Органическая химия

Понятие сопряженных систем. Классификация органических реакций. Основные положения теории Бренстеда. Виды и источники углеводородов, их взаимодействие с галогенами. Крекинг-процесс, озокерит. Свойства олефинов, фенолов, альдегидов, способы их получения.

Рубрика Химия
Вид шпаргалка
Язык русский
Дата добавления 31.01.2012
Размер файла 98,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Азулен - кристаллическое вещество синего цвета. Синий или сине-фиолетовый цвет имеют и производные азулена. Окраска обусловлена наличием в молекуле достаточно длинной сопряженной системы р-электронов.

Азулен легко изомеризуется в нафталин. Производные азулена, в частности различные алкилзамещен-ные, содержатся в эфирных маслах ряда растений, в том числе лекарственных (римская ромашка, эвкалипт, некоторые виды полыни), чем объясняется противовоспалительное действие этих растений.

39. Одноатомные фенолы

Способы получения

1. Получение из каменноугольного дегтя. Этот способ является важнейшим техническим способом получения фенолов. Он состоит в том, что сначала фракции дегтя обрабатывают щелочами. Фенолы, хорошо растворимые в водных растворах щелочей с образованием фенолятов, легко отделяются при этом от углеводородов дегтя, которые в свою очередь не растворяются ни в воде, ни в водных растворах щелочей. Полученные щелочные растворы обрабатывают серной кислотой, которая разлагает феноляты, в результате чего опять выделяются фенолы, например:

C6H5ONa + H24 > NaHSО4 + C6H5OH.

Выделенные фенолы для разделения подвергают повторной фракционной перегонке и дальнейшей очистке.

2. Получение из солей сульфокислот. При сплавлении солей сульфокислот со щелочами образуются фенол и сульфит калия:

C6H5SO3K + КОН > С6Н5ОН + K24.

Образующийся фенол в присутствии КОН превращается в фенолят:

С6Н5ОН + КОН > С6Н5ОК + H2О.

Фенолят далее разлагают серной кислотой, причем образуется свободный фенол:

С6Н5ОК + H24 > С6Н5ОН + KHSO4.

3. Получение из кумола (изопропилбензола).

Кумол окисляют кислородом воздуха; образовавшаяся гидроперекись кумола при действии серной кислоты дает фенол и другой ценный продукт - ацетон:

кумол > гидроперекись кумола > фенол.

4. Получение из солей диазония - важный способ введения фенольного гидроксила.

Кумол получают алкилированием бензола пропиленом (выделяемым из отходящих газов крекинга) в присутствии катализаторов (например, AIСl13).

Физические свойства

Фенолы в большинстве случаев представляют собой, твердые кристаллические вещества, очень плохо растворимые в воде. Обладают сильным характерным запахом.

Химические свойства

Важнейшим свойством фенолов, отличающим их от спиртов, является их кислотность. Вместе с тем, обладая общей со спиртами схемой строения (R-ОН), фенолы вступают в некоторые реакции, характерные и для спиртов.

Всем фенолам присущи слабокислые свойства, что проявляется в их способности растворяться в щелочах с образованием фенолята.

Кислотные свойства фенолов выражены очень слабо. Так, фенолы не окрашивают лакмусовую бумагу. Самая слабая неорганическая кислота - угольная - вытесняет фенолы из их солеобразных соединений - фенолятов:

40. Химические свойства фенолов

Образование простых эфиров. Фенолы, подобно спиртам, способны давать соединения типа простых эфиров. Практически для получения простых эфиров фенолов на феноляты действуют галогеналкилами (1) или галогенарилами (2):

C6H5ONa + IC2H5 > C6H5--O--C2H5 + NaI (1)

C6H5ONa + BrC6H5 > C6H5--O--C6H5 + NaBr (2)

В первом случае (1) получается простой эфир, содержащий радикал фенола и радикал спирта, т. е. смешанный жирноароматический простой эфир. Во втором случае (2) получается простой эфир, содержащий два остатка фенола, т. е. чисто ароматический простой эфир.

Образование сложных эфиров. Подобно спиртам фенолы могут давать соединения типа сложных эфиров. Практически для получения сложных эфиров фенолов обычно на феноляты действуют галогенангидридами кислот. Фенолы дают сложные эфиры как с органическими, так и с минеральными кислотами. Например, с мочой человека выделяется калиевая соль сернокислого эфира фенола.

Реакция окрашивания с хлорным железом. Все

фенолы с хлорным железом образуют окрашенные соединения; одноатомные фенолы обычно дают окрашивание фиолетового или синего цвета.

Замещение атомов водорода в бензольном ядре. Остаток бензола в фенолах влияет на гидрок-сильную группу, сообщая ей кислотные свойства. Однако и гидроксил, введенный в молекулу бензола, влияет на остаток бензола, увеличивая реакционную 40б способность атомов водорода в бензольном ядре. В результате атомы водорода в ядре молекулы фенола замещаются гораздо легче, чем в ароматических углеводородах:

1) замещение галогенами. При действии на фенолы галогенов, даже бромной воды, три атома очень легко замещаются, и получаются тригалогеноза-мещенные фенолы. Атомы брома замещают атомы водорода, находящиеся в орто-и параположении по отношению к гидроксильной группе. Трибром-фенол плохо растворим в воде и выпадает в осадок, в связи с чем реакция его образования может служить для обнаружения фенола;

2) замещение остатком азотной кислоты. Фенолы очень легко нитруются. Так, при действии даже очень разбавленной азотной кислоты получается смесь нитрофенола;

3) замещение остатком серной кислоты. Фенолы легко сульфируются; из фенола при этом получается смесь о- и п-фенолсульфокислот.

Преобладание того или иного изомера зависит от температуры: при 25 °C образуется преимущественно ортоизомер, при 100 °C - параизомер.

Окисление фенолов. Фенолы легко окисляются даже при действии кислорода воздуха. При этом они изменяют свой цвет, окрашиваясь в розовый, красно-розовый или темно-красный цвет. Примеси к фенолам ускоряют окисление, и поэтому неочищенные фенолы обычно темнеют очень сильно и быстро.

Антисептические свойства. Фенолы убивают многие микроорганизмы, этим свойством пользуются в медицине, применяя фенолы и их производные как дезинфицирующие и антисептические средства. Фенол (карболовая кислота) был первым антисептическим средством, введенным в хирургию Листером в 1867 г. Антисептические свойства фенолов основаны на их способности свертывать белки.

41. Отдельные представители фенолов

Фенол, или карболовая кислота, AСldum carboli-cum, C6H5OH - кристаллическое вещество с характерным запахом, розовеющее на воздухе вследствие окисления. С водой образует кристаллогидрат С6Н5ОН, плавящийся при 16 °C. В воде фенол растворяется в отношении 1: 15 (при 20 °C). Растворы фенола с FeCl3 дают фиолетовое окрашивание. Кристаллы фенола на воздухе поглощают атмосферную влагу и расплываются, образуя раствор воды в феноле.

Применение фенола в медицине в связи с его токсичностью ограничено, причем он применяется лишь как наружное средство. Большое количество фенола используется для синтеза красителей, пикриновой кислоты, салициловой кислоты и других лекарственных веществ, а также для производства искусственных смол - фенолоальдегидных смол, например ба-келитов.

Простые эфиры фенола. Метиловый и этиловый эфиры фенола называются соответственно анизол и фенетол.

Оба вещества представляют собой жидкость.

Нитрофенолы. Существуют моно-, ди- и тринитро-фенолы. Введение нитрогруппы в молекулу фенола сильно повышает его кислотные свойства: в отличие от фенолов нитрофенолы способны разлагать углекислые соли, вытесняя угольную кислоту. Это свойство нитрофенолов связано со способностью их находиться в двух таутомерных формах - бензоидной и хиноидной, или ациформе.

При образовании ациформы атом водорода из фе-нольного гидроксила переходит к атому кислорода в нитрогруппе, что сопровождается перераспределением сил химического сродства. Свободные нитрофенолы обычно имеют желтую окраску различной интенсивности и оттенков или бывают практически бесцветными. Это зависит от количественного соотношения двух таутомерных форм нитрофенолов: бесцветной бензоидной и ярко-желтой ациформы. Это соотношение зависит не только от природы нитрофенола, но и от концентрации водородных и гидроксильных ионов.

В связи с изменением окраски нитрофенолов в зависимости от реакции среды, т. е. концентрации водородных ионов, некоторые нитрофенолы применяются как индикаторы.

Большое значение имеет тринитрофенол, обычно называемый пикриновой кислотой. Пикриновую кислоту можно получить нитрованием фенола смесью концентрированной азотной и серной кислот; существуют и другие экономически более выгодные методы.

Как и другие нитрофенолы, пикриновая кислота существует в двух таутомерных формах.

Она представляет собой кристаллическое вещество желтого цвета, горького вкуса. При нагревании легко взрывается. Пикриновая кислота в связи с наличием трех остатков азотной кислоты представляет собой довольно сильную кислоту, приближающуюся по степени диссоциации к минеральным кислотам.

Пикриновая кислота широко применяется как взрывчатое вещество в свободном состоянии и в виде солей калия и аммония, а также как красящее вещество. Она применяется при лечении ожогов.

42. Фенолоформальдегидные смолы

Взаимодействие фенола с формальдегидом с образованием смолообразных продуктов стало известно еще в XIX в. (Байер, 1872 г.). Механизм образования фенолоформальдегидных смол весьма сложен.

При взаимодействии фенола и формальдегида образуется в качестве главного продукта фенолоспирт - о-оксибензиловый спирт, или салигенин, а также в соответствии с правилами замещения в бензольном кольце его п-изомер. Образовавшиеся о- и п-изоме-ры конденсируются с выделением воды.

Эти димеры, в свою очередь, могут конденсироваться друг с другом, а также с молекулами формальдегида и фенола (в зависимости от условий реакции, в частности от количества исходных продуктов). В конечном итоге могут образоваться продукты, имеющие сложную сетчатую структуру, в которой оксифенильные остатки связаны метиленовыми мостиками.

Фенолоформальдегидные смолы, применяемые в сочетании с другими материалам (наполнителями), носят общее название фенопластов. К ним относятся карболит (смола + древесная мука), текстолит (смола + хлопчатобумажиая ткань), гетинакс (смола + бумага), стеклотекстолит (смола + стеклянное волокно) и т. д. Изделия, изготовляемые из фенопластов, чрезвычайно разнообразны: бесшумные зубчатые передачи и другие части машин, строительные детали, кузова автомашин, бытовые предметы и др.

Фенолоформальдегидные смолы применяются как основа ионитов. Ионитами или ионообменными смолами называются высокомолекулярные смолы (фенолоформальдегидные, полистирольные и др.), содержащие функциональные группы, способные легко обменивать свой катион или анион на соответствующий ион, содержащийся в растворе. В зависимости от обмениваемого иона иониты разделяются на катиониты и аниониты. В качестве ионообменивающих групп катионов обычно используются группы - SO3H, - СООН; в анионитах - группы четвертичных оснований типа [Ar--NR3]OH и др.

Применение ионитов исключительно разнообразно. При пропускании воды, содержащей соли, последовательно через катиониты, а затем аниониты вначале происходит замена всех катионов солей на Н+, а затем всех анионов солей на ОН-, т. е. обессоливание воды.

Иониты дают возможность в научной работе и промышленности выделять из сложных смесей различные органические вещества, например витамины группы В, С. Для выделения алкалоидов, стрептомицина и других антибиотиков в заводских условиях также применяют иониты.

Катиониты, отдавая свои ионы водорода, заменяют катализаторы - кислоты, действуя более мягко и не требуя нейтрализации по окончании процесса.

Иониты применяются и как лекарственные препараты (например, при повышенной кислотности желудочного сока).

43. Двухатомные фенолы

Существует три простейших двухатомных фенола: о-диоксибензол, или пирокатехин, м-диоксибензол, или резорцин, п-диоксибензол, или гидрохинон.

Некоторые двухатомные фенолы чаще всего в виде производных встречаются в природе в растительных продуктах - дубильных веществах, смолах и т. д. Получают двухатомные фенолы обычно синтетически, сплавляя соли дисульфокислот или соли феноломо-носульфокислот со щелочами. Двухатомные фенолы обладают свойствами, близкими уже рассмотренным свойствам одноатомных фенолов: они образуют феноляты, простые и сложные эфиры, окрашиваются FeCl3, дают продукты замещения атомов водорода и т. д.

Однако наличие двух фенольных гидроксилов отражается на свойствах двухатомных фенолов. Так, двухатомные фенолы гораздо легче растворимы в воде, чем одноатомные. Одноатомные фенолы сравнительно легко окисляются; у двухатомных фенолов эта способность выражена сильнее: некоторые двухатомные фенолы окисляются настолько легко, что применяются в качестве восстановителей (проявителей) в фотографии (гидрохинон). Двухатомные фенолы менее ядовиты, чем одноатомные. С FeСl8 двухатомные фенолы дают характерное окрашивание, что позволяет различать их по цвету.

Пирокатехин, или ортодиоксибензол, содержится в дубильных веществах и смолах. С FeCl8 пирокатехин дает зеленое окрашивание. Он легко окисляется. Так, пирокатехин при воздействии холодом восстанавливает серебро из аммиачного раствора AgNО3.

Адреналин, или метиламиноэтанолпирокатехин, образуется в надпочечниках и является гормоном, обладающим способностью сужать кровеносные сосуды. Его часто применяют в качестве кровоостанавливающего средства. Получают его из надпочечников, а также синтетически из пирокатехина.

Интересно, что лишь левовращающий (природный) адреналин обладает биологической активностью, тогда как правовращающий биологически неактивен.

Резорцин, или м-диоксибензол. Получить резорцин можно из бензолдисульфокислоты сплавлением со щелочью.

В присутствии щелочи резорцин тотчас превращается в фенолят, который затем разлагается кислотой.

С FeCl резорцин дает фиолетовое окрашивание. Он довольно легко окисляется, но по сравнению с пирокатехином гораздо более стоек. Так, например, он восстанавливает аммиачный раствор AgNO8 лишь при нагревании, а не на холоде, как пирокатехин. Резорцин гораздо менее ядовит, чем пирокатехин и гидрохинон, в связи с чем применяется в медицине как антисептическое средство (например, в виде мазей).

Гидрохинон, или п-диоксибензол. В природных условиях встречается в некоторых растениях (например, в лекарственном растении Uvae ursi) в виде глюкозида арбутина. В промышленности гидрохинон обычно получают восстановлением хинона.

Гидрохинон очень быстро на холоде восстанавливает серебряные соли. Вследствие большой склонности к окислению гидрохинон применяется в фотографии в качестве проявителя.

44. Трехатомные фенолы

Существует три изомера трехатомных фенолов, производных бензола, с рядовым, симметричным и несимметричным расположением гидроксилов: пирогаллол, оксигидрохинон, флороглюцин.

Наибольшее значение имеют трехатомные фенолы с рядовым и симметричным расположением гидроксилов - пирогаллол и флороглюцин.

Пирогаллол, или р-триоксибензол. Получается путем нагревания галловой кислоты.

С FeCl3 пирогаллол дает красное окрашивание. Пирогаллол очень легко окисляется. Например, щелочные растворы его на воздухе быстро буреют вследствие окисления. Из солей серебра пирогаллол тотчас выделяет металлическое серебро. В связи с чрезвычайно большой склонностью к окислению щелочные растворы пирогаллола применяются в анализе газов: пирогаллол поглощает кислород из газовой смеси. Пирогаллол применяется также в фотографии и при синтезе красителей.

Флороглюцин существует в виде двух таутомерных форм: формы с тремя гидроксилами и формы с тремя кетонными группами.

Флороглюцин довольно легко окисляется, но гораздо более стоек к окислению, чем пирогаллол. Применяется он в аналитической практике, например, для количественного определения пентоз: пентозы превращаются в фурфурол, который в солянокислом растворе дает с флороглюцином окрашенный продукт конденсации.

Нафтолы - вещества, аналогичные фенолам, - можно рассматривать как продукты замещения гидроксилом атомов водорода в ядре нафталина.

a-нафтол - нафталин - b-нафтол

Нафтолы можно получить при помощи тех же реакций, что и фенолы. Один из важнейших общих методов получения нафтолов - способ сплавления натриевых солей нафталинсульфокислот с NaOH.

Нафтолы представляют собой кристаллические вещества, плохо растворимые в воде. По своим химическим свойствам нафтолы сходны с фенолами. Например, они легко растворяются в щелочах с образованием нафтолятов. Подобно фенолам они реагируют с раствором хлорного железа, давая окрашенные соединения.

При помощи реакции с FeCl8 можно различить а- и b-нафтолы: а-нафтол дает с ним осадок фиолетового цвета, а b-нафтол - зеленое окрашивание и осадок.

Подобно фенолам нафтолы обладают дезинфицирующими свойствами, а-нафтол вследствие своей ядовитости не находит применения в медицине, но b-нафтол применяется как дезинфицирующее средство при лечении кишечных заболеваний, а- и b-нафтолы в больших количествах применяются при производстве красителей.

45. Альдегиды

Альдегидами называются продукты замещения в углеводородах атома водорода альдегидной группой - С(ОН).

Кетонами называются вещества, содержащие карбонильную группу - С(О)-, связанную с двумя остатками углеводородов.

Таким образом, для обеих групп соединений характерно наличие карбонильной группы - С(О)-, но в альдегидах она связана с одним радикалом и одним атомом водорода, тогда как в кетонах карбонильная группа связана с двумя радикалами.

Общая формула альдегидов и кетонов, производимых от предельных углеводородов, СпН2ПО, причем альдегиды и кетоны с одинаковым числом атомов углерода изомерны друг другу. Так, например, формулу C3Н60 имеют альдегид Н3С-СН2-С(ОН) и кетон Н3 С-С(О) - СН3.

Строение альдегидов выражается общей формулой R--С(О) - Н.

Электронное строение двойной связи карбонильной группы альдегидов =С=О характеризуется наличием одной s-связи и одной p-связи, причем, электронное облако p-связи расположено в плоскости, перпендикулярной той плоскости, в которой расположены s-связи данного атома углерода.

Однако двойная связь карбонильной группы существенно отличается от двойной связи этиленовых углеводородов. Главное отличие заключается в том, что двойная связь карбонильной группы соединяет атом углерода с электроотрицательным атомом кислорода, сильно притягивающим электроны, поэтому эта связь сильно поляризована.

Наличие в карбонильных группах альдегидов и кетонов сильно поляризованной двойной связи - причина высокой реакционной способности этих соединений и, в частности, причина многочисленных реакций присоединения.

Название «альдегиды» произошло от общего способа получения этих соединений: альдегид можно считать продуктом дегидрирования спирта, т. е. отнятия от него водорода. Соединение двух сокращенных латинских слов Alcohol dehydrogenatus (дегидрированный спирт) и дало название альдегид.

В зависимости от характера радикала различают предельные или непредельные альдегиды, ароматические альдегиды и т. д.

Альдегиды наиболее часто называют по тем кислотам, в которые они превращаются при окислении. Так, первый представитель альдегидов Н-С(О) - Н называется муравьиным альдегидом (или формальдегидом), так как при окислении превращается в муравьиную кислоту (AСldum formicum); следующий гомолог СН3 --С(О) - Н называется уксусным альдегидом (или ацетальдегидом), так как при окислении он дает уксусную кислоту (AСldum aceticum) и т. д.

Простейший ароматический альдегид С6Н5 --С(О) - Н называется бензойным альдегидом или бензальдегидом, так как при окислении дает бензойную кислоту (AСldum benzoicum).

По международной номенклатуре названия альдегидов производят от названий соответствующих углеводородов, прибавляя к ним окончание - ал. Так, например, муравьиный альдегид называется метанал, уксусный альдегид - этанал, бензойный альдегид - фенилметанал.

Изомерия альдегидов обусловлена изомерией цепи радикала.

46. Способы получения альдегидов

1. Окисление первичных спиртов - важнейший способ получения альдегидов:

1) окисление спирта дихроматом калия применяется преимущественно в лабораторных условиях, например для получения уксусного альдегида;

2) окисление спирта кислородом воздуха в присутствии металлических катализаторов. В качестве катализатора наиболее активна платина, которая действует уже при комнатной температуре. Менее активной, но гораздо более дешевой является мелко раздробленная медь, действующая при высокой температуре. Через систему просасывают пары метилового спирта, смешанные с воздухом. Метиловый спирт окисляется окисью меди, а образующаяся металлическая медь вновь окисляется кислородом воздуха. Таким образом, эти реакции повторяются неограниченное число раз.

Реакция окисления метилового спирта окисью меди является экзотермичной, т. е. идет с выделением теплоты, поэтому нагревание нужно лишь в начале реакции. Этот способ лежит в основе технического получения некоторых альдегидов, например формальдегида.

2. Из дигалогенопроизводных, имеющих оба галогена у одного и того же первичного атома углерода, альдегиды получаются в результате реакции нуклеофильного замещения галогенов на гидроксилы. Этот способ используется для получения бензойного альдегида.

Физические свойства

Самый простейший представитель группы альдегидов - формальдегид - при обычных условиях представляет собой газообразное вещество. Следующий 46б представитель - уксусный альдегид - жидкость, кипящая при 20 °C. Последующие представители - тоже жидкости. Высшие альдегиды, например пальмитиновый альдегид, - твердые вещества. Температура кипения альдегидов ниже температуры кипения соответствующих им спиртов. С водой низшие альдегиды смешиваются в любых отношениях, последующие представители хуже растворимы в воде. Альдегиды хорошо растворимы в спирте и эфире. Низшие альдегиды обладают острым удушливым запахом; некоторые последующие представители имеют более приятный запах, напоминающий запах цветов.

Карбонильная группа всех карбонилсодержащих соединений - альдегидов, кетонов и кислот - дает интенсивную (вследствие сильной поляризации) полосу поглощения, причем для каждой группы карбонильных соединений эта полоса находится в узком интервале. Для формальдегида - при 1745 см-1, для других алифатических альдегидов - в области 1740-1720 см-11.

Альдегиды, а также кетоны в связи с наличием карбонильной группы =С=О обладают избирательным поглощением в ультрафиолетовом свете, давая максимумы абсорбации в области 2800 А. Многие ароматические альдегиды обладают приятными запахами.

47. Химические свойства альдегидов

Альдегиды вступают в очень большое число реакций, представляя собой одну из наиболее реакционноспособных групп соединения. Для удобства рассмотрения реакций альдегидов их можно разделить на группы в соответствии с теми атомами и группами атомов, которые присутствуют в молекуле альдегида.

Реакции окисления.

Альдегиды очень легко окисляются. Особенно характерно для альдегидов то, что такие слабые окислители, как некоторые окиси и гидроокиси тяжелых металлов, которые не действуют на ряд других органических соединений, легко окисляют альдегиды свободных металлов или их закисей (альдегидные реакции):

1) окисление окисью серебра (реакция «серебряного зеркала»). Если к прозрачному бесцветному аммиачному раствору окиси серебра прибавить раствор альдегида и нагреть жидкость, то на стенках пробирки при достаточной чистоте их образуется налет металлического серебра в виде зеркала; если же стенки пробирки недостаточно чисты, то металлическое серебро выделяется в виде светло-серого осадка. Альдегид при этом окисляется в кислоту с тем же числом атомов углерода, что и в исходном альдегиде;

2) окисление гидроокисью меди. Если к жидкости со светло-голубым осадком гидроокиси меди прибавить раствор, содержащий альдегид, и нагреть смесь, то вместо голубого осадка появляется желтый осадок гидроокиси меди (I) CuOH. Альдегид при этом превращается в кислоту.

При нагревании желтая гидроокись меди (II) переходит в красную окись меди (I):

2CuOH > Cu2О + H2О;

3) кислородом воздуха окисляются лишь некоторые наиболее легко окисляющиеся альдегиды, к которым относятся ароматические альдегиды, как, например, бензальдегид. Если нанести бензальдегид тонким слоем на часовое стекло и оставить на несколько часов, то он превратится в кристаллы бензойной кислоты. Окисление бензальдегида кислородом воздуха протекает как сложный многостадийный процесс с образованием свободных радикалов и промежуточного легко распадающегося продукта типа перекиси, так называемой надбензойной кислоты;

4) реакция Канниццаро, или реакция дисмутации, является реакцией окисления - восстановления (оксидоредукции), при которой из двух молекул альдегида одна окисляется в кислоту, а другая при этом восстанавливается в спирт. Эта реакция, свойственная преимущественно ароматическим альдегидам, была открыта в 1853 г. итальянским ученым Канниццаро, который установил, что в присутствии концентрированного раствора щелочи (например, 60 %-ного раствора КОН) бензальдегид превращается в соль бензойной кислоты и бензиловый спирт.

В реакцию Канниццаро вступают лишь альдегиды, не имеющие водородного атома у a-углеродного атома альдегида

48. Присоединение водорода, воды, спирта, синильной кислоты, гидросульфита

Реакции карбонильной группы:

Реакции присоединения к карбонилу альдегидов: при протекании этих реакций в большинстве случаев первой стадией является присоединение к положительно заряженному атому углерода карбонила =С=О отрицательно заряженной частицы (например, аниона ОН-). Поэтому многие реакции этой группы относятся к реакциям нуклеофильного присоединения:

1) присоединение водорода (гидрирование) происходит с разрывом двойной связи карбонильной группы альдегида. Альдегиды при этом превращаются в первичные спирты. В зависимости от условий, в частности от природы восстанавливающего реагента, механизм может быть различным;

2) присоединение воды приводит к образованию гидратов альдегидов.

Механизм реакции следующий: происходит нуклеофильное присоединение к углеродному атому гидроксильного аниона воды; далее к образовавшемуся аниону присоединяется протон. Соединения с двумя гидроксилами у одного и того же атома углерода непрочны: они теряют молекулу воды и превращаются в альдегиды. Поэтому приведенная реакция является обратимой. В большинстве случаев гидраты альдегида существуют лишь в водных растворах, и выделить их в свободном состоянии не удается. Существование их доказывается физическими методами, в частности изучением инфракрасных спектров. Прочность связывания в гидратах альдегидов воды различна в зависимости от характера радикалов в различных альдегидах;

3) присоединение спирта к альдегидам приводит к образованию полуацеталя. Здесь также происходит нуклеофильное присоединение. Полуацетали можно рассматривать как неполные простые эфиры, производные гидратной формы альдегида. При нагревании альдегидов со спиртами в присутствии следов безводного НСl образуются ацетали. Ацетали можно рассматривать как полные простые эфиры, производные гидратной формы альдегидов.

Ацетали - обычно жидкости с приятным запахом, плохо растворимые в воде. Они легко гидролизуются в присутствии кислот, но не гидролизуются щелочами;

4) присоединение синильной кислоты к альдегидам дает оксинитрилы, или циангидрины. Происходит нуклеофильное присоединение. Щелочи в малых количествах катализируют эту реакцию;

5) присоединение гидросульфита (бисульфита) натрия происходит при встряхивании растворов альдегидов с концентрированным раствором гидросульфита натрия. Гидросульфитные соединения альдегидов плохо растворимы в концентрированном растворе гидросульфита натрия и выделяются в виде осадков. Эта реакция имеет большое практическое значение

49. Присоединение фуксинсернистой кислоты к альдегидам, полимеризация альдегидов

Присоединение фуксинсернистой кислоты к альдегидам лежит в основе характерной реакции окрашивания, которой часто пользуются для качественного открытия альдегидов. Если через раствор фуксина красного цвета пропускать сернистый ангидрид SО2, то получается бесцветный раствор так называемой фуксинсернистой кислоты, или реактив Шиффа. При прибавлении фуксинсернистой кислоты к раствору альдегида смесь приобретает красное или красно-фиолетовое окрашивание. При последующем прибавлении минеральных кислот это окрашивание, как правило, исчезает; исключение составляет формальдегид; окрашивание фуксинсернистой кислоты, вызванное формальдегидом, не исчезает от прибавления кислот.

Полимеризация альдегидов. К альдегидам по месту их карбонильной группы присоединяется не только ряд веществ, но и сами молекулы альдегидов способны соединяться друг с другом (с разрывом двойной связи их карбонильной группы). К таким реакциям относится полимеризация и альдольная конденсация. При реакции полимеризации остатки молекул в полимере часто связываются через атом кислорода, азота или другого элемента (не углерода). Полимеризация альдегидов каталитически ускоряется минеральными кислотами (H24, H23, НСl). В результате этой реакции в ряде случаев образуются сравнительно небольшие молекулы циклического полимера. В других случаях при полимеризации образуются незамкнутые цепи молекул различной длины. Реакции полимеризации обратимы.

Альдольная конденсация. При действии на альдегиды небольших количеств разбавленной щелочи происходит полимеризация альдегидов, которая по характеру соединения исходных молекул, связывающихся непосредственно своими атомами углерода, часто называется конденсацией. Продукт этой реакции обладает альдегидной и спиртовой группой, т. е. представляет собой альдегидоалкоголь. Путем сокращения последнего термина вещества эти стали называть альдолями, а рассматриваемую реакцию - альдольной конденсацией. Реакция альдольной конденсации имеет большое значение, например при образовании сахаристых веществ.

Электронный механизм реакции альдольной конденсации таков. Гидроксильный анион (катализирующий эту реакцию) отрывает протон от а-углерода (водородные атомы у которого вследствие соседства с альдегидной группой обладают высокой реакционной способностью). Образующийся сильно нуклеофильный карбоанион присоединяется к электрофильному углеродному атому другой молекулы альдегида. Возникающий анион оксиальдегида стабилизируется, присоединяя протон из воды, которая освобождает гидроксильный ион (катализатор).

50. Отдельные представители альдегидов

Формальдегид при обычных условиях представляет собой газ с резким неприятным (острым) запахом, хорошо растворимый в воде; 40 %-ный водный раствор формальдегида, называемый формалином, широко применяется в медицинской практике.

При статичном состоянии раствора формальдегида в нем постепенно идут процессы окисления - восстановления. Вследствие дисмутации формалин обычно наряду с формальдегидом содержит метиловый спирт и муравьиную кислоту. Реакция дисмутации катализируется щелочами.

При концентрировании формалина, а также при длительном хранении формальдегида, особенно в условиях низкой температуры, в нем образуется белый осадок полимера формальдегида, называемого параформальдегидом или просто параформом.

nH2C=О - (Н2СО)n

Полимеризацию формальдегида можно представить следующим образом. Гидратированные молекулы формальдегида отщепляют воду и образуют цепи большей или меньшей длины. Молекулы параформа содержат от трех до восьми молекул формальдегида (как это показал еще А. М. Бутлеров), а при определенных условиях (при очень низкой температуре) - гораздо больше.

Низкая температура способствует полимеризации формальдегида, и поэтому формалин не следует хранить при температуре ниже 10-12 °C. В то же время высокая температура способствует быстрому улетучиванию формальдегида из раствора. Процесс деполимеризации и обратной полимеризации лежит в основе возгонки параформа.

Медицинское применение формальдегида основано на его способности свертывать белки. Свертываются от формальдегида и белковые вещества бактерий, что обусловливает их гибель. Одно из важнейших медицинских применений формальдегида - использование с целью дезинфекции, т. е. уничтожения болезнетворных микроорганизмов. Парами формалина (при его кипячении) окуривают дезинфицируемые помещения, растворами формальдегида обрабатываются руки хирургов, хирургические инструменты и т. д. Растворы формальдегида применяют для консервирования (сохранения) анатомических препаратов. Большие количества формальдегида используются в синтезе пластмасс. Из формальдегида получают медицинский препарат гексаметилентетрамин, или уротропин. Этот препарат получается при взаимодействии формальдегида (или параформа) с аммиаком:

6CH2О + 4NH3 > (CH2)6N4 + 6H2О.

Рациональное название «гексаметилентетрамин», было дано А.М. Бутлеровым в связи с наличием в молекуле шести метиленовых групп и четырех атомов азота. А.М. Бутлеров впервые получил уротропин и изучил его.

При нагревании раствора уротропина в присутствии кислот он гидролизуется с образованием исходных продуктов - формальдегида и аммиака:

(CH2)6N4 + 6H2О > 6CH2О + 4NH3.

51. Ронгалит, ацетальгид, глиоксоль

Ронгалит, или формальдегидсульфоксилат натрия, применяющийся как для синтеза лекарственных препаратов (например, новарсенола), так и в технике в качестве восстановителя, также является производным формальдегида. Для получения ронгалита на формальдегид действуют гидросульфитом натрия, в результате чего получается гидросульфитное соединение формальдегида. Далее гидросульфитное соединение формальдегида восстанавливают цинковой пылью.

Уксусный альдегид (ацетальдегид, или этанал) в промышленном масштабе получают обычно дегидрированием паров этилового спирта при действии катализатора (меди): от спирта отщепляются два атома водорода. Важным методом получения ацетальдегида является также реакция Кучерова - присоединение воды к ацетилену.

В лабораторных условиях ацетальдегид обычно получают из спирта путем окисления его дихроматом калия в кислой среде.

Ацетальдегид представляет собой летучую жидкость. В больших концентрациях он обладает неприятным удушливым запахом; в малых концентрациях имеет приятный запах яблок (в которых он и содержится в небольшом количестве).

При добавлении к ацетальдегиду капли кислоты при комнатной температуре он полимеризуется в паральдегид; при низкой температуре ацетальдегид полимеризуется в метальдегид - твердое кристаллическое вещество.

Паральдегид является циклическим тримером (СН3СНО)3, метальдегид - циклическим тетрамером (СН3СНО)4, он иногда применяется в быту в качестве горючего под названием «сухого спирта». Паральдегид ранее применялся в качестве снотворного средства.

Важным производным ацетальдегида является трихлорацетальдегид, или хлорал. Хлорал представляет собой тяжелую жидкость. Он присоединяет воду с образованием твердого кристаллического вещества гидрата хлорала, или хлоралгидрата. Хлоралгидрат представляет собой один из весьма немногочисленных примеров прочных гидратов альдегида. Хлоралгидрат легко (уже на холоде) разлагается щелочами с образованием хлороформа и соли муравьиной кислоты. Хлоралгидрат применяется в качестве снотворного средства.

Глиоксаль является простейшим представителем диальдегидов - соединений с двумя альдегидными группами.

Бензойный альдегид, или бензальдегид в природе встречается в виде гликозида амигдалина, содержащегося в горьких миндалях, листьях лавровишни и черемухи, косточках персиков, абрикосов, слив и т. д. Под влиянием фермента эмульсина, а также при кислотном гидролизе амигдалин расщепляется на синильную кислоту, бензальдегид и две молекулы глюкозы.

В качестве промежуточного продукта гидролиза амигдалина можно выделить бензальдегидциангид-рин, который можно рассматривать как продукт взаимодействия бензальдегида и HCN.

В горькоминдальной воде Aqim атудаа1агит атагаrum - препарате из горьких миндалей - синильная кислота содержится главным образом в виде бензаль-дегидциангидрина.

52. Кетоны

Кетонами называются вещества, содержащие карбонильную группу - С(О)-, связанную с двумя радикалами. Общая формула кетонов R-C(O)-R'.

Радикалы могут быть алифатическими (предельными или непредельными), алициклическими, ароматическими.

Ароматические кетоны можно разделить на две подгруппы:

1) смешанные жирно-ароматические, содержащие один ароматический остаток;

2) чисто ароматические кетоны, содержащие два ароматических остатка.

Номенклатура и изомерия

Обычно кетоны называют по радикалам, входящим в их молекулу, прибавляя слово кетон. Так, простейший представитель Н3С-С(О) - СН3 называют диметилкетоном, Н3С-С(О) - С2Н5 - метилэтилкетоном, Н3С-С(О) - С6Н5 - метилфенилкетоном, С6Н-С(О) - С6Н5 - дифенилкетоном и т. д.

По международной номенклатуре наименования кетонов производят от названий соответствующих углеводородов, прибавляя к этому названию окончание - он. Так, диметилкетон будет называться пропаноном, метилэтилкетон - бутаноном и т. д.

Для обозначения положения карбонильной группы нумеруют атомы углерода, начиная с того конца, к которому ближе находится карбонильная группа, и, называя кетон, соответствующей цифрой обозначают место карбонила.

Некоторые кетоны имеют, кроме того, и свои эмпирические названия. Например, диметилкетон обычно называют ацетоном, метилфенилкетон - ацетофеноном, дифенилкетон - бензофеноном.

Изомерия кетонов зависит от положения карбонильной группы в цепи, а также от изомерии радикалов. Способы получения

Кетоны можно получить способами, аналогичными тем, которыми получают альдегиды.

1. Окисление вторичных спиртов.

2. Получение из дигалогенопроизводных, у которых оба атома галогена находятся у одного и того же вторичного атома углерода.

3. Получение из кальциевых солей карбоновых кислот путем их сухой перегонки. Так, из ацетата кальция получается ацетон.

Для получения смешанных кетонов (с разными радикалами) берут соли соответствующих кислот, содержащих нужные радикалы.

При сухой перегонке дерева получаются некоторые кетоны, например ацетон и метилэтилкетон.

Ароматические кетоны удобно получать реакцией Фриделя--Крафтса, действуя на хлорангидрид жирной или ароматической кислоты ароматическим углеводородом в присутствии хлорида алюминия.

Физические свойства

Простейший кетон - ацетон - жидкость. Последующие представители также являются жидкостями. Высшие алифатические, а также ароматические кетоны - твердые вещества. Простейшие кетоны смешиваются с водой. Все кетоны хорошо растворимы в спирте и эфире. Простейшие кетоны обладают характерным запахом.

53. Химические свойства кетонов

Кетоны обладают рядом характерных для карбонильной группы свойств, сближающих их с альдегидами. В то же время кетоны не имеют характерного для альдегидов водородного атома, связанного с карбонилом, поэтому не дают целого ряда окислительных реакций, очень характерных для альдегидов. Кетоны представляют собой вещества менее реакционноспособные, чем альдегиды. Как упоминалось ранее, многие реакции присоединения к альдегидам протекают вследствие сильной поляризации карбонильной группы по ионному механизму.

Радикалы, связанные с карбонильной группой, обладают так называемым положительным индукционным эффектом: они повышают электронную плотность связи радикала с другими группами, т. е. как бы гасят положительный заряд углеродного атома карбонила.

Вследствие этого карбонилсодержащие соединения по убыли их химической активности можно расположить в следующий ряд:

формальдегид - ацетальдегид - ацетон.

Существует и другая - стереохимическая - причина меньшей реакционной способности кетонов по сравнению с альдегидами. Положительно заряженный углеродный атом карбонильной группы альдегидов связан с одним радикалом и атомом водорода, имеющим малый объем. У кетонов такой атом углерода связан с двумя радикалами, часто оба они весьма объемисты. Таким образом, нуклеофильная частица (ОН, OR и др.), уже приближаясь к карбонильной группе кетонов, может встретить «стерические препятствия». Далее, в результате присоединения нуклеофильной частицы к углероду карбонила и соответствующих атомов или групп атомов к кислороду карбонила происходит изменение гибридизации электронов этого углерода: sp2 - sp3. В трехмерном пространстве около «бывшего» карбонильного углерода альдегида должны расположиться три более или менее объемистые группы и атом водорода.

В то же время в случае кетона все 4 группы, располагающиеся вокруг этого углеродного атома, будут достаточно объемистыми.

1. Отношение к окислению: кетоны не окисляются теми слабыми окислителями, которые легко окисляют альдегиды. Так, например, кетоны не дают «реакции серебряного зеркала», не окисляются гидроокисью меди и фелинговым раствором. Однако такими сильными окислителями, как КМп04 или хромовая смесь, кетоны можно окислить. При этом углеродная цепь кетона разрывается у карбонильной группы с образованием кислот с меньшим числом атомов углерода по сравнению с исходным кетоном. Это также отличает кетоны от альдегидов.

Реакция окислительного расщепления кетонов имеет большое значение для установления их строения, так как по образующимся кислотам можно судить о положении карбонильной группы в молекуле кетонов.

2. Реакции карбонильной группы: ряд реакций, характерных для карбонильной группы альдегидов, протекает совершенно аналогично и с кетонной карбонильной группой.

54. Отдельные представители кетонов

Ацетон (диметилкетон, пропанон) Н3С-С(0) - СН3 - простейший представитель группы кетонов. Одним из важнейших источников получения ацетона является сухая перегонка дерева. Ацетон получают также путем сухой перегонки ацетата кальция. Расщепление, аналогичное расщеплению ацетата кальция, претерпевает и свободная уксусная кислота при пропускании ее паров над нагретыми катализаторами (AI2O3, ThO2 и др.).

Эта реакция также применяется в технике для получения ацетона. Важным способом получения ацетона является кумольный. Ацетон получают и биохимическим путем - в результате так называемого ацетонового брожения крахмала, происходящего под влиянием некоторых бактерий.

Ацетон представляет собой бесцветную жидкость с характерным запахом. С водой ацетон смешивается во всех отношениях. Ацетон очень хорошо растворяет ряд органических веществ (например, нитроцеллюлозу, лаки др.), поэтому в больших количествах применяется как растворитель (производство бездымного пороха, искусственного шелка и т. д.).

Ацетон - исходный продукт для получения ряда лекарственных веществ, например йодоформа. При действии на ацетон хлором или иодом в щелочной среде происходит галогенирование ацетона:

Образующийся трииодацетон под влиянием щелочи чрезвычайно легко расщепляется с образованием йодоформа и соли уксусной кислоты.

Этой реакцией часто пользуются для открытия ацетона, учитывая, однако, что в тех же условиях йодоформ образуется также из этилового спирта, уксусного альдегида и некоторых других веществ. Качественной цветной реакцией на ацетон является реакция с нитропруссидом натрия Na2[Fe(CN)5(NO)], дающим с ацетоном интенсивное винно-красное окрашивание.

Ацетон появляется в моче в тяжелых случаях диабета - сахарной болезни. Моча при этом приобретает запах ацетона, напоминающий фруктовый запах. Для открытия ацетона в моче пользуются реакцией образования йодоформа (проба Либена) и реакцией окрашивания с нитропруссидом натрия (проба Легаля).

Моногалогенозамещенные ацетона - бромацетон и хлор ацетон (СlН2С--С(O) - СН3) - являются слезоточивыми боевыми отравляющими веществами (лакри-маторами).

Диацетил (Н3С--С(O) - С(O) - СН3) - простейший представитель дикетонов. Это жидкость желтого цвета. Обладает сильным запахом сливочного масла и содержится в нем, обусловливая его запах; применяется для придания приятного запаха маргарину.

Камфара является кетоном, по углеродному скелету близкому терпенам. Камфара представляет собой кристаллическое вещество с характерным запахом и своеобразным жгучим и горьким вкусом; очень летуча и может быть очищена возгонкой. В воде камфара не растворяется, но легко растворима в органических растворителях.

Наиболее часто камфара применяется в качестве сердечного средства.

55. Хиноны

Хинонами называются шестичленные циклические дикетоны с двумя двойными связями.

Наибольшее практическое значение из них имеет парахинон, получаемый окислением гидрохинона или анилина. Парахинон - исходный продукт при синтезе гидрохинона. Характерное для хинона расположение двойных связей обусловливает окраску ряда соединений.

Нафтохиноны - производные нафталина, содержащие хиноидное ядро. Наибольшее значение имеет 1,4-нафтохинон, который можно получить при окислении нафталина.

По ряду своих свойств 1,4-нафтохинон сходен с п-бензохиноном. Он кристаллизуется в виде желтых игл, летуч, обладает острым раздражающим запахом.

Ядро 1,4-нафтохинона лежит в основе витамина К, или антигеморрагического витамина (препятствующего появлению кровоизлияний). Витамин К представляет собой 2-метил-3-фитил-1,4-нафтохинон. Витамин К содержится в зеленых травах, листьях, овощах. Представляет собой желтое масло, нерастворимое в воде; перегоняется в высоком вакууме.

Оказалось, что фитильная группа (остаток ненасыщенного спирта фитола) не является обязательной для проявления антигеморрагического действия. Таким действием обладает ряд других производных 1,4-нафтохинона, например 2-метил-1,4-нафтохинон, легко получающийся синтетически и успешно применяющийся вместо витамина К - обычно в виде растворимых в воде производных.

Некоторые производные хинонов играют важную роль в промежуточных процессах биологического окисления.

Антрахиноны - производные антрацена, содержащие хиноидное ядро. Антрахинон можно легко получить при окислении антрацена азотной кислотой или хромовой смесью. При этом в молекуле образуются две кето-группы и среднее кольцо приобретает строение хинона. Антрахинон представляет собой кристаллическое вещество желтого цвета, в отличие от обычных хинонов довольно стойкое к ряду химических воздействий, в частности к окислению.

Антрагидрохинон является промежуточным продуктом при восстановлении антрахинона в антрацен. Ан-трагидрохинон в свободном виде представляет собой кристаллы коричневого цвета. Имея два фенольных гидроксила, антрагидрохинон растворяется в щелочах; образующееся вещество типа фенолята обладает ярко-красным цветом. Антрахинон способен бромироваться, нитроваться и сульфироваться.

Ализарин представляет собой 1,2-диоксиантрахинон.

Эмодины. В медицинской практике в качестве слабительных средств часто пользуются препаратами (настойками, отварами и т. д.) из алоэ, ревеня, крушины, листьев сенны и т. д. Действующими веществами этих растений, как оказалось, являются производные антрахинона, а именно - замещенные ди- и триоксиантрахинонов, содержащиеся в растениях частью в свободном виде, частью в виде эфиров и гликозидов. Эти производные ди- и триоксиантрахинонов часто объединяют в группу эмодинов. Примером эмодинов может служить франгулоэмодин, являющийся 3-метил-1,6,8-триоксиантрахиноном. Франгулоэмодин содержится в крушине (Frangula).

56. Углеводороды

Углеводы широко распространены в природе и играют очень большую роль в жизни человека. Они входят в состав пищи, причем обычно потребность человека в энергии покрывается при питании в большей части именно за счет углеводов.

Исключительно важное значение этой группы соединений стало особенно ясным в последние годы. Так, нуклеиновые кислоты, необходимые для биосинтеза белков и для передачи наследственных свойств, построены из производных углеводов - нуклеотидов. Многие углеводы играют важную роль в процессах, препятствующих свертыванию крови, проникновению болезнетворных микроорганизмов в макроорганизмы, в укреплении иммунитета и т. д. Производные углеводов имеют большое значение в процессе фотосинтеза.

Некоторые виды углеводов входят в состав оболочек растительных клеток и играют механическую, опорную роль. Из углеводов этого типа путем химической обработки человек приготовляет ткани (искусственный шелк), взрывчатые вещества (нитроклетчатку) и т. д.

Многие углеводы и их производные являются медицинскими препаратами.

Название веществ «углеводы» появилось на основании данных анализа первых известных представителей этой группы соединений, вещества этой группы состоят из углерода, водорода и кислорода, причем соотношение чисел атомов водорода и кислорода в них такое же, как в воде, т. е. на каждые два атома водорода приходится один атом кислорода. Иногда применяют и более новое название - глициды; приведенная общая формула углеводов Cm(H2nO)n остается справедливой для подавляющего большинства представителей.

Большой класс углеводов делится на две группы: простые и сложные.

Простыми углеводами (моносахаридами или монозами) называются углеводы, которые не способны ги-дролизоваться с образованием более простых углеводов. Большинство этих веществ имеет состав, соответствующий общей формуле Сn2nО)n т. е. у них число атомов углерода равно числу атомов кислорода.

Сложными углеводами (полисахаридами, или полиозами) называют такие углеводы, которые способны гидролизоваться с образованием простых углеводов. Большинство этих веществ имеет состав, соответствующий общей формуле CmH2nOn, т. е. у них число атомов углерода не равно числу атомов кислорода.

Особенно сложное строение имеют углеводсодержащие биополимеры - гликопротеины, гликолипиды и другие выполняющие в организме наиболее сложные функции.

Размещено на Allbest.ru


Подобные документы

  • Понятие пиролиза или термического разложения органических соединений, протекающего при высоких температурах. Способы получения низших олефинов - этилена и пропилена. Условия проведения и химизм процесса. Инициирование - распад углеводородов на радикалы.

    презентация [163,9 K], добавлен 19.02.2015

  • Электронная теория кислот и оснований Льюиса. Теория электролитической диссоциации Аррениуса. Протонная теория, или теория кислот и оснований Бренстеда. Основность и амфотерность органических соединений. Классификация реагентов органических реакций.

    презентация [375,0 K], добавлен 10.12.2012

  • Химические основы термических и термокаталитических превращений углеводородов нефти. Твердые горючие ископаемые: происхождение, стадии углеобразования, классификация. Структура и типы полимеров, способы получения. Виды и принципы реакций поликонденсации.

    курс лекций [2,6 M], добавлен 27.10.2013

  • Общая формула альдегидов и кетонов, их активность, классификация, особенности изомерии и номенклатура, основные способы получения, реакционноспособность и химические свойства. Реакции окисления, присоединения, замещения, полимеризации и конденсации.

    реферат [41,2 K], добавлен 22.06.2010

  • Органическая химия и медицина. Какие бывают лекарства и почему они лечат. Полимеры в медицине. Применение различных полимерных материалов в сельском хозяйстве. Органическая химия и ее применение в пищевой промышленности. Добавки в продукты питания.

    доклад [19,4 K], добавлен 13.01.2010

  • Понятие и номенклатура фенолов, их основные физические и химические свойства, характерные реакции. Способы получения фенолов и сферы их практического применения. Токсические свойства фенола и характер его негативного воздействия на организм человека.

    курсовая работа [292,0 K], добавлен 16.03.2011

  • Общая характеристика ароматических углеводородов (аренов) как органических соединений карбоциклического ряда, молекулы которых содержат бензольное кольцо С6Н6. Процесс получения ароматических углеводородов и их свойства, склонность к реакциям замещения.

    реферат [720,1 K], добавлен 06.12.2014

  • Номенклатура, изомерия, классификация и физические свойства диеновых углеводородов и органических галогенидов. Способы получения и химические свойства. Сущность диенового синтеза. Натуральные и синтетические каучуки, их применение в строительстве.

    контрольная работа [85,0 K], добавлен 27.02.2009

  • Определение альдегидов (органических соединений). Их строение, структурная формула, номенклатура, изомерия, физические и химические свойства. Качественные реакции (окисление) и формулы получения альдегидов. Применение метаналя, этаналя, ацетона.

    презентация [361,6 K], добавлен 17.05.2011

  • Основные признаки дисперсных систем, их классификация, свойства и методы получения, диализ (очистка) золей. Определение заряда коллоидной частицы, закономерности электролитной коагуляции, понятие адсорбции на границе раствор-газ, суть теории Ленгмюра.

    методичка [316,8 K], добавлен 14.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.