Воздух глазами химика
Химический состав воздуха. Физические свойства и фазовая диаграмма кислорода, его биологическая роль. Массовая доля водорода в земной коре. Химические свойства, строение молекулы азота. Промышленное связывание атмосферного азота. Свойства метана и гелия.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 03.04.2013 |
Размер файла | 442,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Хорошо изученный спектр гелия имеет два резко различных набора серий линий -- единичных (1S0) и триплетных (3S1), поэтому в конце 19 века Локьер, Рунге и Пашен предположили, что гелий состоит из смеси двух газов; один из них имел в спектре жёлтую линию 587,56 нм, другой -- зелёную 501,6 нм. Этот второй газ они предложили назвать астерием (Asterium) от греч. звёздный. Однако Рамзай и Траверс показали, что спектр гелия зависит от условий: при давлении газа7--8 мм рт.ст. наиболее ярка жёлтая линия; при уменьшении давления увеличивается интенсивность зелёной линии. Спектры атома гелия были объяснены Гейзенбергом в 1926 г. Спектр зависит от взаимного направления спинов электронов в атоме -- атом с противоположно направленными спинами (дающий зелёную линию в оптических спектрах) получил название парагелия, с сонаправленными спинами (с жёлтой линией в спектре) назван ортогелием. Линия парагелия -- одиночки, линии ортогелия -- весьма узкие триплеты. Атом гелия в нормальных условиях находится в одиночном (синглетном) состоянии. Чтобы атом гелия перевести в триплетное состояние, нужно затратить работу в 19,77 эВ. Переход атома гелия из триплетного состояния в синглетное сам по себе осуществляется чрезвычайно редко. Такое состояние, из которого переход в более глубокое сам по себе маловероятен, носит название метастабильного. Вывести атом из метастабильного состояния в стабильное можно, подвергая атом внешнему воздействию, например, электронным ударом или при столкновении с другим атомом с передачей последнему непосредственно энергии возбуждения. В атоме парагелия (синглетного состояния гелия) спины электронов направлены противоположно, и суммарный спиновый момент равен нулю. В триплетном состоянии (ортогелий) спины электронов сонаправлены, суммарный спиновый момент равен единице. Принцип Паули запрещает двум электронам находиться в состоянии с одинаковыми квантовыми числами, поэтому электроны в низшем энергетическом состоянии ортогелия, имея одинаковые спины, вынуждены иметь различные главные квантовые числа: один электрон находится на 1s-орбитали, а второй -- на более удалённой от ядра 2s-орбитали (состояние оболочки 1s2s). У парагелия оба электрона находятся в 1s-состоянии (состояние оболочки 1s2).
Спонтанный интеркомбинационный (то есть сопровождающийся изменением суммарного спина) переход с излучением фотона между орто- и парагелием чрезвычайно сильно подавлен, однако возможны безызлучательные переходы при взаимодействии с налетающим электроном или другим атомом.
В бесстолкновительной среде (например, в межзвёздном газе) спонтанный переход из нижнего состояния ортогелия 23S1 в основное состояние парагелия 10S1возможен путём излучения одновременно двух фотонов или в результате однофотонного магнитно-дипольного перехода (M1). В этих условиях расчётное время жизни атома ортогелия за счёт двухфотонного распада 23S1 > 10S1 + 2г составляет 2,49·108 с, или 7,9 года. Первые теоретические оценки показывали, что время жизни за счёт магнитно-дипольного перехода на порядки больше, то есть что доминирует двухфотонный распад. Лишь через три десятилетия, после неожиданного открытия запрещённых триплетно-синглетных переходов некоторых гелиеподобных ионов в спектрах солнечной короны было обнаружено, что однофотонный магнитно-дипольный распад 23S1-состояния значительно более вероятен; время жизни при распаде по этому каналу составляет «всего» 8·103 с.
Следует отметить, что время жизни первого возбуждённого состояния атома парагелия 20S1 также крайне велико по атомным масштабам. Правила отбора для этого состояния запрещают однофотонный переход 20S1 > 10S1 + г, а для двухфотонного распада время жизни составляет 19,5 мс.
Гелий менее растворим в воде, чем любой другой известный газ. В 1 л воды при 20 °C растворяется около 8,8 мл (9,78 при 0 °C, 10,10 при 80 °C), в этаноле --2,8 мл/л (15 °C), 3,2 мл/л (25 °C). Скорость его диффузии сквозь твёрдые материалы в три раза выше, чем у воздуха, и приблизительно на 65 % выше, чем у водорода.
Коэффициент преломления гелия ближе к единице, чем у любого другого газа. Этот газ имеет отрицательный коэффициент Джоуля -- Томсона при нормальной температуре среды, то есть он нагревается, когда ему дают возможность свободно увеличиваться в объёме. Только ниже температуры инверсии Джоуля -- Томсона (приблизительно 40 К при нормальном давлении) он остывает во время свободного расширения. После охлаждения ниже этой температуры гелий может быть превращён в жидкость при расширительном охлаждении. Такое охлаждение производится при помощи детандера.
Свойства конденсированных фаз
В 1908 году Х.Камерлинг-Оннес впервые смог получить жидкий гелий. Твёрдый гелий удалось получить лишь под давлением 25 атмосфер при температуре около1 К (В. Кеезом, 1926). Кеезом также открыл наличие фазового перехода гелия-4 (4He) при температуре 2,17K; назвал фазы гелий-I и гелий-II (ниже 2,17 K). В 1938 году П. Л. Капица обнаружил, что у гелия-II отсутствует вязкость (явление сверхтекучести). В гелии-3 сверхтекучесть возникает лишь при температурах ниже0,0026 К. Сверхтекучий гелий относится к классу так называемых квантовых жидкостей, макроскопическое поведение которых может быть описано только с помощью квантовой механики. В 2004 году появилось сообщение об открытии сверхтекучести твёрдого гелия (т. н. эффект суперсолид) при исследовании его в торсионном осцилляторе. Однако многие исследователи сходятся во мнении, что обнаруженный в 2004 году эффект не имеет ничего общего со сверхтекучестью кристалла. В настоящее время продолжаются многочисленные экспериментальные и теоретические исследования, целью которых является понимание истинной природы данного явления.
Криптомн
36 |
Криптон |
|
Kr 83,80 |
||
3d104s24p6 |
Криптомн -- элемент главной подгруппы восьмой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 36. Обозначается символом Kr(лат. Krypton). Простое вещество криптон (CAS-номер: 7439-90-9) -- инертный одноатомный газ без цвета, вкуса и запаха.
Физические свойства
Криптон -- инертный одноатомный газ без цвета, вкуса и запаха. В 3 раза тяжелее воздуха.
Химические свойства
Криптон химически инертен. В жёстких условиях реагирует со фтором, образуя дифторид криптона. Относительно недавно было получено первое соединение со связями Kr-O (Kr(OTeF5)2).
В 1965 году было заявлено о получении соединений состава KrF4, KrO3·H2O и BaKrO4. Позже их существование было опровергнуто.
В 2003 году в Финляндии было получено первое соединение со связью C-Kr (HKrC?CH -- гидрокриптоацетилен) путём фотолиза криптона и ацетилена на криптонной матрице.
Биологическая роль
Воздействие криптона на живые организмы изучено плохо. Исследуются возможности его использования в водолазном деле в составе дыхательных смесей и при повышенном давлении как средство для анестезии.
Ксеномн
54 |
Ксенон |
|
Xe 131,29 |
||
4d105s25p6 |
Ксеномн -- элемент главной подгруппы восьмой группы, пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 54. Обозначается символом Xe (лат. Xenon). Простое вещество ксенон (CAS-номер: 7440-63-3) -- благородный одноатомный газ без цвета, вкуса и запаха.
Распространённость
В солнечной системе
Ксенон относительно редок в атмосфере Солнца, на Земле, в составе астероидов и комет. Концентрация ксенона в атмосфере Марса аналогична земной: 0.08 миллионной доли, хотя содержание 129Xe на Марсе выше, чем на Земле или Солнце. Поскольку данный изотоп образуется в процессе радиоактивного распада, полученные данные могут свидетельствовать о потере Марсом первичной атмосферы, возможно, в течение первых 100 миллионов лет после формирования планеты. У Юпитера, напротив, необычно высокая концентрация ксенона в атмосфере -- почти в два раза выше, чем у Солнца.
Земная кора
Ксенон находится в земной атмосфере в крайне незначительных количествах, 0,087±0,001 миллионной доли (мL/L), а также встречается в газах, испускаемых некоторыми минеральными источниками. Некоторые радиоактивные изотопы ксенона, например, 133Xe и 135Xe, получаются как результат нейтронного облучения ядерного топлива в реакторах.
Свойства
Физические
Гранецентрированная кубическая структураксенона
Температура плавления ?112 °C, температура кипения ?108 °C, свечение в разряде фиолетовым цветом.
Химические
Первый инертный газ, для которого были получены настоящие химические соединения. Примерами соединений могут быть дифторид ксенона, тетрафторид ксенона, гексафторид ксенона, триоксид ксенона, ксеноновая кислота и другие.
Первое соединение ксенона было получено Нилом Барлеттом реакцией ксенона с гексафторидом платины в 1962 г. В течение двух лет после этого события было получено уже несколько десятков соединений, в том числе фториды, которые являются исходными веществами для синтеза всех остальных производных ксенона.
В настоящее время описаны фториды ксенона и их различные комплексы, оксиды, оксифториды ксенона, малоустойчивые ковалентные производные кислот, соединения со связями Xe-N, ксенонорганические соединения. Относительно недавно был получен комплекс на основе золота, в котором ксенон является лигандом. Существование ранее описанных относительно стабильных хлоридов ксенона не подтвердилось (позже были описаны эксимерные хлориды с ксеноном).
Получение
Ксенон получают как побочный продукт производства жидкого кислорода на металлургических предприятиях.
В промышленности ксенон получают как побочный продукт разделения воздуха на кислород и азот. После такого разделения, которое обычно проводится методомректификации, получившийся жидкий кислород содержит небольшие количества криптона и ксенона. Дальнейшая ректификация обогащает жидкий кислород до содержания 0.1-0.2 % криптоно-ксеноновой смеси, которая отделяется адсорбированием на силикагель или дистилляцией. В заключение, ксеноно-криптоновый концентрат может быть разделён дистилляцией на криптон и ксенон.
Из-за своей малой распространенности, ксенон гораздо дороже более легких инертных газов.
Относительная влажность воздуха
Относительная влажность воздуха -- важный экологический показатель среды. При слишком низкой или слишком высокой влажности наблюдается быстрая утомляемость человека, ухудшение восприятия и памяти. Высыхают слизистые оболочки человека, движущиеся поверхности трескаются, образуя микротрещины, куда напрямую проникают вирусы, бактерии, микробы. Низкая относительная влажность (до 5-7 %) в помещениях квартиры, офиса отмечена в регионах с продолжительным стоянием низких отрицательных температур наружного воздуха. Обычно продолжительность до 1-2 недель при температурах ниже минус 20оС, приводит к высушиванию помещений. Значительным ухудшающим фактором в поддержании относительной влажности является воздухообмен при низких отрицательных температурах. Чем больше воздухообмен в помещениях, тем быстрее в этих помещениях создается низкая (5-7 %) относительная влажность. Наиболее комфортно человек чувствует себя при влажности воздуха: летом - от 60 до 75%; зимой от 55 до 70%. В помещениях с паркетом и мебелью, выполненными из натурального дерева, относительная влажность должна составлять от 50 до 60%.
Замечено, что при длительных морозах редко возникают заболевания гриппом и ОРЗ, но когда морозы спадают -- люди, пережившие эти холода заболевают, причём в первую продолжительную (до недели) оттепель.
Продукты питания, строительные материалы и даже многие электронные компоненты допускается хранить в строго определённом диапазоне относительной влажности воздуха. Многие технологические процессы возможны только при строгом контроле содержания паров воды в воздухе производственного помещения.
Влажность воздуха в помещении можно изменять.
Для повышения влажности применяются увлажнители воздуха.
Функции осушения (понижения влажности) воздуха реализованы в большинстве кондиционеров и в виде отдельных приборов -- осушителей воздуха.
В цветоводстве
Относительная влажность воздуха в оранжереях и используемых для культивирования растений жилых помещениях подвержена колебаниям, что обусловлено временем года, температурой воздуха, степенью и частотой поливки и опрыскивания растений, наличием увлажнителей, аквариумов или других ёмкостей с открытой поверхностью воды, системой проветривания и обогрева. Кактусы и многие суккулентные растения легче переносят сухой воздух, чем многие тропические и субтропические растения.
Как правило, для растений, родиной которых являются влажные тропические леса, оптимальной является 80-95 % относительная влажность воздуха (зимой может быть снижена до 65-75 %). Для растений тёплых субтропиков -- 75-80 %, холодных субтропиков -- 50-75 % (левкои, цикламены, цинерарии и др.)
При содержании растений в жилых помещениях многие виды страдают от сухости воздуха. В первую очередь это отражается на листьях; у них наблюдается быстрое и прогрессирующее засыхание верхушек.
Для повышения относительной влажности в жилых помещениях используют электрические увлажнители, наполненные мокрым керамзитом поддоны и регулярное опрыскивание.
Размещено на www.allbest.
Подобные документы
Понятие аммиакатов, их использование в химическом анализе. Характеристика и свойства азота, строение молекулы. Степени окисления азота в соединениях. Форма молекулы аммиака. Проведение эксперимента по исследованию свойств аммиакатов, меди, никеля.
курсовая работа [237,1 K], добавлен 02.10.2013Нахождение азота в природе, его физические и химические свойства. Выделение азота из жидкого воздуха. Свойство жидкого азота при испарении резко понижать температуру. Получение аммиака и азотной кислоты. Образование и скопление селитры в природе.
реферат [490,6 K], добавлен 20.11.2011История открытия азота, его формула и свойства, нахождение в природе и химические реакции, которые происходят непосредственно в природе при участии азота. Методы связывания, получение и свойства нескольких важнейших соединений, области применения азота.
курсовая работа [896,1 K], добавлен 22.05.2010Характеристика азота – элемента 15-й группы второго периода периодической системы химических элементов Д. Менделеева. Особенности получения и применения азота. Физические и химические свойства элемента. Применение азота, его значение в жизни человека.
презентация [544,3 K], добавлен 26.12.2011Биологическая роль азота и его соединений для живой материи; распространенность, свойства. Факторы, влияющие на круговорот азота в антропогенных биоценозах. Токсикология и "физиологическая необходимость" азота для организма человека, животных и растений.
курсовая работа [82,8 K], добавлен 22.11.2012Открытие, физические и химические свойства азота. Круговорот азота в природе. Промышленный и лабораторный способы получения чистого азота. Химические реакции азота в нормальных условиях. Образование природных залежей полезных ископаемых, содержащих азот.
презентация [226,7 K], добавлен 08.12.2013Распространение цинка в природе, его промышленное извлечение. Сырьё для получения цинка, способы его получения. Основные минералы цинка, его физические и химические свойства. Область применения цинка. Содержание цинка в земной коре. Добыча цинка В России.
реферат [28,7 K], добавлен 12.11.2010Кислород как самый распространённый элемент земной коры, процесс его возникновения и массовая доля в воздухе. Физические и химические свойства кислорода, его реагентность. Растворённый кислород как из важнейших показателей качества воды, его измерение.
курсовая работа [502,8 K], добавлен 04.05.2010Химическая формула молекулы воды и ее строение. Систематическое наименование – оксид водорода. Физические и химические свойства, агрегатные состояния. Требования к качеству воды, зависимость ее вкуса от минерального состава, температуры и наличия газов.
презентация [6,1 M], добавлен 26.10.2011Сущность и состав кислот, их классификация по наличию кислорода и по числу атомов водорода. Определение валентности кислотных остатков. Виды и структурные формулы кислот, их физические и химические свойства. Результаты реакции кислот с другими веществами.
презентация [1,7 M], добавлен 17.12.2011