Пищевая химия

Основы правильного рациона человека. Определение энергетической и пищевой ценности продуктов питания. Классификация и строение углеводов. Процесс ферментативного гидролиза белков. Сладость углеводов и сахарозаменителей. Потребность человека в витаминах.

Рубрика Химия
Вид учебное пособие
Язык русский
Дата добавления 04.05.2014
Размер файла 570,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

При извлечении липидов из масличного сырья в масло переходят различные жирорастворимые соединения: фосфолипиды, пигменты, жирорастворимые витамины, стеролы и стерины. Извлекаемая смесь называется «сырой жир». При очистке (рафинировании) растительных масел практически все компоненты, сопутствующие маслам удаляются, что значительно снижает пищевую ценность масла.

Из жирорастворимых пигментов следует отметить группу каротиноидов - предшественников витамина А. По химической природе это углеводороды. Это вещества красно-оранжевого цвета. Хлорофилл - зеленый краситель растений.

Стероиды это циклические соединения, имеющие структуру пергидроциклопентанофенантрена. Из стероидов большое влияние на человека оказывает холистерин. Он участвует в обмене гормонов, желчных кислот.

4.2 Превращения липидов

Превращения липидов можно разделить на реакции, протекающие с участием сложноэфирных групп, и с участием радикалов углеводородов.

Гидролиз липидов. Различают три варианта гидролиза липидов:

- Кислотный гидролиз проходит в присутствии растворов кислот;

- Щелочной гидролиз проходит в присутствии растворовщелочей;

- Ферментативный гидролиз проходит под действием фермента липаза.

В результате гидролиза липидов осуществляется разрушение сложноэфирной группировки. Из триацилглицеридов образуются вначале ди-, затем моноацилглицериды, а далее многоатомный спирт глицерин и свободные жирные кислоты.

Гидролитический распад липидов пищевых продуктов является одной из причин ухудшения их качеств, в конечном счете - их порче. Процессы гидролиза липидов ускоряются при повышенной влажности, повышенной температуре хранения, активности фермента липазы.

Переэтерификация липидов. Эта реакция приводит к обмену остатками жирных кислот у липидов. Различают внутримолекулярную переэтерификацию, когда ацильный радикал мигрирует внутри молекулы липида, и межмолекулярную переэтерификацию, когда ацильный радикал мигрирует между различными молекулами липидов. Эта реакция приводит к изменению физико-химических свойств жировых смесей.

Переэтерификация высокоплавких животных жиров с жидкими растительными маслами позволяет получить пластичные жиры, которые являются основой для получения маргарина. Возможно также получение аналога молочного жира, кондитерского жира.

Гидрирование липидов. При гидрировании липидов происходит разрыв кратных связей у остатков жирных кислот с присоединением водорода. При этом можно направленно изменять жироно-кислотный состав исходного липида. В первую очередь расщепляются кратные связи линоленовой кислоты, затем линолевой, затем олеиновой. В конечном итоге образуется стеариновая кислота. В результате реакции гидрирования получается продукт с заранее заданными свойствами, его называют саломас. Саломасы применяют в производстве маргарина.

Реакция гидрирования протекает по схеме:

+ Н2 + Н2 + Н2

СНі 18 > СНІ 18 > СН№18 > СНє18

Окисление липидов. Липиды подвергаются окислению кислородом воздуха. Первыми продуктами окисления являются гидропероксиды, которые внедряются в радикал карбоновой кислоты. Быстрее всего воздействие оказывается на углерод, ближайший к кратной связи, а у насыщенных жирных кислот атакуется кислородом середина цепочки жирных кислот. Образовавшиеся гидропероксиды неустойчивы, в результате их превращения разрывается цепочка атомов углерода, образуются вторичные продукты окисления: эпоксисоединения, спирты, альдегиды, реже кетоны, карбоновые кислоты с углеродной цепочкой короче, чем у жирной кислоты.

Процесс окисления липида можно представить в виде схемы:

ЖИРНАЯ КИСЛОТА > ГИДРОПЕРОКСИД > ЭПОКСИСОЕДИНЕНИЯ>

> СПИРТЫ > АЛЬДЕГИДЫ (КЕТОНЫ) > КАРБОНОВАЯ КИСЛОТА

Окисление липидов кислородом воздуха является автокаталитическим процессом. Окисление идет по цепному пути, продукты окисления способны реагировать друг с другом и образовывать полимеры. Направление и глубина окисления зависят от состава жирных кислот. С увеличением степени непредельности жирных кислот возрастает скорость их окисления.

Скорость окисления составляет:

СНі 18 : СНІ 18 : СН№18 как 77 : 27 : 1

Окисление насыщенных жирных кислот происходит значительно медленнее, чем ненасыщенных.

На скорость окисления липидов оказывает влияние присутствие влаги, свет, металлов переменной валентности (Pb, Cu, Co, Mn, Fe), антиокислителей. К антиокислителям относят вещества, присутствие которых приводит к обрыву цепей окисления. Вместо активных радикалов, которые бы инициировали процесс окисления, образуются стабильные радикалы, которые не участвуют в этом процессе. Из природных антиокислителей часто применяют текоферол (витамин Е), из синтетических - соединения фенольной природы: ионол, Бутилгидрокситолуол (БОТ), Бутилгидроксианизол (БОА), пропилгаллаты. При внесении антиоксидантов в количестве 0,01 % стойкость жиров к окислению увеличивается в 10 - 15 раз. Подробнее различные антиокислители рассматриваются в дисциплине «Пищевые и биологически активные добавки».

Окисление липидов может проходить при действии биологических катализаторов - ферментов. В процессе ферментативного окисления липидов совместно участвуют ферменты липаза и липоксигеназа. На первом этапе окисления липаза осуществляет гидролиз тириацилглицеридов. Этот этап еще называют ферментативное прогоркание. Затем липоксигеназа катализирует образование гидропероксидов ненасыщенных жирных кислот (чаще это линолевая и линоленовая кислоты). Свободные жирные кислоты окисляются быстрее, чем их остатки, входящие в состав молекулы липида. При распаде гидропероксида образуются вещества, аналогичные продуктам окисления кислородом - образуются вторичные продукты окисления: эпоксисоединения, спирты, альдегиды, реже кетоны, карбоновые кислоты с углеродной цепочкой короче, чем у жирной кислоты.

В процессе окисления липидов образуются различные вещества, которые имеют неприятный вкус и запах (появляется «осаливание», «прогорклость», «запах олифы»), изменяется цвет продукта. В результате снижается пищевая и физиологическая ценность, а продукты могут оказаться непригодными в пищу (пищевая порча жиров). Наименее стойки при хранении сливочное масло, маргарин, кулинарный жир.

4.3 Пищевая ценность липидов

Пищевые жиры и масла являются обязательным компонентом пищи, источником энергетического и пластического материала для человека, поставщиком необходимых веществ, таких как: ненасыщенные жирные кислоты, фосфолипиды, жирорастворимые витамины, стерины. Рекомендуемое содержание жиров в рационе человека по калорийности составляет 30 - 33 % или 90 - 107 г в сутки. Среднем считается норма в 102 г в сутки. В питании имеет значение не только количество, но и химический состав жиров. Линолевая и линоленовые кислоты не синтезируются в организме человека, арахидоновая кислота синтезируется из линолевой кислоты при участии витамина В6. Поэтому они получили название незаменимых или эсенциальных жирных кислот. В последние годы часто употребляется термин «полиненасыщенные жирные кислоты семейства омега - 3», в эту группу входят Ь - линоленовая, эйкозапентаеновая, докозагексаеновая кислоты, содержащие несколько кратных связей и «полиненасыщенные жирные кислоты семейства омега - 6», в эту группу вхадит арахидоновая кислота.

Ненасыщенные жирные кислоты участвуют в расщеплении липопротеидов, холестерина, предотвращают образование тромбов, снижают воспалительные процессы.

Липиды оказывают влияние на обмен веществ в клетках, входят в состав клеточных мембран, влияют на кровяное давление, выводят из организма холестерин, при этом повышается эластичность стенок кровеносных сосудов. Повышенной биологической активностью обладают арахидоновая и линолевые кислоты. Среди продуктов питания наиболее богаты полиненасыщенными жирными кислотами растительные масла. Арахидоновая кислота содержится в яйцах, субпродуктах. Сбалансированный состав ежедневного рациона человека должен содержать 10 - 20 % полиненасыщенных жирных кислот, 50 - 60 % мононенасыщенных жирных кислот, 30 % насыщенных жирных кислот. \это обеспечивается при использовании в рационе одной трети растительных и двух третей животных жиров.

Фосфолипиды участвуют в построении клеточных мембран, транспорте жиров в организме, способствуют лучшему усвоению жиров, препятствуют ожирению печени. Суточная потребность в фосфолипидах составляет 5 - 10 г.

При усвоении 1 грамма липида выделяется 9 ккал энергии. При избыточном потреблении жиров возникает опасность ожирения организма.

Растительные жиры являются источником поступления жирорастворимых витаминов Е и в- каротина, животные жиры - источник жирорастворимых витаминов А, D.

5. Пищевые кислоты

Продукты питания содержат различные органические кислоты, которые объединяют в группу пищевых кислот. Пищевые кислоты накапливаются в растительном сырье в результате биохимических превращений на стадии развития растения, также кислоты могут накапливаться вследствие биохимических изменений в ходе технологического процесса приготовления продуктов питания (спиртовое брожение, молочнокислое брожение). Пищевые кислоты могут быть внесены в пищевую систему в ходе технологического процесса для регулирования рН, придания определенного вкуса (напитки), для формирования определенной консистенции (молочные продукты, кондитерские изделия).

Вносимые пищевые кислоты в процессе производства продуктов отнесены к группе пищевых добавок. Их использование не лимитируется в гигиеническом отношении, а регламентируется технологическими инструкциями на конкретные пищевые продукты. Повышенной токсичностью обладает фумаровая кислота, для которой установлен уровень ДСД допустимой суточной дозы - 6 мг/кг массы тела человека.

Уксусная кислота используется в виде эссенций 70 - 80 % концентрации и в виде столового уксуса 9 % концентрации. Применяются также соли уксусной кислоты - ацетаты. Основная область применения уксусной кислоты - приготовление овощных консервов.

Молочная кислота используется в виде 40 % раствора и концентрата 70 % раствора. Соли молочной кислоты называются лактатами. Молочная кислота применяется в производстве пива (подкисление затора), безалкогольных напитков, кондитерских изделий, кисломолочных продуктов.

Лимонная кислота используется в виде кристаллов белого цвета, полученных биохимическим синтезом из плесневого гриба Aspergillus niger. Соли лимонной кислоты называются цитраты. Лимонная кислота имеет мягкий вкус, меньше раздражает слизистую оболочку желудочно-кишечного тракта. В высоких концентрациях лимонная кислота содержаться в цитрусовых плодах. Применяется в производстве напитков, соков, кондитерских изделий, рыбных консервов.

Яблочная кислота используется в виде кристаллов белого или желтоватого цвета. Соли яблочной кислоты называются малаты. Яблочная кислота имеет мягкий вкус, не раздражает слизистую оболочку желудочно-кишечного тракта. В высоких концентрациях яблочная кислота содержаться во фруктах. Применяется в производстве напитков, кондитерских изделий.

Винная кислота используется в виде кристаллов белого или желтоватого цвета. Получают при переработке отходов виноделия. Соли винной кислоты называются тартраты. Винная кислота имеет мягкий вкус, меньше раздражает слизистую оболочку желудочно-кишечного тракта. Содержится в винограде. Применяется в производстве напитков, кондитерских изделий.

Реже в производстве продуктов питания используются кислоты: адипиновая, янтарная, фумаровая.

Фосфорная кислота является представителем минеральных кислот, однако она широко представлена в в пищевом сырье и продуктах питания, особенно распространены соли фосфорной кислоты - фосфаты. Фосфорная кислота входит в состав сложных органических соединений: фосфолипиды, нуклеиновые кислоты, АТФ (аденозинтрифосфат). В высоких концентрациях фосфаты содержаться в молочных, мясных продуктах, в орехах. Применяется в производстве напитков, кондитерских изделий.

Пищевые продукты содержат различные аминокислоты: аланин, валин, серин, лизин, метионин и др., входящие в состав белков. Продукты питания содержат различные липиды, в состав которых входят жирные кислоты: пальмитиновая, стеариновая, олеиновая, линолевая, линолековая и другие. Ароматическая кислота - бензойная кислота является природным консервантом, она содержится в некоторых ягодах.

6. Витамины

6.1 Классификация витаминов

гидролиз сахарозаменитель витамин углевод

Витамины - биорегуляторы биохомических и физиологических процессов, протекающих в живых организмах. Витамины являются низкомолекулярными органическими соединениями различной химической природы. Для нормальной жизнедеятельности человеку витамины необходимы в небольших количествах. Нормы суточного потребления витаминов приведены в таблице 6.1. Так как витамины не синтезируются организмом, они должны поступать в необходимом количестве с пищей в качестве ее обязательного компонента. Отсутствие или недостаток витаминов в организме человека вызывает болезни недостаточности - авитаминозы. При избыточном приеме витаминов, значительно превышающем физиологические нормы, могут развиваться гипервитаминозы. Это характерно для жирорастворимых витаминов, доля которых в суточном рационе человека невысока.

В качестве единицы измерения витаминов пользуются размерностью мг % = 0,001 г (миллиграммы витаминов в 100 г продукта), мкг % = 0,001 мг % (микрограммов витаминов в 100 г продукта).

Ряд витаминов представлены не одним, а несколькими соединениями, обладающими сходной биологической активностью, например: пиридоксин витамин В6 включает пиридоксин, пиридоксаль, пиридоксамин.

Различают собственно витамины и витаминоподобные вещества. К витаминоподобным веществам относятся: биофлавоноиды (витамин Р), пангамовая кислота (витамин В15), парааминобензойная кислота (витамин Н1), ортовая кислота (витамин В13), холин (витамин В4), инозит (витамин Н3), метилметионинсульфоний (витамин U), липолевая кислота, карнитин (витамин В). Витаминоподобные соединения также участвуют в биохимических процессах организма человека.

По растворимости витамины разделены на две группы:

водорастворимые, такие как В1, В2, В5, В6, В12,С;

жирорастворимые, такие как А, Е, Д, К.

6.2 Водорастворимые витамины

Витамин С или аскорбиновая кислота. В химическом отношении представляет собой г - лактон - 2,3 дегидро - 4 - гулоновой кислоты.

Антицинготный фактор. Участвует в окислительно-восстановительных реакциях, повышает иммунитет человека. Все необходимое количество витамина С человек получает с пищей. Основные источники витамина С это овощи, фрукты, ягоды: капуста содержит 50 мг %, картофель - 20 мг %, черная смородина - 300 мг %, шиповник до 1000 мг %. Витамин С крайне нестоек, легко разрушается кислородом воздуха, на свету, в присутствии ионов тяжелых металлов. Более устойчив витамин в кислой среде, чем в щелочной, поэтому его содержание в овощах и плодах при хранении быстро снижается. Исключение составляет свежая капуста. При тепловой обработке разрушается 25 - 60 % витамина С.

Витамин В1 (тиамин). Необходим для нормальной деятельности центральной нервной системы. Участвует в регулировании углеводного обмена. Действующей в организме формой витамина В1 является его производное в виде тиаминдифосфата или фермента кокарбоксилаза. Основные источники витамина В1 - зернопродукты, такие как крупы, мука грубого помола и т. д., где содержание витамина составляет 0,5 мг %, в горохе содержится до 0,8 мг %, в мясе 0,5 мг %. Витамин В1 стоек к действию света, кислорода, в кислой среде, к повышенным температурам. Легко разрушается в щелочной среде, расщепляется также ферментом тианаза. При технологической переработке разрушается 15 - 20 % витамина В1.

Витамин В2 (рибофлавин). Участвует в окислительно-восстановитель-ных реакциях, так как входит в состав окислительно-восстановительных ферментов. При недостатке витамина возникает заболевание кожи (себорея, псориаз), воспаление слизистой оболочки рта, появляются трещины в углах рта, развиваются заболевания кровеносной системы и желудочно-кишечного тракта. Витамин В2 присутствует в молочных продуктах: в молоке - 0,15 мг %, в сыре - 0,4 мг %, в печени -2,2 %, в зернопродуктах - 0,1 %, в овощах и фруктах - 0,04 мг %. Небольшое количество витамина В2 в организме человека синтезирует кишечная микрофлора. Витамин В2 устойчив к повышенным температурам, но разрушается на свету и в щелочной среде. Небольшое снижение витамина В2 приводит к существенным потерям витамина С. При технологической переработке частично разрушается.

Витамин В3 (пантатеновая кислота). Участвует в реакциях биохимического ацилирования, обмена липидов, жирных кислот, углеводов. Недостаток витамина приводит к дерматитам, выпадению волос. Небольшое количество витамина В3 синтезирует кишечная микрофлора. Витамин В3 присутствует в субпродуктах 2,5 - 9 мг %, в зернопродуктах и бобовых культурах - 2 мг %, в яйце - 2 мг %, в дрожжах - 4 - 5 %. При технологической переработке теряется до 30 % витамина, преимущественно при бланшировании и варке.

Витамин В5 (витимин РР, никотиновая кислота, ниацин). Этот витамин встречается в виде никотиновой кислоты и в виде никотинамида. Оба вещества обладают выраженной витаминной активностью. Участвует в окислительно-восстановительных реакциях, так как ниацин входит в состав ферментов дегидрогеназ. Недостаток витамина РР вызывает утомляемость, бессонницу, снижение иммунитета, нарушение функций нервной и сердечно-сосудистой системы. Аминокислота триптофан является одним из источников ниацина, так как из 60 мг триптофана синтезируется 1 мг ниацина. Основной источник ниацина- субпродукты (до 12 мг %), мясо и рыба содержат около 4 мг % витамина. Молоко, зернопродукты, овощи и фрукты бедны витамином РР. Витамин РР устойчив к действию света, кислорода воздуха, в щелочной среде. При технологической переработке до 25 % витамина экстрагируется в воду.

Витамин В6 (пиридоксин, перидоксамин, адермин). Участвует в биосинтезе и метаболизме аминокислот, белков, ненасыщенных жирных кислот. Витамин В6 необходим для нормальной деятельности нервной системы, кровеносной системы, печени. При недостатке витамина развиваются дерматиты. Витамин присутствие в мясе - 0,4 мг %, в фасоли - 0,9 мг % а картофеле - 0,3 мг %. Витамин В6 устойчив к повышенным температурам, кислотам, щелочам, но разрушается на свету. При переработке теряется до 20 % витамина В6. Частично витамин синтезируется кишечной микрофлорой.

Витамин В9 (фолиевая кислота, фолацин). Кроветворный фактор, участвует в деятельности сердечно - сосудистой системы, в биосинтезе аминокислот, нуклеиновых кислот, холина, пуриновых и пиримидиновых оснований. При недостатке витамина нарушается деятельность системы кроветворения, пищеварительной системы, снижается иммунитет организма. Фолевая кислота присутствует в зеленных культурах - 110 мкг %, в печени - 240 мкг %, в дрожжах - 550 мкг %, меньше в зернопродуктах и молочных продуктах - 10 - 20 мкг %. Фолиевая кислота неустойчива при термической обработке. При переработке молока и овощей теряется 75 - 90 % витамина, однако при переработке мясопродуктов витамин более устойчив.

Витамин В12 (цианкобаламин). Витамин участвует в процессах кровообращения, превращения аминокислот, совместно с фолиевой кислотой, участвует в биосинтезе нуклеиновых кислот. При недостатке витамина В12 наступает слабость, развивается анемия, нарушается деятельность нервной системы. Витамин В12 содержится в продуктах животного происхождения: в печени - 160 мкг %, в мясе - 6 мкг %, в молоке 0,6 мкг %. Витамин разрушается при длительном действии света, при окислении, более устойчив при нейтральных рН. При технологической переработке теряется 10 - 20 % витамина В12.

Витамин Н (биотин). Витамин участвует в биосинтезе липидов, аминокислот, углеводов, нуклеиновых кислот, входит в состав ферментов, катализирующих реакции карбоксилирования - декарбоксилирования. При недостатке витамина наблюдаются нервные расстройства, возникает депигментация кожи, дерматит. Основные источники биотина: печень и почки - 80 - 140 мкг %, яйца - 28 мкг %, молоко и мясо - 3 мкг %, бобовые культуры - 20 мкг %, пшеничный хлеб - 4,8 мкг %. Витамин неустойчив при окислении в кислой и щелочной среде. При технологической переработке витамин почти не разрушается.

6.3 Жирорастворимые витамины

Витамин А (ретинол). Витамин является непредельным одноатомным спиртом, участвует в биохимических процессах, связанных с деятельностью мембран клеток, влияет на рост костей, зрение человека. При недостатке витамина замедляется рост костей, наблюдается поражение слизистой оболочки дыхательных путей, пищеварительной системы, страдает зрение. Витамин А обнаружен в продуктах животного происхождения в рыбьем жире - 14 мкг %, в печени трески - 4 мкг %, в молоке - 0,025 мкг %.

В растительных продуктах содержится провитамин А - в - каротин, имеющий красно-оранжевый цвет. Из одной молекулы в - каротина в организме человека образуется две молекулы витамина А. Больше всего в - каротина находится в моркови - 10 мг %, в томатах - 1 мг %, он присутствует в овощах и фруктах, имеющих красно-оранжевую окраску.

Витамин А быстро разрушается при действии света, воздуха, в присутствии тяжелых металлов. При быстром окислении липидов происходит и окисление витамина А, растворенного в липидах. При переработке сырья теряется до 30 % витамина А, но при сушке теряется до 90 %. В соках и напитках витамин хорошо сохраняется при хранении.

Таблица 6.1 Суточная потребность человека в витаминах

Витамин

Сут. потребность

Функция витамина

Витамин С Аскорбиновая кислота

70 мг

Антицинготный фактор. Участвует в окислительно-восстановительных реакциях, повышает иммунитет человека.

Витамин В1 Тиамин

1,7 мг

Необходим для нормальной деятельности центральной нервной системы. Участвует в регулировании углеводного обмена.

Витамин В2 Рибофлавин

2 мг

Участвует в окислительно-восстановительных реакциях.

Витамин В3 Пантатеновая кислота

6 мг

Участвует в реакциях биохимического ацилирования, обмена липидов, жирных кислот, углеводов.

Витамин В5 Ниацин, РР

19 мг

Участвует в окислительно-восстановительных реакциях.

Витимин В6 Пиридоксин

2,2 мг

Участвует в синтезе и метаболизме аминокислот, белков, ненасыщенных жирных кислот.

Витамин В9 Фолиевая кислота, Фолацин

200 мкг

Кроветворный фактор, участвует в синтезе аминокислот, нуклеиновых кислот, холина, пуриновых и пиримидиновых оснований.

Витамин В12 Цианкобаламин

3 мкг

Фактор кроветворения, участвует в превращениях аминокислот.

Витамин Н

Биотин

250 мкг

Участвует в реакциях карбоксилирования - декарбоксилирования, обмена аминокислот, липидов, углеводов, нулеиновых кислот.

Витамин А Ретинол

2 мг

Участвует в деятельности мембран клеток, влияет на рост костей, зрение человека.

Витамин Д Эргостерол

2,5 мкг

Регулирует содержание кальция и фосфора в крови, участвует в формировании костей.

Витамин Е Токоферол

10 мг

Предотвращает окисление липидов.

Активный антиокислитель.

Витамин К Филлохинон

3 мг

Регулирует процесс свертывания крови.

Витамин Е (токоферол). Токоферолы регулируют свободнорадикальные реакции в клетках, предотвращают окисление ненасыщенных жирных кислот в липидах клеточных мембран, влияют на синтез ферментов, обладает выраженным антиокислительным действием и используется в качестве антиоксиданта. При недостатке витамина наблюдается поражение миокарда, сердечнососудистой и нервной системы, функции размножения. Витамин Е распространен в растительном сырье: в масле соевом - 115 мкг %, подсолнечном - 42 мкг %, в зернопродуктах - 5 мкг %. Витание Е устойчив при нагревании, медленно разрушается под действием ультрафиолетовых лучей, кислорода воздуха, в присутствии тяжелых металлов. При переработке сырья теряется 10 - 20 % витамина.

Витамин Д (эргостерол, кальциферол, эргокальциферол). Витамин регулирует содержание кальция и фосфора в крови, участвует в формировании костных тканей. Витамин Д способен синтезироваться в коже человека под влиянием ультрафиолетовых лучей. При недостатке витамина у детей развивается рахит, у взрослых наблюдается остеопороз - разжижение, истончение костей, что приводит к кариесу зубов, переломам костей. Витамин Д содержится в продуктах животного происхождения: в рыбьем жире - 125 мкг %, в печени трески - 100 мкг %, в говяжьей печени - 2,5 мкг %, в желтке яйца - 2,2 мкг %. Витамин устойчив при хранении и технологической переработке. При сушке теряется максимальное количество до 30 % витамина Д.

Витамин К (филлолхинон К1 и метахинон К2). Витамин К необходим для нормализации свертывания крови, участвует в образовании компонентов крови. При недостатке развивается язвенная болезнь. Основные источники витамина: зеленные культуры, такие как укроп, петрушка, капуста (в растительном сырье встречается филлохинон), мясо, печень (в сырье животного происхождения встречается метахинон). Частично витамин К синтезируются микрофлорой кишечника.

6.4 Витаминоподобные соединения

Витаминоподобные вещества являются веществами в повышенной биологической активностью. Они выполняют в организме человека разнообразные функции. Парааминобензойная кислота является фактором роста для микроорганизмов пищеварительного тракта, синтезирующих фолиевую кислоту. Холин, инозит являются незаменимыми пластическими веществами. Липоевая кислота, ортовая кислота, карнитин относятся к биологически активным веществам, синтезируемым организмом. Биофлавоноиды, метилметионинсульфоний, пангамовая кислота являются фармакологически активными веществами пищи.

Холин В4. Входит в состав фосфолипида фосфатидилхолин. Участвует в реакциях карбоксилирования-декарбоксилирования, обмена аминокислот, липидов, углеводов, нулеиновых кислот. Холин регулирует деятельность нервной системы, участвует в синтезе метионина, адреналина. При недостатке витамина наблюдается поражение печени, кровоизлияния во внутренних органах. Холин содержится в нерафинированном растительном масле, сопутствует растительным жирам.

Биофлавоноиды. Представлены группой флавоноидов с выраженной биологической активностью: катехин, рутин, гесперидин. Биофлавоноиды способствуют укреплению стенок кровеносной системы, помогают регулировать кровеносное давление, способствуют деятельности сердечно-сосудистой системы. Активность биофлавоноидов повышается в присутствии витамина С. Катехины содержатся в листьях чая, бобов какао, в винограде, гесперидин содержится в цедре цитрусовых фруктов.

На некоторые витаминоподобные вещества установлены ориентировочные суточные нормативы: для пантотеновой кислоты - 10 - 15 мг, для биофлавоноидов - 30 - 50 мг, для инозита - 500 - 1000 мг, для липоевой кислоты - 500 - 2000 мг, для холина 150 - 2000 мг.

Суточная потребность в витаминах и витаминоподобных веществах приведена в таблице 6.1

6.5 Витаминизация продуктов питания

Недостаточное поступление витаминов с пищей приводит к их дефициту в организме и развитию болезни витаминной недостаточности. Различают две степени витаминной недостаточности: авитаминоз и гиповитаминоз. При авитаминозе наблюдается большой дефицит витамина и развивается заболевание, связанное с витаминной недостаточностью (цинга, рахит, дерматозы). При гиповитаминозе наблюдается умеренный дефицит в витамине, проявления дефицита витамина стерты, неспецифичны (потеря аппетита, быстрая утомляемость, раздражительность, кровоточивость десен). Наряду с дефицитом одного из витаминов, все чаще наблюдается полигиповитаминоз и полиавитаминоз, при которых организм испытывает недостаток сразу в нескольких витаминах. Чаще всего гиповитиминозы и авитаминозы возникают при недостаточном поступлении витаминов с пищей, кроме того дефицит витаминов может возникнуть вследствие нарушения их усвоения в организме, в основном по причине развития какого-либо заболевания человека. В некоторых случаях формируется повышенная потребность человека в витаминах: при высоких физических нагрузках, при стрессе, при воздействии вредных внешних факторов.

При обследовании населения выявлен дефицит витаминов у большей части населения, особенно дефицит обостряется в зимний и весенний период. Наиболее эффективный способ витаминной профилактики - обогащение витаминами продуктов питания, пользующихся массовым спросом, часто наряду с витаминизацией осуществляют минерализацию продуктов, внося одновременно с витаминами дефицитные минеральные вещества. При витаминизации продуктов питания повышается их качество, сокращаются расходы на медицинское лечение, расширяется круг лиц, постоянно потребляющих дефицитные витамины, восполняются потери витаминнов, происходящие при технологической переработке сырья.

Основные продукты питания, обогащенные витаминами:

- мука и хлебобулочные изделия (витамины группы В);

- продукты детского питании (все витамины);

- напитки и соки (все витамины кроме А, D);

- молочные продукты (витамины А,D, E, C);

- маргарин, майонез (витамины А,D, E).

7. Минеральные вещества

7.1 Классификация минеральных веществ

Минеральные вещества играют важную роль в обменных процессах организма человека. Минеральные вещества входят в состав опорных тканей (кальций, фосфор, магний, фтор); принимают участие в кроветворении (железо, кобальт, фосфор, медь, марганец, никель); влияют на водный обмен, определяют осмотическое давление плазмы крови, являются составными частями ряда гормонов, витаминов, ферментов. Общее содержание минеральных веществ составляет 3 - 5 % массы тела человека. Содержание минеральных веществ в сырье и продуктах питания невелико от 0,1 до 1,9 %.

В зависимости от содержания в организме и потребности человека в минеральных веществах их разделяют на:

макроэлементы;

микроэлементы.

К макроэлементам относят кальций, фосфор, магний, натрий, калий, хлор, серу. Они содержатся в количествах, составляющих сотни миллиграммов на 100 г пищевого продукта.

Микроэлементы условно делят на две группы:

- абсолютно или жизненно необходимые - кобальт, железо, медь, цинк, марганец, йод, фтор, бром;

- вероятно необходимые - алюминий, стронций, молибден, селен, никель, ванадий.

Микроэлементы называют жизненно необходимыми, если при их отсутствии или недостатке нарушается нормальная жизнедеятельность организма человека. Микроэлементы содержатся в количествах, составляющих десятые, сотые, тысячные доли миллиграмма на 100 г пищевого продукта.

Распределение микроэлементов в организме человека зависит от химических свойств и очень разнообразно. Многие микроэлементы действуют на человека опосредовано, то есть через влияние на интенсивность и характер обмена веществ, часто это связано с влиянием на активность различных ферментов в организме человека. Так, некоторые микроэлементы (марганец, цинк, йод) влияют на рост, их недостаточное поступление в организм с пищей тормозит нормальное физическое развитие ребенка. Другие микроэлементы (молибден, медь марганец) принимают участие в активности репродуктивной функции, а их недостаток в организме отрицательно влияет на человека.

Таблица 7.1 Симптомы отклонений в организме человека при дефиците минеральных веществ

Минеральное вещество

Нарушения в деятельности органов человека

Кальций

Замедоение роста скелета

Магний

Мышечные судороги

Железо

Анемия, нарушение иммунной системы

Цинк

Повреждение кожи, замедление роста, полового созревания

Медь

Слабость артерий, нарушение деятельности печени, вторичная анемия

Марганец

Бесплодие, ухудшение роста скелета

Молибден

Замедление клеточного роста, склонность к кариесу

Кобальт

Злокачественная анемия

Никель

Депрессия, дерматиты

Хром

Симптомы диабета, атеросклероз

Кремний

Нарушение роста скелета

Фтор

Кариес зубов

Йод

Нарушение работы щитовидной железы, замедление обмена веществ

Селен

Слабость сердечной мышцы

К наиболее дефицитным минеральным веществам в питании человека относятся кальций (для детей и пожилых людей), железо, йод, к избыточным - натрий (из-за высокого уровня потребления соли), фосфор.

Недостаток или избыток в питании каких-либо минеральных веществ, вызывает нарушение обмена белков, липидов, углеводов, витаминов, что приводит к развитию ряда хронических заболеваний. В таблице 7.1 приведены симптомы отклонений в организме человека при дефиците минеральных веществ.

При правильном питании и потреблении человеком достаточного количества разнообразных минеральных веществ, все чаще наблюдается нарушение обмена минеральных веществ. Причинами нарушения обмена минеральных веществ могут быть следующие факторы:

- несбалансированное питание, то есть недостаточное или избыточное количество белков, липидов, углеводов, витаминов;

- применение методов кулинарной обработки пищевых продуктов, приводящих к потере минеральных веществ, например: при удалении отваров овощей и фруктов, размораживании мяса, рыбы в горячей воде. При такой обработке теряются растворимые соли, содержащие ценные минеральные вещества;

- отсутствие коррекции рациона питания, учитывающей увеличение потребностей отдельной группы населения в тех или иных минеральных веществах, связанные с определенными физическими нагрузками или условиями труда;

- нарушение процесса усвоения минеральных веществ.

7.2 Макроэлементы

Кальций. Содержится в организме человека в большем количестве, чем другие минеральные вещества, в среднем он составляет 1,5 - 2,0 % массы тела. Основная масса его (99 %) находится в костях, зубах.

Кальций является наиболее трудноусваиваемым элементом, адсорбируется только 10 - 30 % содержащегося в пище кальция. Усвоению кальция способствует высокое содержание в пище белков и лактозы. Нарушается усвоение кальция при повышенном содержании липидов, солей калия, магния, щавелевой кислоты. Существенное влияние на всасываемость кальция оказывает соотношение его с фосфором и магнием а пищевых продуктах. Оптимальное соотношение Са : Р = 1 : 1,5; Са : Mg = 1 : 0,5. При избытке фосфора в организме образуется кальциевая соль трехосновного фосфора, которая почти не усваивается организмом человека. Следствием несоответствия количества кальция и фосфора в рационе человека является разжижение костной ткани, кариес зубов.

Главным источником кальция в пище является молоко - 120 мг % и молочные продукты - до 1000 мг %, зернопродукты - 30 мг %, однако кальций, содержащийся в злаковых культурах, трудно усваивается.

Фосфор. Содержится в организме человека то 0,8 до 1,1 % массы, это составляет 600 - 700 г. Усваивается фосфор значительно легче, чем кальций, чаще всего усваивается около 70 % фосфора. Для образования костей используется 80 - 90 % фосфора, остальное количество участвует в различных обменных процессах организма человека: фосфорилирование глюкозы, глицерина, создание буферности в организме. Фосфорная кислота входит в состав многих комплексных соединений, отличающихся высокой биологической активностью, например: нуклеопротеиды, фосфопротеиды, фосфолипиды.

Главным источником фосфора являются молоко - 90 мг % и молочные продукты - до 500 мг %, мясо - 180 мг %, рыба - 250 мг %, зернопродукты - 200 мг %.

Магний. Содержится в организме человека в количестве 25 г. Из этого количества 70 % находится в связанном состоянии с кальцием и фосфором, образуя основу костной ткани. Около 50 % магния усваивается организмом из пищи. Факторы, нарушающие адсорбцию кальция, также нарушают всасывание магния (избыточное содержание в пище липидов, солей фосфора, кальция). Ионизированный магний участвует в процессах углеводного, белкового, фосфорного обменов. Он входит в состав ряда ферментов, участвующих в гликолитическом расщеплении глюкозы, регулируют уровень фосфора в крови. Магний участвует в нормализации возбудимости нервной системы, стимулирует деятельность кишечника. Снижает риск развития атеросклероза. Содержание магния в сыворотке крови влияет на уровень холестерина.

Магний широко распространен в растительных продуктах. Главным источником магния в пище являются: зернопродукты - 80 мг %, бобовые культуры - 100 мг %. Овощи и фрукты, мясо, яйца, рыба, молочные продукты сравнительно бедны магнием - 10-30 мг %.

Натрий. В организме человека содержится 115 г натрия. Около трети этого количества находится в костной ткани в виде неорганических соединений. Остальные 66 % натрия содержатся во внеклеточных жидкостях организма в виде ионов. Натрий влияет на буферность крови, играет важную роль в поддержании осмотического давления внеклеточной жидкости, участвует в поддержании рН крови. Содержание натрия в крови составляет 310-340 мг %. Натрий улучшает работу мышц, быстро усваивается из пищи (около 95 %).

Естественное содержание натрия в пищевых продуктах незначительно и в организм поступает в основном за счет поваренной соли. С солью человек ежедневно потребляет 4000 мг натрия. В молоке содержится 50 мг % натрия, в мясе и рыбе - 70 мг %.

Калий. Калий тесно связан с физиологией водного обмена организма человека. В организме калия содержится 250 мг %, он находится преимущественно внутри клеток, способствует нервно-мышечной деятельности, улучшает работу мышц. Калий легко усваивается организмом из пищи.

Постоянным источником калия в пище человека является картофель - 570 мг %. Очень богаты калием также сухофрукты - 1000 мг %, бобовые культуры - 800 мг %, значительно меньше калия в овощах и фруктах, крупах - 200 - 300 мг %.

Хлор. Хлор составляет около 3 % всех минеральных веществ организма человека. Хлориды хорошо усваиваются организмом человека. Анионы хлора вместе с ионами калия и натрия играют важную роль в поддержании осмотического давления внеклеточной жидкости, участвует в поддержании рН крови. Важную роль играет хлор в пищеварении, в виде соляной кислоты он обеспечивает необходимую кислую среду в желудке для активации пищеварительных ферментов, например пепсина.

Содержание хлора в пищевых продуктах незначительно. Основная потребность в хлоре удовлетворяется за счет поваренной соли. В овощах, молоке, мясе содержится 50 - 150 мг %.

Сера. Находится в организме в виде неорганических сульфатов и органических соединений - серосодержащие аминокислоты, сульфолипиды и др. Сера является важным структурным компонентом некоторых витаминов: тиамин, биотин, липолиевая кислота, входит в состав гормонов, ферментов. Сера активно участвует в белковом обмене, в тканевом дыхании и энергетическом обмене, способствует выведению из организма токсических веществ. Совместно с витаминами С и Е оказывает антиоксидантное действие, совместно с цинком и кремнием определяет состояние волос и кожи.

Основными источниками серы являются продукты животного происхождения. Сыр содержит серы 260 мг %, яйцо - 200 мг %, мясо и рыба - 220 мг %, бобовые культуры - 220 мг %, в зернопродуктах содержится всего 70 мг %.

7.3 Микроэлементы

Железо. В организме содержится 3 - 4 г железа, около 73 % из них входит в состав гемоглобина. Железо входит в состав окислительных ферментов и обеспечивает перенос кислорода, тканевое дыхание. С пищей усваивается 10-30 % железа так как в продуктах железо находится в трехвалентной форме, а для усвоения необходим переход железа в двухвалентное. Присутствии витамина С, солей кальция способствует переходу трехвалентного железа в двухвалентное. Недостаточность железа в организме проявляется анемией. Основным источником железа в организме являются: субпродукты и мясо - 3 - 5 мг %, зернопродукты - 4 мг %, бобовые культуры - 9 мг %.

Медь. Находится в организме человека в количестве 150 мг. Совместно с железом медь участвует в процессах кроветворения и тканевого дыхания, входит в состав окислительно-восстановительных ферментов, участвует в синтезе гемоглобина, эритроцитов, ускоряет усвоение железа, стимулирует действие гормонов.

Медь содержится в растительных и животных продуктах в незначительном количестве. В говяжьей печени содержится 2 мг % меди, в рыбе - 0,6 мг %.

Йод. В организме взрослого человека находится около 25 мг йода, из которых половина сосредоточена в щитовидной железе. Основное физиологическое значение йода заключается в участии образования гормона щитовидной железы - тироксина. В процессе технологической переработки теряется 20 - 60 % йода.

Основным источником йода являются продукты моря: морская капуста, рыба - 50 мкг %, рыбий жир - 770 мкг %. В мясе содержится йода всего 10 мкг %, в овощах - 10 мкг %.

Обогащение продуктов питания йодом необходимо для профилактики заболеваний гипертонической и зобной болезней, атеросклероза.

Марганец. Содержится в организме главным образом в печени и почках, общее количество марганца составляет 10 мг. Организм трудно усваивает марганец, он плохо всасывается в кишечнике. Усвояемость марганца составляет 37-63 %. Основное биологическое значение марганца заключается в его активном участии в окислительно-восстановительных реакциях, он активизирует некоторые ферменты, участвует в образовании костной и соединительной ткани. Марганец стимулирует процессы роста, усиливает действие инсулина, вместе с железом и медью играет существенную роль в кроветворении.

Основные источники марганца это растительные продукты: зернопродукты и бобовые культуры - 400 - 1000 мкг %, зеленные культуры, свекла - 200 мкг %, а продукты животного происхождения бедны марганцем, в мясе содержится 50 мкг %.

Кобальт. Является составной частью витамина В12. Он стимулирует процессы кроветворения, активизируя образование гемоглобина и эритроцитов, оказывает влияние на обмен веществ. Кобальт в организме усваивается в форме витамина В12.

Источником кобальта в пищевых продуктах являются продукты, богатые витамином В12: печень, бобовые культуры, ягоды, свекла.

Цинк. Содержится в организме человека в количестве 2г. Основное биологическое значение его заключается в участии в процессах дыхания, в поддержке кислотно-щелочного равновесия, повышает интенсивность распада липидов в организме, входит в состав инсулина и влияет на углеводный обмен, способствует росту организма.

Продукты растительного происхождения содержат 1-10 мг % цинка, наиболее богаты им зерновые культуры - 4 мг %, бобовые культуры - 3 мг %, мясо - 3 мг %, печень - 5 мг %, яичный желток - 9 мг %.

Фтор. Играет важную роль в формировании зубной эмали, в образовании костей, нормализует фосфорно-кальциевый обмен. В среднем из пищи усваивается 35 % фтора, а из воды усваивается 64 % фтора. Поступление фтора в организм определяется преимущественно содержанием его в питьевой воде. Оптимальной считается концентрация фтора в воде - 0,5 - 1,2 мг/дмі.

Содержание фтора в продуктах составляет 0,02 - 0,05 мг %, больше фтора в морепродуктах, в рыбе - 500 мкг %. Для профилактики кариеса зубов используют зубные пасты с добавлением фтора, в виде неорганических соединений, в концентрациях около 1 г/кг.

Никель. Участвует в процессах кроветворения, влияет на функцию поджелудочной железы, усиливает образование инсулина. Синтетические соединения никеля токсичны для человека. Никель содержится в морепродуктах - 5 - 10 мкг %, в субпродуктах, в овощах и фруктах содержится 5 -10 мкг %, в зерновых культурах - 30 - 80 мкг %. Суточная потребность в никеле составляет от 200 до 900 мкг.

Хром. Участвует в основном в обмене углеводов, а также липидов и аминокислот. Хром считают глюкозо-толерантным фактором (Glucose Tolerance Factor), он облегчает усвоение глюкозы. Хром имеет важное значении, в профилактике легких форм диабета, атеросклероза. Человек усваивает трехвалентный хром через желудочно-кишечный тракт и дыхательные пути. Шестивалентная форма хрома токсична для человека.

Пищевым источником хрома является печень - 10 - 80 мкг %, хром содержится в пивных дрожжах.

Селен. Участвует в деятельности сердечно-сосудистой системы, регулирует деятельность клеточных мембран, участвует в синтезе гормонов щитовидной железы, то есть способствует усвоению йода. Селен повышает антиокислительную активность витамина Е. При недостатке селена особенно страдает сердечно-сосудистая система, это проявляется прогрессирующим атеросклерозом и слабостью сердечной мышцы. Хром активизирует иммунную систему, является детоксикантом.

Пищевым источником селена являются зернопродукты - 200 мкг %. Селен обнаружен в зеленом китайском чае.

Суточная потребность человека в важнейших микро и макроэлементах представлена в таблице 7.2.

Таблица 7.2 Суточная потребность человека в минеральных веществах

Минеральные вещества

Ед. измерения

Суточная потребность

Кальций

Мг

800

Фосфор

Мг

1200

Магний

Мг

400

Натрий

Мг

2000

Калий

Мг

3000

Хлор

Мг

1000

Сера

Мг

1000

Железо

Мг

14

Медь

Мг

2

Йод

Мкг

100

Марганец

Мг

5

Кобальт

Мкг

100

Цинк

Мг

20

Фтор

Мг

1

Молибден

Мкг

200

Хром

Мкг

150

Селен

Мкг

70

Никель

Мкг

900

8. Фенольные вещества

8.1 Классификация фенольных веществ

Растительные фенолы относятся к сложным органическим соединениям, имеющим в составе ароматическое кольцо и фенольный гидроксил.

Фенольные вещества играют важную роль в формировании вкуса и цвета пищевых продуктов, участвуют в окислительно-восстановительных реакциях. Большое разнообразие фенольных веществ, связано с тем, что они являются вторичными продуктами обмена веществ в растениях.

По строению фенольные вещества классифицируют на четыре группы:

1. Соединения группы С6 - С1

2. Соединения группы С6- С3

3. Соединения группы С6 - С3 - С6

4. Дубильные вещества.

8.2 Соединения группы С6 - С1

В эту группу входят разнообразные представители производных оксибензойной кислоты: п - оксибензойная кислота, салициловая кислота, галловая кислота, ваниловая кислота, сиреневая кислота.

Оксибензойные кислоты присутствуют в растениях в связанном состоянии и высвобождаются при гидролизе. Галловая кислота способна образовывать димеры при помощи депсидной связи. Эта связь образуется между фенольным гидроксилом одной молекулы галловой кислоты и карбоксильной группой другой молекулы. Депсиды галловой кислоты являются исходными продуктами для образования гидролизуемых дубильных веществ. Ваниловая кислота или ванилин является широко распространенным ароматизатором. Салициловая кислота присутствует в некоторых ягодах и является природным консервантом.

В эту группу входят разнообразные представители оксикоричных кислот: п-оксикоричная кислота, кофейная кислота, ферулоавя кислота, синаповая кислота. Соединения группы С6 - С1 приведены на рисунке 8.1

8.3 Соединения группы С6- С3

В эту группу входят разнообразные представители производных овсикоричной кислоты: п - оксикоричной кислоты являются: кофейная кислота, феруловая кислота, синаповая кислота. Наиболее важна из них кофейная кислота, которая взаимодействует с хинной кислотой и образует хлорогеновую кислоту. Это соединение участвует в процессе дыхания и обмена белков, влияет на прорастаемость ячменя. С хлорогеновой кислотой связывают стойкость сырья при хранении. Хлорогеновую кислоту относят к биологически активным соединениям, повышающим пищевую ценность фруктов, соков и т. д. Соединения группы С6 - С3 представлены на рисунке 8.2.

8.4 Соединения группы С6 - С3 - С6

В эту группу входят разнообразные фловоноиды, состоящие из двух ароматических колец и одного гетероциклического кислород-содержащего пиранового кольца. В растительном сырье флавоноиды находятся в свободном состоянии, то есть в виде агликонов, и в связанном с углеводами состоянии, то есть в виде гликозидов. Гликозиды проявляют биологическую активность, их называют Р-витаминами. Р-витамины оказывают влияние на эластичность кровеносных сосудов, их активность повышается в присутствии витамина С. Физиологическая потребность человека в Р-витаминах составляет 200 мг.

Флавоноиды различаются между собой по степени окисленности или восстановленности гетероциклического фрагмента молекулы. Наиболее восстановленным является катехин, затем по степони окисления следует лейкоантоциан, флавонон, антоциан, флавон, флаовнол. Все перечисленные соединения способны образовывать различные производные за счет внедрения в ароматические кольца группировок: -ОН, -ОСН3, -СН3. Флавоноиды окисляются ферментом полифенолоксидазой до темноокрашенных соединений - меланинов, придающих продуктам и исходному сырью, вяжущий вкус и вызывающих потемнение полуфабрикатов и готовой продукции.

Катехин. Способен образовывать сложные эфиры с галловой кислотой и в таком виде является составной частью дубильных веществ. Катехин участвует в процессе дыхания растений, он используется в качестве резервного энергетического материала при возникновении неблагоприятных условий. Катехин образует Р-витамин при взаимодействии с углеводами. Богат катехином чайный лист, много содержится в яблоках, клюкве, бруснике.

Лейкоантоциан. Образует Р-витамин, в кислой среде переходит в антоциан, но в отличие от последнего, бесцветен, входит в состав дубильных веществ. В облепихе, черной смородине, крыжовнике, винограде содержится 200-250 мг % лейкокантоцианов.

Антоциан. Является основным красящим веществом растений, с ионами металлов образует соединения синего цвета, а с кислотами - красного. Чаще антоцианы встречаются в виде гликозаидов или Р-витаминов. Антоцианы способны связывать ионы тяжелых металлов и радиоактивных веществ и выводить их из организма. Особенно много антоцианов в черноплодной рябине - 5000 мг%. Значительное количество антоцианов обнаруживается в темноокрашенных плодах и ягодах: в черной смородине - 600 мг %, в вишне - 250 мг %, в клюкве - 380 мг %.

Флавонолы и Флавоны. Являются желтыми красящими веществами. В природе существует около 120 разновидностей флавонолов и флавонов. Наиболее широко распространен флавонол кверцетин и его гликозид - рутин, имеющий высокую Р-витаминную активность.

8.5 Дубильные вещества

По составу дубильные вещества подразделяются на: гидролизующиеся и конденсированные.

Гидролизующиеся дубильные вещества состоят из галловой и пирокатехиновой кислот. Они соединены депсидной связью. Гидролиз этих веществ осуществляет фермент танназа, также гидролиз можно провести при интенсивном кипячении в водных растворах.

Конденсированные дубильные вещества при кипячении в слабокислых растворах подвергаются уплотнению, конденсации. В состав конденсированных дубильных веществ входят катехины, лейкоантоцианы и их сополимеры, соединенные углерод-углеродной связью. При конденсации большого количества катехинов и лейкоантоцианов образуются флобофены или «красные дубильные вещества». Эти производные дубильных веществ оказывают большое влияние на коллоидную стойкость пива, вина, сока.

Присутствие дубильных веществ, способствует лучшей сохранности сырья при хранении, предупреждает преждевременное прорастание зерна.

В пиве обнаружено 120 - 250 мг на 1 дмі полифенолов, 60 - 100 мг на дмі антоцианов. Содержание фенольных веществ в винограде и виноградном вине представлено в таблице 8.1.

Таблица 8.1 Содержание фенольных веществ в винограде и виноградном вине

Группы фенольных веществ

В белом винограде, мг/дмі

В красном винограде, мг/дмі

В белом вине, мг/дмі

В красном вине, мг/дмі

Катехины

200-500

500-4000

300

500

Антоцианы

-

300-2000

-

500

Лейкоантоцианы

20-100

20-1000

100

10-200

Флавонолы

10-40

100-200

5-10

5-40

Флавоны

1-10

1-20

1-5

1-10

Танины (полифенолы)

50-300

50-1000

100-1500

1000-5000

9. Вода в пищевых продуктах

9.1 Значение влаги в пищевых продуктах


Подобные документы

  • Биологическая роль углеводов, действие ферментов пищеварительного тракта на углеводы. Процесс гидролиза целлюлозы (клетчатки), всасывание продуктов распада углеводов. Анаэробное расщепление и реакция гликолиза. Пентозофосфатный путь окисления углеводов.

    реферат [48,6 K], добавлен 22.06.2010

  • Органические вещества, в состав которых входит углерод, кислород и водород. Общая формула химического состава углеводов. Строение и химические свойства моносахаридов, дисахаридов и полисахаридов. Основные функции углеводов в организме человека.

    презентация [1,6 M], добавлен 23.10.2016

  • Классификация углеводов (моносахариды, олигосахариды, полисахариды) как самых распространенных органических соединений. Химические свойства вещества, его роль в питании как основного источника энергии, характеристика и место глюкозы в жизни человека.

    реферат [212,0 K], добавлен 20.12.2010

  • Общая формула углеводов, их первостепенное биохимическое значение, распространенность в природе и роль в жизни человека. Виды углеводов по химической структуре: простые и сложные (моно- и полисахариды). Произведение синтеза углеводов из формальдегида.

    контрольная работа [602,6 K], добавлен 24.01.2011

  • Общая характеристика, классификация, строение и синтез белков. Гидролиз белков с разбавленными кислотами, цветные реакции на белки. Значение белков в приготовлении пищи и пищевых продуктов. Потребность и усвояемость организма человека в белке.

    курсовая работа [29,7 K], добавлен 27.10.2010

  • Расчет количества и химического состава сырьевых компонентов, энергетической и биологической ценности батона, степени удовлетворения суточной потребности человека в конкретном пищевом веществе. Определение пищевой ценности изделия с добавкой соевой муки.

    практическая работа [115,6 K], добавлен 19.03.2015

  • Формула углеводов, их классификация. Основные функции углеводов. Синтез углеводов из формальдегида. Свойства моносахаридов, дисахаридов, полисахаридов. Гидролиз крахмала под действием ферментов, содержащихся в солоде. Спиртовое и молочнокислое брожение.

    презентация [487,0 K], добавлен 20.01.2015

  • Классификация, виды, полезные свойства шоколада и его влияние на организм человека. Исследование состава шоколада по этикеткам. Определение в шоколаде непредельных жиров, белков, углеводов, кислотно-щелочного баланса. Отношение школьников к шоколаду.

    практическая работа [2,5 M], добавлен 17.02.2013

  • Понятие и структура углеводов, их классификация и типы, значение в человеческом организме, содержание в продуктах. Факторы, снижающие ингибирующее действие, принцип функционирования антиферментов. Роль кислот в формировании вкуса и запаха продуктов.

    контрольная работа [30,1 K], добавлен 02.12.2014

  • Аэробное окисление углеводов - основной путь образования энергии для организма. Клеточное дыхание - ферментативный процесс, результате которого, молекулы углеводов, жирных кислот и аминокислот расщепляются, освобождается биологически полезная энергия.

    реферат [20,9 K], добавлен 17.01.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.