокий |
Очень высокий |
|
Эффективность |
Высокая |
Низкая |
|
Метод набивки |
Суспензионный |
Суспензионный |
|
Диапозон рН |
2-7,5 |
0-12 (анионообменные) 0-14 (катионообменные) |
|
Скорость регенерирования |
Умеренная |
Медленная |
Применение этих материалов значительно увеличивает стабильность работы колонок, в которых не происходит изменения эффективности. Однако сильнокислые или сильноосновные среды (2>рН>7,5) могут воздействовать на силикагель, выводя из строя колонку. Привитые к силикагелю ионообменники могут быть нестабильны при действии органических растворителей, концентрированных буферных растворов, высоких температур. Ионообменные силикагели зернением 10 или 5 мм не набухают, не сжимаются, как смолы, и отличаются от них большим размером и доступностью внутренних пор как для ионов образца, так и для противоионов. Благодаря этому быстрее устанавливается массоперенос даже без повышения температуры и значительно возрастает эффективность сорбента.
Не существует слабых катионитов на основе силикагеля, так как при рН<8 материал не ионизирован, а при рН>8 разрушается подложка наполнительного материала. Сравнительные характеристики модифицированных силикагелей и ионообменных смол, применяемых в ионообменной хроматографии, даны в табл. 5.
ЗАКЛЮЧЕНИЕ
Как научный метод познания окружающего нас мира хроматография постоянно развивается и совершенствуется. В настоящее время она часто и широко применяется в научных исследованиях, медицине, молекулярной биологии, биохимии, технике и народном хозяйстве.
Хроматография как метод исследования с её исключительными возможностями является мощным фактором познания и преобразования окружающего мира с целью создания приемлемых условий обитания человека на нашей планете.
СПИСОК ЛИТЕРАТУРЫ
1. Харитонов, Ю.Я. Аналитическая химия (аналитика) В 2 кн. Кн. 1. Общие теоретические основы. Качественный анализ. Учеб. для вузов, 2-е изд., испр. - М.: Высш. шк., 2003. - 615 с., ил.
2. Сакодынский К.И., Бражников В.В., Волков С.А., Зельвенский В.Ю., Ганкина Э.С., Шац В.Д. Аналитическая хроматография. М., Химия, 1993.
3. Азимов А. Краткая история химии: развитие идей и представлений в химии. СПб., Амфора, 2000.
4. Фритц Дж., Гьерзе Д.Г., Поланд К. Ионная хроматография: Пер. с англ. / Под ред. В.Г. Березкина. М., Мир, 1984. 224 с.
5. Мак Нейр Г., Бонелли Э. Введение в газовую хроматографию. М: Мир, 1970.
6. Айвазов Б.В. Введение в хроматографию. М., Высшая школа, 1983.
Размещено на Allbest.ru
Подобные документы
Общая характеристика процесса хроматографии. Физико-химические основы тонкослойной хроматографии, классификация методов анализа. Варианты хроматографии по фазовым состояниям. Контроль качества пищевых продуктов посредством метода ТСХ, оборудование.
курсовая работа [371,8 K], добавлен 27.12.2009Явления, происходящие при хроматографии. Два подхода к объяснению - теория теоретических тарелок и кинетическая теория. Газовая, жидкостная, бумажная хроматография. Ионообменный метод. Случаи применения ионообменной хроматографии. Гельхроматографирование.
реферат [69,4 K], добавлен 24.01.2009Понятие и структура полимерных сорбентов, история их создания и развития, значение в процессе распределительной хроматографии. Виды полимерных сорбентов, возможности их использования в эксклюзионной хроматографии. Особенности применения жестких гелей.
реферат [29,6 K], добавлен 07.01.2010Возникновение и развитие хроматографии. Классификация хроматографических методов. Хроматография на твердой неподвижной фазе: газовая, жидкостная (жидкостно-адсорбционная). Хроматография на жидкой неподвижной фазе: газо-жидкостная и гель-хроматография.
реферат [28,1 K], добавлен 01.05.2009Сущность метода хроматографии, история его разработки и виды. Сферы применения хроматографии, приборы или установки для хроматографического разделения и анализа смесей веществ. Схема газового хроматографа, его основные системы и принцип действия.
реферат [130,2 K], добавлен 25.09.2010Основы метода обращенной газовой хроматографии. Газовая хроматография - универсальный метод качественного и количественного анализа сложных смесей и способ получения отдельных компонентов в чистом виде. Применение обращенной газовой хроматографии.
курсовая работа [28,9 K], добавлен 09.01.2010Сущность и содержание ионно-парной хроматографии, ее использование в жидкостной хроматографии и экстракции для извлечения лекарств и их метаболитов из биологических жидкостей в органическую фазу. Варианты ионно-парной хроматографии, отличительные черты.
реферат [28,7 K], добавлен 07.01.2010Газовая хроматография - один из наиболее перспективных физико-химических методов исследования, бурно развивающийся в настоящее время. Классификация хроматографических методов. Различные характерные признаки процесса. Сущность методов хроматографии.
реферат [30,3 K], добавлен 25.01.2010Сущность высокоэффективной жидкостной хроматографии (ВЭЖХ) как метода анализа и разделения сложных примесей. Сорбенты, координационно-насыщенные хелаты; закономерности влияния строения лиганда на поведение хелатов в условиях обращенофазной хроматографии.
реферат [109,8 K], добавлен 11.10.2011Понятие и основные этапы протекания метода эксклюзионной хроматографии, его принципиальная особенность и сферы применения, разновидности и их отличительные признаки. Характеристика оборудования, используемого в процессе эксклюзионной хроматографии.
реферат [54,4 K], добавлен 07.01.2010