Подгруппа углерода
Специфика строения атомов химических элементов подгруппы углерода, характеристика элементов углерода, кремния, германия, олова и свинца. Химические свойства простых веществ, образованных углеродом. Применение достижений нано химии, её направления.
Рубрика | Химия |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 21.10.2014 |
Размер файла | 352,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Органические соединения Олова, особенно ди- и триалкильные, обладают выраженным действием на центральную нервную систему. Признаки отравления триалкильными соединениями: головная боль, рвота, головокружение, судороги, парезы, параличи, зрительные расстройства. Нередко развиваются коматозное состояние, нарушения сердечной деятельности и дыхания со смертельным исходом. Токсичность диалкильных соединений Олова несколько ниже, в клинической картине отравлений преобладают симптомы поражения печени и желчевыводящих путей.
Свинец (лат. Plumbum), Pb, химический элемент IV группы периодической системы Менделеева; атомный номер 82, атомная масса 207,2. Свинец - тяжелый металл голубовато-серого цвета, очень пластичный, мягкий (режется ножом, царапается ногтем). Природный Свинец состоит из 5 стабильных изотопов с массовыми числами 202 (следы), 204 (1,5%), 206 (23,6%), 207 (22,6%), 208 (52,3%). Последние три изотопа - конечные продукты радиоактивных превращений 238U, 235U и232Th. При ядерных реакциях образуются многочисленные радиоактивные изотопы Свинца.
Физические свойства Свинца. Свинец кристаллизуется в гранецентрированной кубической решетке (а = 4,9389Е), аллотропических модификаций не имеет. Атомный радиус 1,75Е, ионные радиусы: Рb2+1,26Е, Рb4+ 0,76Е; плотность 11,34 г/см3(20 °С); tпл 327,4 °С; tкип 1725 °С; удельная теплоемкость при 20 °С 0,128 кДж/(кг·К) [0,0306 кал/г·°С]| теплопроводность 33,5 вт/(м·К)[0,08 кал/см·сек·°С)]; температурный коэффициент линейного расширения 29,1·10-6 при комнатной температуре; твердость по Бринеллю 25-40 Мн/м2 (2,5-4 кгс/мм2); предел прочности при растяжении 12-13 Мн/м2, при сжатии около 50 Мн/м2; относительное удлинение при разрыве 50-70%. Наклеп не повышает механических свойств Свинца, так как температура его рекристаллизации лежит ниже комнатной (около -35 °С при степени деформации 40% и выше). Свинец диамагнитен, его магнитная восприимчивость -0,12·10-6. При 7,18 К становится сверхпроводником.
Химические свойства Свинца. Конфигурация внешних электронных оболочек атома Pb 6s26р2, в соответствии с чем он проявляет степени окисления +2 и +4. Свинец сравнительно мало активен химически. Металлический блеск свежего разреза Свинца постепенно исчезает на воздухе вследствие образования тончайшей пленки РbО, предохраняющей от дальнейшего окисления.
С кислородом образует ряд оксидов Рb2О, РbО, РbО2, Рb3О4 и Рb2О3.
В отсутствие О2 вода при комнатной температуре на Свинец не действует, но он разлагает горячий водяной пар с образованием оксида Свинца и водорода. Соответствующие оксидам РbО и РbО2 гидрооксиды Рb(ОН)2 и Рb(ОН)4 имеют амфотерный характер.
Соединение Свинца с водородом РbН4 получается в небольших количествах при действии разбавленной соляной кислоты на Mg2Pb. PbH4 - бесцветный газ, который очень легко разлагается на Pb и Н2. При нагревании Свинец соединяется с галогенами, образуя галогениды РbХ2 (X -галоген). Все они малорастворимы в воде. Получены также галогениды РbХ4: тетрафторид PbF4 - бесцветные кристаллы и тетрахлорид РbСl4- желтая маслянистая жидкость. Оба соединения легко разлагаются, выделяя F2 или Cl2; гидролизуются водой. С азотом Свинец не реагирует. Азид свинца Pb(N3)2 получают взаимодействием растворов азида натрия NaN3 и солей Рb (II); бесцветные игольчатые кристаллы, труднорастворимые в воде; при ударе или нагревании разлагается на Pb и N2 со взрывом. Сера действует на Свинец при нагревании с образованием сульфида PbS - черного аморфного порошка. Сульфид может быть получен также при пропускании сероводорода в растворы солей Pb (II); в природе встречается в виде свинцового блеска - галенита.
В ряду напряжений Pb стоит выше водорода (нормальные электродные потенциалы соответственно равны -0,126 в для Рb = Рb2+ + 2е и +0,65 в для Pb = Pb4+ + 4е). Однако Свинец не вытесняет водород из разбавленной соляной и серной кислот, вследствие перенапряжения Н2 на Pb, а также образования на поверхности металла защитных пленок трудно-растворимых хлорида РbCl2 и сульфата PbSO4. Концентрированные H2SO4 и НCl при нагревании действуют на Pb, причем получаются растворимые комплексные соединения состава Pb(HSO4)2 и Н2[РbCl4]. Азотная, уксусная, а также некоторые органических кислоты (например, лимонная) растворяют Свинец с образованием солей Рb (II). По растворимости в воде соли делятся на растворимые (ацетат, нитрат и хлорат свинца), малорастворимые (хлорид и фторид) и нерастворимые (сульфат, карбонат, хромат, фосфат, молибдат и сульфид). Соли Pb (IV) могут быть получены электролизом сильно подкисленных H2SO4 растворов солей Рb (II); важнейшие из солей Pb (IV)- сульфат Pb(SO4)2 и ацетат Рb(С2Н3О2)4. Соли Pb (IV) склонны присоединять избыточные отрицательные ионы с образованием комплексных анионов, например, плюмбатов (РbО3)2- и (РbО4)4-, хлороплюмбатов (РbCl6)2-, гидроксоплюмбатов [Рb(ОН)6]2- и других. Концентрированные растворы едких щелочей при нагревании реагируют с Pb с выделением водорода и гидроксоплюмбитов типа Х2[Рb(ОН)4].
Получение Свинца. Металлический Свинец получают окислительным обжигом PbS с последующим восстановлением РbО до сырого Pb ("веркблея") и рафинированием (очисткой) последнего. Окислительный обжиг концентрата ведется в агломерационных ленточных машинах непрерывного действия. При обжиге PbS преобладает реакция:
2PbS + ЗО2 = 2РbО + 2SO2.
Кроме того, получается и немного сульфата PbSO4, который переводят в силикат PbSiO3, для чего в шихту добавляют кварцевый песок. Одновременно окисляются и сульфиды других металлов (Cu, Zn, Fe), присутствующие как примеси. В результате обжига вместо порошкообразной смеси сульфидов получают агломерат - пористую спекшуюся сплошную массу, состоящую преимущественно из оксидов РbО, CuO, ZnO, Fe2O3. Куски агломерата смешивают с коксом и известняком и эту смесь загружают в ватержакетную печь, в которую снизу через трубы ("фурмы") подают воздух под давлением. Кокс и оксид углерода (II) восстанавливают РbО до Pb уже при невысоких температурах (до 500 °С). При более высоких температурах идут реакции:
СаСО3 = СаО + СО2
2РbSiO3 + 2СаО + С = 2Рb + 2CaSiO3+ CO2.
Оксиды Zn и Fe частично переходят в ZnSiO3 и FeSiO3, которые вместе с CaSiO3 образуют шлак, всплывающий на поверхность. Оксиды Свинца восстанавливаются до металла. Сырой Свинец содержит 92-98% Pb, остальное - примеси Cu, Ag (иногда Au), Zn, Sn, As, Sb, Bi, Fe. Примеси Cu и Fe удаляют зейгерованием. Для удаления Sn, As, Sb через расплавленный металл продувают воздух. Выделение Ag (и Au) производится добавкой Zn, который образует "цинковую пену", состоящую из соединений Zn с Ag (и Au), более легких, чем Рb, и плавящихся при 600-700 °C. Избыток Zn удаляют из расплавленного Рb пропусканием воздуха, водяного пара или хлора. Для очистки от Bi к жидкому Рb добавляют Са или Mg, дающие трудноплавкие соединения Ca3Bi2 и Mg3Bi2. Рафинированный этими способами Свинец содержит 99,8-99,9% Рb. Дальнейшая очистка производится электролизом, в результате чего достигается чистота не менее 99,99%.
Применение Свинца. Свинец широко применяют в производстве свинцовых аккумуляторов, используют для изготовления заводской аппаратуры, стойкой в агрессивных газах и жидкостях. Свинец сильно поглощает г-лучи и рентгеновские лучи, благодаря чему его применяют как материал для защиты от их действия (контейнеры для хранения радиоактивных веществ, аппаратура рентгеновских кабинетов и других). Большие количества Свинца идут на изготовление оболочек электрических кабелей, защищающих их от коррозии и механических повреждений. На основе Свинца изготовляют многие свинцовые сплавы. Оксид Свинца РbО вводят в хрусталь и оптическое стекло для получения материалов с большим показателем преломления. Сурик, хромат (желтый крон) и основные карбонат Свинца (свинцовые белила) - ограниченно применяемые пигменты. Хромат Свинца - окислитель, используется в аналитической химии. Азид и стифиат (тринитрорезорцинат) - инициирующие взрывчатые вещества. Тетраэтилсвинец - антидетонатор. Ацетат Свинца служит индикатором для обнаружения H2S. В качестве изотопных индикаторов используются 204Рb (стабильный) и 212Рb (радиоактивный).
2. Экспериментальная часть
Опыт № 1. Взаимодействие углекислого газа со щелочью
Оборудование и реактивы: Аппарат Киппа, цилиндр, лучинка, спички, раствор соляной кислоты (1:2), мрамор, раствор гидроксида натрия (конц.), шпатель.
Ход работы: Заряжают аппарат Киппа на получение углекислого газа. В цилиндр без носика наливают 15-20 мл концентрированного раствора гидроксида натрия и опускают газоотводную стеклянную трубку от аппарата Киппа до поверхности раствора, но не в раствор. Открывают зажим и дают сильный ток углекислого газа, чтобы быстро вытеснить весь воздух. Затем вынимают трубку из цилиндра и перекрывают ток углекислого газа. Цилиндр быстро закрывают ладонью и слегка покачивают. Углекислый газ реагирует с гидроксидом натрия. В цилиндре возникает разрежение, давление падает, ладонь плотно прижимается к отверстию цилиндра. Демонстрируют подъем цилиндра открытой ладонью руки.
Протекает химический процесс: CO2 + 2NaOH ® Na 2CO3 + H2O
Чтобы убедиться в образовании карбонатов, в цилиндр по стенке осторожно приливают раствор соляной кислоты. Происходит вспенивание - активное выделение углекислого газа.
Техника безопасности: 1. Не допускать попадания газа в атмосферу класса.
Опыт № 2. Получение оксида углерода (IV) и изучение его свойств
Оборудование и реактивы: Две пробирки, пробка со вставленной в нее газоотводной трубкой, мрамор, соляная кислота (1:5), известковая вода, разбавленный раствор гидроксида натрия, фенолфталеин, лакмус, шпатель.
Ход работы: В пробирку поместить несколько кусочков мела или мрамора и прилить разбавленный раствор соляной кислоты. Закрыть пробирку пробкой с газоотводной трубкой. Пропустить выделившийся углекислый газ в пробирки:
а) с водой, подкрашенной раствором лакмуса;
б) с известковой водой: CO2 + Ca (OH)2 ® CaCO3 + H2O
в) с раствором щелочи и несколькими каплями фенолфталеина:
2NaOH + CO2 ® Na2CO3 + H2O
Опыт № 3. Распознавание карбонатов
Оборудование и реактивы: Штатив с пробирками, разбавленные растворы углекислого натрия, хлорида бария, нитрата серебра, азотной кислоты, соляной кислоты, мрамор, шпатель.
Ход работы: 1. В пробирку налить раствор углекислого натрия объемом 1 мл и прилить раствор хлорида бария такого же объема. Образуется белый осадок карбоната бария BaCO3.
Na2CO3 + BaCl2 ® BaCO3v + 2NaCl
К осадку прилить раствор соляной кислоты. Осадок растворится.
2. В пробирку налить раствор углекислого натрия объемом 1 мл и прилить несколько капель раствора нитрата серебра. Образуется осадок: Na2CO3 + 2AgNO3 = 2NaNO3 + Ag2CO3v. К осадку прилить разбавленный раствор азотной кислоты малыми порциями до полного его растворения.
Ag2CO3v + 2HNO3 ® 2AgNO3 + H2O + CO2
3. К кусочку мела или мрамора прилить несколько капель соляной кислоты. Объяснить наблюдаемые явления и написать уравнения реакций.
Утилизация. Содержимое пробирки с соединениями бария перенести в нейтрализатор. К содержимому пробирки с соединениями серебра поднести универсальную индикаторную бумагу. Если среда сильнокислая, то раствор можно использовать повторно для обнаружения хлорид-ионов. Если среда слабокислая - использовать повторно в этом же опыте
.Опыт 4. Восстановительные свойства олова(II) в щелочной среде Реактивы. Водный (10-15%-ный) раствор хлорида олова(II) SnCl2, водный (5-10%-ный) раствор хлорида висмута(III) BiCl3, водный (8-10%-ный) раствор гидроксида натрия NaOH. Посуда и приборы. Химический стакан емкостью 250-400 мл, стеклянная палочка. Описание опыта. В химический стакан наливают 20-50 мл раствора хлорида олова(II) и порциями добавляют раствор гидроксида натрия. Сначала наблюдается выделение осадка гидроксида олова(II), а затем его растворение в результате образования гидроксокомплекса ? тригидроксостаннат(II)-аниона:
SnCl2 + 2 NaOH = Sn(OH)2 + 2 NaCl
К полученному раствору, не прекращая перемешивания, добавляют небольшими порциями раствор хлорида висмута(III). Выпадает белый осадок гидроксида висмута(III), который вскоре чернеет из-за восстановления висмута:
BiCl3 + 3 NaOH = Bi(OH)3 + 3 NaCl
2 Bi(OH)3+ 3 Na[Sn(OH)3] + 3 NaOH = 2 Bi + 3 Na2[Sn(OH)6]
Таким образом, производные олова(II) в щелочной среде являются сильными восстановителями. Значение стандартного потенциала для окислительно-восстановительной пары [Sn(OH)6]2 /[Sn(OH)3]составляет 0,960 В (что характерно для сильных восстановителей).
Заключение
В заключении хотелось бы еще раз сказать подгруппу углерода входят углерод, кремний, германий, олово и свинец. Это р - элементы IV группы периодической системы Д. И. Менделеева. Их атомы на внешнем уровне содержат по четыре электрона -- п2np2, чем объясняется сходство их химических свойств. Электронное строение внешних уровней атомов первых двух элементов подгруппы можно представить так:
В невозбужденном состоянии их атомы имеют по 2 неспаренных электрона. Поскольку атомы всей подгруппы имеют на внешнем уровне свободные орбитали, то при переходе в возбужденное состояние распаривают электроны s- подуровней (показано пунктирными стрелками). В соединениях элементы подгруппы углерода проявляют степень окисления +4 и -4, а также +2, причем последняя с увеличением заряда ядра становится более характерной. Для углерода, кремния и германия наиболее типична степень окисления +4, для свинца +2. Степень окисления -4 в последовательности С~РЬ становится все менее характерной. Среднее содержание Углерода в земной коре 2,3·10-2% по массе (1·10-2 в ультраосновных, 1·10-2 - в основных, 2·10-2 - в средних, 3·10-2 - в кислых горных породах.С накоплением Углерода в земной коре связано накопление и многих других элементов, сорбируемых органическим веществом и осаждающихся в виде нерастворимых карбонатов, и т. д. Большую геохимическую роль в земной коре играют СО2 и угольная кислота. Огромное количество СО2выделяется при вулканизме - в истории Земли это был основные источник Углерода для биосферы.
По сравнению со средним содержанием в земной коре человечество в исключительно больших количествах извлекает Углерод из недр (уголь, нефть, природный газ), так как эти ископаемые - основной источник энергии.
Огромное геохимическое значение имеет круговорот Углерода.
Углерод широко распространен также в космосе; на Солнце он занимает 4-е место после водорода, гелия и кислорода.
Список использованной литературы
1. Н. Л. Глинка «Общая химия» Издательство «Химия» Ленинградское отделение 1973 г.
2. В. А. Крицман «Книга для чтения по неорганической
3. химии» Москва «Просвещение» 1993 г.
4. Т. Е. Рудзитис, Ф. Г. Фельдман « Химия 7- 9» Москва
5. «Просвещение» 1986 г.
6. Ю. В. Ходаков, Д. А. Эпштейн, П. А. Глориозов «Неорганическая химия 9» Москва «Просвещение» 1987г.
7. Л. А. Николаев « Современная химия» Москва «Просвещение» 1980г.
8. Ю. Д. Третьяков, Ю. Г. Метлин «Основы общей химии» Москва «Просвещение» 1980г.
9. Е. М. Закладный, Н. В. Щеголев «Рассказы о полимерах» Издательство «Советская Россия» 1960.
Приложение
Опыт № 1. Получение углерода термическим разложением древесины
Оборудование и реактивы: Штатив с лапкой, спиртовка, спички, резиновые прокладки, сосуд Ландольта, пробка со вставленной в нее стеклянной трубкой, синий лакмус, химический стакан, стружки сухого дерева.
Ход работы: Одно колено сосуда Ландольта заполняют плотно сухими стружками. Закрепляют прибор в штативе. Другое колено опускают в стакан с холодной водой. Равномерно прогрев весь сосуд, сильно нагревают стружки. Из стеклянной трубки выходит белый дым, его поджигают. Во втором колене собирается желтоватая смесь, состоящая из воды и жидких органических веществ. Нагревают до тех пор стружки, пока они не обуглятся и не прекратится выделение газов. Затем дают сосуду остыть, открывают пробку и высыпают уголь. Жидкостью из второго колена сосуда Ландольта пропитывают синюю лакмусовую бумагу. Покраснение лакмусовой бумаги свидетельствует о наличии в смеси кислоты.
Рис. 22. Термическое разложение древесины.
Техника безопасности: Перед нагреванием стружек равномерно прогреть сосуд Ландольта.
Утилизация: Жидкие продукты разложения древесины поместить в нейтрализатор.
Опыт № 2. Поглощение углем растворенных веществ и газов
а) Поглощение углем газов.
Рис.23. Поглощение углем газов.
Оборудование и реактивы: Штатив с лапкой, резиновые прокладки, U-образная трубка, стеклянная банка, пробка со вставленной в нее стеклянной трубкой, резиновая трубка, раствор перманганата калия, активированный уголь, соляная кислота (конц.), перманганат калия (кристал.), шпатель.
Ход работы: В U-образную трубку наливают воду, подкрашенную раствором перманганата калия, затем закрепляют ее в лапке штатива. Стеклянную банку заполняют хлором или оксидом азота (IV). U-образную трубку соединяют газоотводными трубками герметично с банкой и окрашенными газами. Открыв пробку в банке, быстро помещают активированный уголь и вновь герметично закрывают. Склянку с углем и газом сильно встряхивают. Подкрашенная вода в одном колене U-образной трубки поднимается. Объяснить наблюдаемые явления.
Техника безопасности: 1. Проводить опыт получения токсичных окрашенных газов в вытяжном шкафу. 2. Не допускать попадание газа (Cl2, NO2) в атмосферу класса.
3. Прокалить активированный уголь в вытяжном шкафу и использовать вновь.
Утилизация: Продукты реакции после получения хлора утилизировать по схеме в теме “Галогены”. Продукты реакции после получения оксида азота (IV) утилизировать по схеме в теме “Азот” (взаимодействие меди с азотной кислотой).
б) Поглощение углем растворенных веществ.
Оборудование и реактивы: Штатив с лапкой, резиновые прокладки, хлоркальциевая трубка, химический стакан, вата, слабый раствор перманганата калия или фуксина, активированный уголь.
Рис. 24. Поглощение углем растворенных веществ
Ход работы: Хлоркальциевую трубку заполняют последовательно слоем ваты, слоем активированного угля и слоем ваты. Хлоркальциевую трубку закрепляют в штативе и наливают в нее воду, подкрашенную раствором перманганата калия (очень слабый раствор). В подставленный химический стакан стекает чистая прозрачная вода.
Размещено на Allbest.ru
Подобные документы
Место углерода в таблице химических элементов: строение атомов, энергетические уровни, степень окисления. Химические свойства углерода. Алмаз, графит, фуллерен. Адсорбция как важное свойство углерода. Изобретение противогаза и угольных фильтров.
презентация [217,1 K], добавлен 17.03.2011Физические свойства элементов главной подгруппы III группы. Общая характеристика алюминия, бора. Природные неорганические соединения углерода. Химические свойства кремния. Взаимодействие углерода с металлами, неметаллами и водой. Свойства оксидов.
презентация [9,4 M], добавлен 09.04.2017Общая характеристика химических элементов IV группы таблицы Менделеева, их нахождение в природе и соединения с другими неметаллами. Получение германия, олова и свинца. Физико-химические свойства металлов подгруппы титана. Сферы применения циркония.
презентация [1,8 M], добавлен 23.04.2014Химические свойства простых веществ. Общие сведения об углероде и кремнии. Химические соединения углерода, его кислородные и азотсодержащие производные. Карбиды, растворимые и нерастворимые в воде и разбавленных кислотах. Кислородные соединения кремния.
реферат [801,5 K], добавлен 07.10.2010Получение углерода термическим разложением древесины, поглощение углем растворенных веществ и газов. Взаимодействие углекислого газа со щелочью, получение оксида углерода и изучение его свойств. Ознакомление со свойствами карбонатов и гидрокарбонатов.
лабораторная работа [1,7 M], добавлен 02.11.2009Сведения об углероде, восходящие к древности и распространение его в природе. Наличие углерода в земной коре. Физические и химические свойства углерода. Получение и применение углерода и его соединений. Адсорбционная способность активированного угля.
реферат [18,0 K], добавлен 03.05.2009Характеристика и групповое значение р-элементов. Степени их окисления. Состояние атомов халькогенов. Свойства галогенов. Подгруппа алюминия, азота и углерода. Основные минеральные формы бора. Распространенность в земной коре различных видов минералов.
презентация [420,7 K], добавлен 22.04.2016Многообразие соединений углерода, их распространение в природе и применение. Аллотропные модификации. Физические свойства и строение атома свободного углерода. Химические свойства углерода. Карбонаты и гидрокарбонаты. Структура алмаза и графита.
реферат [209,8 K], добавлен 23.03.2009Свойства элементов подгруппы азота, строение и характеристика атомов. Увеличение металлических свойств при переходе элементов сверху вниз в периодической системе. Распространение азота, фосфора, мышьяка, сурьмы и висмута в природе, их применение.
реферат [24,0 K], добавлен 15.06.2009История открытия и место в периодической системе химических элементов Д.И. Менделеева галогенов: фтора, хлора, брома, йода и астата. Химические и физические свойства элементов, их применение. Распространённость элементов и получение простых веществ.
презентация [656,9 K], добавлен 13.03.2014