Инертные газы

История открытия инертных газов. Аргон, гелий, криптон, неон, ксенон. Физические и химические свойства инертных газов. Ксенон в природе, концентрация неона в мировой материи. Производство и применение инертных газов. Промышленное производство ксенона.

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 25.02.2012
Размер файла 45,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Меньший вес (в сравнении с двухкамерными стеклопакетами), высокая отражающая способность в диапазоне инфракрасного как коротковолнового, так и длинноволнового излучения, возможность выбора стеклопакетов с различными показателями светопропускания и солнцезащиты в зависимости от характера климатических условий, уровня теплоизоляции окон, этажности и ориентации здания по сторонам света - все это позволяет говорить о системном комплексе оптимального размещения и проектирования светопрозрачных конструкций со стеклопакетом «Тепловое зеркало ТМ» в разных точках планеты.

В 1957 г. на некоторых железных дорогах и рудниках США появились так называемые атомные лампы - предупредительные светящиеся знаки, не нуждающиеся в электропитании. В этих лампах есть радиоизотопы криптона, в основном 85Kr; их излучение вызывает свечение специального состава, нанесенного на внутреннюю поверхность рефлектора. Свет такой лампы виден на расстоянии 500 м.

Получение ксенона

Основным источником промышленного производства ксенона является воздух, где в 1000 м3 содержится 86 см3 ксенона. В России и странах СНГ уровень годового промышленного производства чистого ксенона составляет около 1500 м3.

В промышленности ксенон получают как побочный продукт разделения воздуха на кислород и азот. После такого разделения, которое обычно проводится методом ректификации, получившийся жидкий кислород содержит небольшие количества криптона и ксенона. Дальнейшая ректификация обогащает жидкий кислород до содержания 0,1-0,2% криптоноксеноновой смеси, которая отделяется адсорбированием на силикагель или дистилляцией. Как заключение, ксеноно-криптоновый концентрат может быть разделен дистилляцией на криптон и ксенон. Основными поставщиками сырья (криптон-ксенонового концентрата) являются крупные промышленные центры металлургической промышленности России. Для получения чистого ксенона используется криптон-ксеноновый концентрат, который подвергается криогенной ректификации на газоразделительных установках, обеспечивающих получение ксенона высокой чистоты (99,999%). Из-за своей малой распространенности ксенон гораздо дороже более легких инертных газов.

Ксенон на практике

Несмотря на высокую стоимость, ксенон незаменим в ряде случаев. Ксенон используют для наполнения ламп накаливания, мощных газоразрядных и импульсных источников света (высокая атомная масса газа в колбах ламп препятствует испарению вольфрама с поверхности нити накаливания).

Радиоактивные изотопы (127 Xe, 133Xe, 137Xe и др.) применяют в качестве источников излучения в радиографии и для диагностики в медицине, для обнаружения течи в вакуумных установках. Фториды ксенона используют для пассивации металлов.

Ксенон как в чистом виде, так и с небольшой добавкой паров цезия-133, является высокоэффективным рабочим телом для электрореактивных (главным образом - ионных и плазменных) двигателей космических аппаратов.

С конца XX века ксенон стал применяться как средство для общего наркоза (достаточно дорогой, но абсолютно нетоксичный, точнее - не вызывает химических последствий - как инертный газ). Первые диссертации о технике ксенонового наркоза в России появились в 1993 г. В качестве лечебного наркоза ксенон эффективно применяется для снятия острых абстинентных состояний и лечения наркомании, а также психических и соматических расстройств.

Фториды и оксиды ксенона предложены в качестве мощнейших окислителей ракетного топлива, а также в качестве компонентов газовых смесей для лазеров.

Как получают неон

Воздух - единственный реальный источник неона. Сам газ получают совместно с гелием в качестве побочного продукта в процессе сжижения и разделения воздуха. В этой первичной смеси неона с гелием - от 3 до 10% (остальное - азот). Разделение гелия и неона осуществляется за счет адсорбции и конденсации. Адсорбционный метод основан на способности неона в отличие от гелия адсорбироваться активированным углем, охлаждаемым жидким азотом. Конденсационный способ основан на вымораживании неона при охлаждении смеси.

Спрос на неон превышает производство

Еще недавно электровакуумная промышленность и научные лаборатории были единственными потребителями неона. Их нужды могли удовлетворить отделения неоногелиевой смеси установок малой и средней мощности.

В последние годы положение стало меняться. На неон как хладагент предъявляет спрос интенсивно развивающаяся криогенная техника; и ей нужно куда больше неона, чем традиционным потребителям. Впрочем, понятие о количествах тут относительное. Даже на установке, перерабатывающей в час 170 тыс. м3 воздуха, за сутки получают всего восемь сорокалитровых баллонов неона (под давлением 150 атм.). Сегодня спрос на неон превышает его производство.

Жидкий неон взрывобезопасен. Он тяжелее воды, его скрытая теплота испарения в два раза больше, чем у водорода, и раз в двадцать больше, чем у гелия. Оттого малы потери неона; в современных криостатах он хорошо сохраняется в течение многих месяцев.

При температурах жидкого неона хранят ракетное топливо. В жидком неоне замораживают свободные радикалы, консервируют животные ткани и имитируют условия космического пространства в термобарокамерах. В неоновых криостатах безопасно проводить такие деликатные, не терпящие тепла реакции, как прямой синтез Н2О2 из жидкого озона и атомарного водорода или получение фторидов кислорода (О2F2, О3F2 и О4F2).

Подвижность неона, малая его растворимость в жидкостях организма позволяют заменять гелий в искусственном безазотном воздухе неоногелиевой смесью. Таким воздухом дышат океанавты, водолазы, вообще люди, работающие при повышенных давлениях, чтобы избежать азотной эмболии и азотного наркоза. Легкий неоногелиевый воздух облегчает также состояние больных, страдающих расстройствами дыхания. У неоногелиевого воздуха есть о дно преимущество перед воздухом, в котором азот заменен чистым гелием, - он меньше охлаждает организм, так как теплопроводность его меньше.

Неон - газ для света

Неоном снаряжают лампы, когда газ в них нельзя заменить более дешевым аргоном. Большинство ламп наполняется не чистым неоном, а неоногелиевой смесью с небольшой добавкой аргона, чтобы понизить напряжение зажигания. Поэтому свечение ламп имеет оранжево-красный цвет. Оно видно на далекие расстояния, его невозможно спутать с другими источниками света, туман ему не помеха.

Эти качества делают газосветные неоновые лампы незаменимыми для сигнальных устройств разнообразного назначения. Неон светит на маяках, неоновыми лампами обозначают вершины высотных зданий и телевизионных башен, границы аэродромов, водных и воздушных трасс.

Очевидно, что со временем производители вывесок полностью прекратят использовать неон в качестве внутренней подсветки для объемных букв, и эта ниша будет полностью занята светодиодами. Тем не менее, газосветным трубкам - классическому источнику света в наружной рекламе - еще долгие годы не будет альтернативы в производстве эксклюзивных изделий высокохудожественного дизайна и в вывесках, в которых используется открытый неон.

Неон и тяжелые инертные газы присутствуют в газонаполненных фотоэлементах, ими заполнены тиратроны - электровакуумные ионные приборы, служащие быстродействующими реле и имеющие ряд других назначений.

Получение радона.

Для получения радона через водный раствор любой соли радия продувают воздух, который уносит с собой образующийся при радиоактивном распаде радия радон. Далее воздух тщательно фильтруют для отделения микрокапель раствора, содержащего соль радия, которые могут быть захвачены током воздуха. Для получения собственно радона из смеси газов удаляют химически активные вещества (кислород, водород, водяные пары и т.д.), остаток конденсируют жидким азотом, затем из конденсата отгоняют азот и другие инертные газы (аргон, неон и т.д.).

Применение.

Радон используют в медицине для приготовления радоновых ванн. Радон используется в сельском хозяйстве для активации кормов домашних животных, в металлургии в качестве индикатора при определении скорости газовых потоков в доменных печах, газопроводах. В геологии измерение содержания радона в воздухе и воде применяется для поиска месторождений урана и тория, в гидрологии - для исследования взаимодействия грунтовых и речных вод. Динамика концентрации радона в подземных водах может применяться для прогноза землетрясений.

История вопроса

Открытие радиоактивности и радона совпало с повышением интереса к биологическим эффектам радиации. Было установлено, что вода многих источников минеральных вод богата эманацией радия (так именовался радон в то время). Вслед за этим открытием последовала волна моды «на радиацию». В частности, в рекламе того времени радиоактивность минеральных вод выдавалась за главный показатель их полезности и эффективности.

6. Физиологическое действие инертных газов

инертный газ ксенон гелий

Естественно было ожидать, что столь химически инертные вещества, как инертные газы, не должны влиять и на живые организмы. Но это не так.

Вдыхание высших инертных газов (конечно в смеси с кислородом) приводит человека в состояние, сходное с опьянением алкоголем. Наркотическое действие инертных газов обуславливается растворением в нервных тканях. Чем выше атомный вес инертного газа, тем больше его растворимость и тем сильнее его наркотическое действие. Симптомы, проявляющиеся при отравлении инертными газами: субъективные ощущения, ослабление сознательной функции, замедление умственной деятельности и ухудшение нервно-мышечной координации.

Теперь о влиянии аргона на живой организм. При вдыхании смеси из 69% Ar, 11% азота и 20% кислорода под давлением 4 атм возникают явления наркоза, которые выражены гораздо сильнее, чем при вдыхании воздуха под тем же давлением. Наркоз мгновенно исчезает после прекращения подачи аргона.

Причина - в неполярности молекул аргона, повышенное же давление усиливает растворимость аргона в нервных тканях. Биологи нашли, что аргон благоприятствует росту растений. Даже в атмосфере чистого аргона семена риса, кукурузы, огурцов и ржи выкинули ростки. Лук, морковь и салат хорошо прорастают в атмосфере, состоящей из 98% аргона и только 2% кислорода.

Попадая в организм человека, радон способствует процессам, приводящим к раку лёгких. Распад ядер радона и его дочерних изотопов в легочной ткани вызывает микроожог, поскольку вся энергия альфа-частиц поглощается практически в точке распада. Особенно опасно (повышает риск заболевания) сочетание воздействия радона и курения. Считается, что радон - второй по частоте (после курения) фактор, вызывающий рак лёгких. Рак лёгких, вызванный радоновым облучением, является шестой по частоте причиной смерти от рака.

Радионуклиды радона обусловливают более половины всей дозы радиации, которую в среднем получает организм человека от природных и техногенных радионуклидов окружающей среды.

В настоящее время во многих странах проводят экологический мониторинг концентрации радона в зданиях, так как в районах геологических разломов его концентрации в помещениях зданий могут носить ураганный характер и существенно превышать средние значения по остальным регионам.

Предельно допустимое поступление радона через органы дыхания равно 146 М Бк/год.

Заключение

Благородные газы, редкие газы, химические элементы, образующие главную подгруппу 8-й группы периодической системы Менделеева: Гелий Не (атомный номер 2), Неон Ne (10), Аргон Ar (18), Криптон Kr (36), Ксенон Xe (54) и Радон Rn (86). Из всех Инертных газов только Rn не имеет стабильных изотопов и представляет собой радиоактивный химический элемент Название Инертных газов отражает химическую инертность элементов этой подгруппы, что объясняется наличием у их атомов устойчивой внешней электронной оболочки, на которой у гелия Не находится 2 электрона, а у остальных Инертных газов по 8 электронов. Удаление электронов с такой оболочки требует больших затрат энергии в соответствии с высокими потенциалами ионизации атомов Инертных газов.

Инертные газы имеют степени окисления +1, +2, +4, +6 и +8.

Благородные газы - бесцветные одноатомные газ без цвета и запаха. Обладают более высокой электропроводностью по сравнению с другими газами и при прохождении через них тока ярко светятся, имеют более низкие точки сжижения и замерзания, Жидкостью становятся при - 185,9°C, затвердевают при - 189,4°C (в условиях нормального давления). Аргон адсорбируется на поверхностях твердых тел и растворяется в воде (3,29 см3 в 100 г воды при 20°C).

Инертные газы, в том числе и ксенон в зависимости от условий реакции образует два соединения с гексафторидом платины: XePtF6 и Xe (PtF6) 2; при их гидролизе получаются одни и те же конечные продукты. Тетрафторид ксенона фторирует ртуть. Гексафторид ксенона чрезвычайно активен и разлагается со взрывом. Он легко реагируете фторидами щелочных металлов (кроме LiF). При действии озона на раствор ХеО3 в одномолярном едком натре образуется соль высшей кислоты ксенона Na4ХеО6. Если твердую соль Na4XeO6 обработать раствором нитрата свинца, серебра или уранила, то получаются соответствующие перксенонаты: PbXeO6 и (UO2) 2XeO6 желтого цвета и Ag4XeO6 - черного. Аналогичные соли дают калий, литий, цезий, кальций. Радон также взаимодействует с фтором, образуя нелетучие фториды. Для криптона выделены и изучены дифторид KrF2 и тетрафторид KrF4 по свойствам, напоминающим соединения ксенона.

Инертные газы в природе встречаются крайне редко. Их количество не значительно. В основном благородные газы находятся в растворённом виде в толще атмосферы. Большое скопление инертных газов наблюдается в космосе.

Применяют инертные газы в следующих областях:

Гелий - для наполнения воздушных шаров. Поскольку он негорюч, его добавляют к водороду для заполнения оболочки дирижабля.

Хуже растворим в крови, большие количества гелия применяют в дыхательных смесях для работ под давлением.

Смеси He-O2 применяют для снятия приступов астмы и при различных заболеваниях дыхательных путей.

Гелий используют как инертную среду для дуговой сварки, особенно магния и его сплавов, для охлаждения ядерных реакторов.

Для газовой смазки подшипников, в счетчиках нейтронов (гелий-3), газовых термометрах, рентгеновской спектроскопии, для хранения пищи, в переключателях высокого напряжения. В смеси с другими благородными газами гелий используется в наружной неоновой рекламе (в газоразрядных трубках).

Жидкий гелий выгоден для охлаждения магнитных сверхпроводников, ускорителей частиц и других устройств.

Аргон применяется при дуговой электросварке. В аргонной струе можно сваривать тонкостенные изделия и металлы, наибольшая часть получаемого аргона идет не в лампочки, а в металлургию, металлообработку и некоторые смежные с ними отрасли промышленности. Аргонная среда используется при горячей обработке титана, тантала, ниобия, бериллия, циркония, гафния, вольфрама, урана, тория, а также щелочных металлов Защитные функции выполняет аргон и при выращивании монокристаллов (полупроводников, сегнетоэлектриков), а также при производстве твердосплавных инструментов.

Криптон обычно используется в лампочках для карманных фонариков.

Криптоном заполняют и газосветные трубки низкого давления - преимущественно рекламные. Используют этот газ и в конструкциях ламп высокого давления. Яркий белый свет (с розоватым оттенком) таких ламп нужен в лакокрасочной и текстильной промышленности, при освещении сцен телевизионных студий, при киносъемках. Некоторые из таких ламп служат мощными источниками инфракрасного излучения.

Криптон и аргоно-криптоновые смеси широко используются для заполнения герметичных стеклопакетов. Использование криптона, имеющего низкую теплопроводность, приводит к существенному уменьшению потерь тепла через остекление путем теплопроводности и конвекции, а также к снижению себестоимости остекления за счет использования вместо двухкамерных однокамерных стеклопакетов.

Ксенон используют для наполнения ламп накаливания, мощных газоразрядных и импульсных источников света (высокая атомная масса газа в колбах ламп препятствует испарению вольфрама с поверхности нити накаливания).

Радиоактивные изотопы (127 Xe, 133Xe, 137Xe и др.) применяют в качестве источников излучения в радиографии и для диагностики в медицине, для обнаружения течи в вакуумных установках. Фториды ксенона используют для пассивации металлов.

Ксенон, как в чистом виде, так и с небольшой добавкой паров цезия-133, является высокоэффективным рабочим телом для электрореактивных (главным образом - ионных и плазменных) двигателей космических аппаратов.

Ксенон стал применяться как средство для общего наркоза (достаточно дорогой, но абсолютно нетоксичный, точнее - не вызывает химических последствий - как инертный газ).

Жидкий неон взрывобезопасен. При температурах жидкого неона хранят ракетное топливо. В жидком неоне замораживают свободные радикалы, консервируют животные ткани и имитируют условия космического пространства в термобарокамерах. Неоногелиевой смесью дышат океанавты, водолазы, вообще люди, работающие при повышенных давлениях, чтобы избежать азотной эмболии и азотного наркоза. Легкий неоногелиевый воздух облегчает также состояние больных, страдающих расстройствами дыхания.

Радон используют в медицине для приготовления радоновых ванн. Радон используется в сельском хозяйстве для активации кормов домашних животных, в металлургии в качестве индикатора при определении скорости газовых потоков в доменных печах, газопроводах. В геологии измерение содержания радона в воздухе и воде применяется для поиска месторождений урана и тория, в гидрологии - для исследования взаимодействия грунтовых и речных вод. Динамика концентрации радона в подземных водах может применяться для прогноза землетрясений.

Вдыхание высших инертных газов (конечно в смеси с кислородом) приводит человека в состояние, сходное с опьянением алкоголем. Наркотическое действие инертных газов обуславливается растворением в нервных тканях.

Симптомы, проявляющиеся при отравлении инертными газами: субъективные ощущения, ослабление сознательной функции, замедление умственной деятельности и ухудшение нервно-мышечной координации.

При вдыхании смеси из 69% Ar, 11% азота и 20% кислорода возникают явления наркоза, которые выражены гораздо сильнее, чем при вдыхании воздуха под тем же давлением. Наркоз мгновенно исчезает после прекращения подачи аргона.

Биологи нашли, что аргон благоприятствует росту растений. Попадая в организм человека, радон способствует процессам, приводящим к раку лёгких Особенно опасно (повышает риск заболевания) сочетание воздействия радона и курения. Считается, что радон - второй по частоте (после курения) фактор, вызывающий рак лёгких. Рак лёгких, вызванный радоновым облучением, является шестой по частоте причиной смерти от рака.

Список использованной литературы

1. Петров М.М., Михилев Л.А., Кукушкин Ю.Н. “Неорганическая химия”.

2. Гузей Л.С. Лекции по общей химии”.

3. Ахметов Н.С. “Общая и неорганическая химия”.

4. Некрасов Б.В. “Учебник общей химии”.

5. Глинка Н.Л. «Общая химия».

6. Ходаков Ю.В. “Общая и неорганическая химия”.

Размещено на Allbest.ru


Подобные документы

  • Инертные газы – химические элементы восьмой группы периодической системы: гелий He, неон Ne, аргон Ar, криптон Kr, ксенон Xe, радон Rn. История их названия. Эмиссионный спектр неона. Физиологическое действие ксенона. Концентрация радона в воздухе.

    презентация [507,5 K], добавлен 14.04.2015

  • Сущность понятия "нефтяные газы". Характерная особенность состава попутных нефтяных газов. Нахождение нефти и газа. Особенности получения газа. Газовый бензин, пропан-бутовая фракция, сухой газ. Применение газов нефтяных попутных. Пути утилизации ПНГ.

    презентация [2,5 M], добавлен 18.05.2011

  • Процесс поглощения газа жидким поглотителем. Абсорбционные методы очистки отходящих газов. Очистка газов от диоксида серы, от сероводорода и от оксидов азота. Выбор схемы и технологический расчет аппаратов для очистки газов на ТЭЦ, сжигающих мазут.

    курсовая работа [1,0 M], добавлен 18.04.2011

  • Расчет основных характеристик газа на основании закона Дальтона, понятие парциального давления. Определение плотности смеси газов, значения молекулярной массы. Основные виды вязкости: кинематическая и динамическая. Пределы воспламенения горючего газа.

    контрольная работа [65,7 K], добавлен 11.07.2017

  • Способы очистки углеводородных газов от Н2S, СO2 и меркаптанов. Схемы применения водных растворов аминов и физико-химических абсорбентов для извлечения примесей из природного газа. Глубокая осушка газа. Технология извлечения тяжелых углеводородов и гелия.

    контрольная работа [340,3 K], добавлен 19.05.2011

  • Химические свойства и основные области применения формальдегида. Технологическая схема производства формалина. Абсорбция формальдегидсодержащих реакционных газов. Окисление метанола воздуха в присутствии серебряных или молибденовых катализаторов.

    реферат [1,1 M], добавлен 04.02.2015

  • Поступление газов в воду и необходимость их удаления. Предотвращение коррозии оборудования. Способы удаления газов из воды. Повышение эффективности дегазации путем десорбции. Технологические особенности деаэрации и влияние температуры. Виды аппаратов.

    презентация [13,9 M], добавлен 10.12.2013

  • Характеристика, основные физические и химические свойства лития. Использование соединений лития в органическом синтезе и в качестве катализаторов. История открытия лития, способы получения, нахождение в природе, применение и особенности обращения.

    доклад [11,4 K], добавлен 08.04.2009

  • Классификация альдегидов, строение, нахождение в природе, биологическое действие, применение. Номенклатура кетонов, история открытия, физические и химические свойства. Реакции нуклеофильного присоединения. Химические методы идентификации альдегидов.

    презентация [640,8 K], добавлен 13.05.2014

  • История открытия водорода. Общая характеристика вещества. Расположение элемента в периодической системе, строение его атома, химические и физические свойства, нахождение в природе. Практическое применение газа для полезного и вредного использования.

    презентация [208,2 K], добавлен 19.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.