Процесс получения электрохимически активированных воды и растворов
Электрохимическая активация как физико-химический процесс. Механизм электролитической диссоциации. Основные реагенты и их подготовка. Параметры управления процессом. Принцип оптимизации технологии. Современные методы совершенствования технологии.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 03.06.2010 |
Размер файла | 92,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Для получения микросфер (Alg/PLL)3, в качестве агента для растворения CaCO3 матрицы, была использована ЭДТА (рН 7,0). Использование CaCO3 частиц позволяет проводить процесс микрокапсулирования в физиологически оптимальных значениях рН, что особенно важно для иммобилизации БАВ, в частности - белков. Первым ПЭ наносился Alg в силу отрицательного заряда CaCO3 микрочастиц (о-потенциал поверхности составил -12,2 ± 2,5 мВ). В процессе последовательной адсорбции макромолекулы ПЭ проникают в поры CaCO3 микрочастиц, так как размер пор (30-90 нм) в несколько раз больше размера макромолекул ПЭ. Таким образом, во внутренних каналах микрочастиц происходит формирование интерполиэлектролитного комплекса. После растворения CaCO3 матрицы ПЭ комплекс остается стабильным.
Размер микросфер в растворе соответствовал размеру исходной матрицы - CaCO3 микрочастиц. Данный факт подтверждается наблюдениями за микрочастицами в процессе удаления карбонатной матрицы (оптическая микроскопия). На рисунке 2 представлены фотографии CaCO3 микрочастиц (А) и ПЭ микросфер, полученных на их основе (Б). Сохранение микросферами формы и размера, использованных для их получения матриц, говорит о придании полиэлектролитным «каркасом» существенной прочности ПЭ микросферам, в том числе по отношению к осмотическому давлению, возникающему при растворении твердой CaCO3 матрицы. Это особенно ценно, так как «осмотический шок» при растворении матрицы, покрытой оболочкой из ПЭ комплекса, вызывает увеличение размера образующихся микросфер, состоящих из ПЭ оболочки, или даже деформацию и разрушение таких ПЭ микрокапсул.
Известно, что адсорбция белков из раствора на твердой поверхности является результатом нескольких основных процессов:
а) электростатического взаимодействия между белком и поверхностью;
б) взаимодействия между молекулами белков;
в) изменения структуры белка.
Таким образом, контакт белка с твердой поверхностью определяется как межмолекулярными, так и внутримолекулярными силами.
В процессе получения микрокапсул наносилось по 3 слоя каждого ПЭ, исходная концентрация ХТР составляла 5 мг/мл и 10 мг/мл. Анализ полученных результатов показал, что процент сорбции на 100 мг частиц при начальной концентрации 5 мг/мл составил 80% (4 мг/мл ХТР), 10 мг/мл - 41% (4,1 мг/мл ХТР). Включение ХТР в CaCO3 микрочастицы проводили методом адсорбции в порах (АП).
Иммобилизованный в ПЭ микрокапсулы, ХТР практически полностью сохраняет свою активность (86±9% по сравнению с нативным ферментом). Данные, полученные в результате сравнения гидролиза субстрата нативным ХТР и ХТР, включенным в ПЭ микрокапсулы, представлены в виде графика на рисунке 3. Изменение оптической плотности во времени обусловлено накоплением продукта ферментативного гидролиза.
Полученные данные позволяют сделать следующие выводы:
а) в процессе гидролиза отсутствуют стерические затруднения при диффузии субстрата через оболочку к молекулам иммобилизованного ХТР;
б) равномерное распределение фермента в частицах при адсорбции, способствует практически полному гидролизу субстрата молекулами ХТР;
в) при иммобилизации не происходит изменения конформации активного центра молекул фермента.
Комлексообразование ферментов с ПЭ приводит к снижению активность или не оказывает влияния, которое зависит от природы реагирующих веществ и условий. Так, авторы работы по иммобилизации лактатдегидрогеназы в сетку ПЭ комплекса, отмечают семикратное падение активности иммобилизованного фермента. В нашем случае, включение белков в ПЭ микрокапсулы, способствует сохранению их активности и получению стабильных при хранении препаратов.
С целью изучения проницаемости оболочек к действию протеолитических ферментов было исследовано влияние растворов ТР на ПЭ микрокапсулы. Как известно, ТР входит в состав секрета поджелудочной железы и является эндопептидазой, т.е. он расщепляет пептидные связи, образованные основными аминокислотами, такими, как лизин. Были использованы следующие концентрации ТР: 0,05%, 0,1% и 0,2%.
Результаты показали, что микрокапсулы растворились в течение часа (оптическая микроскопия). С целью доказательства сохранения активности ХТР, после биодеградации микрокапсул был проведен гидролиз субстрата полученными растворами. Спектрофотометрическое изучение показало, что ХТР сохранил активность после разрушения ТР. Результаты этого исследования представлены на рисунке 4. Прирост оптической плотности, обусловленный накоплением продукта ферментативного гидролиза, свидетельствует о сохранении активности ХТР после разрушения ПЭ микрокапсул.
Заключение
Проведенные эксперименты позволяют сделать вывод, что в качестве исходной матрицы для получения ПЭ микрокапсул, содержащих ХТР, наиболее приемлемыми являются CaCO3 микрочастицы. Использование последних позволяет проводить процесс микрокапсулирования в физиологически оптимальных значениях рН на всех этапах.
Это открывает большие возможности для иммобилизации широкого спектра белков с сохранением их активности. Кроме того, при растворении твердой CaCO3 матрицы, микросферы сохраняют размер и форму, что свидетельствует об их существенной прочности, в том числе по отношению к осмотическому давлению.
Полученные микрочастицы с узким распределением по размерам (3-5 мкм) имеют пористую структуру, что позволяет иммобилизовать на их основе различные белки методами физической сорбции.
Высокое содержание по белку (80% в случае исходной концентрации ХТР 5 мг/мл), а также биосовместимость и биодеградация полученных ПЭ микросфер, позволяют использовать их в качестве систем доставки включенного препарата.
Экспериментальные данные, полученные при изучении активности иммобилизованного ХТР, свидетельствуют об отсутствии стерических затруднений при диффузии субстрата к молекулам фермента, равномерном распределении белка в частицах при адсорбции, сохранении конформации молекул фермента при иммобилизации.
Результаты позволяют сделать вывод о сохранении активности и получении стабильных при хранении препаратов БАВ, включенных в ПЭ микрокапсулы.
Разрушение микрокапсул, полученных последовательной адсорбцией PLL и Alg на CaCO3 микрочастицах, под действием фермента поджелудочной железы - ТР, открывает широкие возможности использования полученных препаратов в медицинской биотехнологии.
Использование природных и биодеградируемых ПЭ позволит создать микрокапсулы, обладающие такими свойствами, как избирательная проницаемость, контролируемая доставка и высвобождение заключенных в них БАВ, биодеградация, биосовместимость, что позволит расширить тем самым область их потенциального применения.
Полученные результаты будут использованы в дальнейшей работе по исследованию модели поведения микрокапсул при переходе через биологические барьеры для обеспечения адресной доставки БАВ к отдельным органам и клеткам- мишеням.
Литература
1. Бобрешова М, Сухоруков Г.Б., Сабурова Е.А., Елфимова Л.И., Шабарчина Л.И., Сухоруков Б.И. (1999) Лактатдегидрогеназа в интерполиэлектролитном комплексе. Функция и стабильность, Биофизика, 44(5): 813-820.
2. Кабанов В.А., Зезин А.Б, (2004) Водорастворимые нестехиометричные полиэлектролитные комплексы - новый класс синтетических полиэлектролитов, Итоги науки и техники, М.,. Сер. Органическая химия.
3. Кабанов В.А, (1999) Физико-химические основы и перспективы применения растворимых интерполиэлектролитных комплексов, Высокомолекулярные соединения, 36(2): 183-197.
4. Кольиан Я., Рем К.-Г., (1998) Наглядная биохимия, М., Мир, 262-263.
5. Основные правила безопасной работы в химической лаборатории. М.: “Химия”, 2004.
6. Охрана труда и техника безопасности в химической промышленности. Сборник новых нормативных материалов. М.: “Химия”, 2004.
7. Инструкция по технике безопасности на кафедре агрохимии МСХА.
8. Романова Э.П., Куракова Л.И., Ермаков Ю.Г. Природные ресурсы мира. М., 2003.
9. Колдин Е., Быстрые реакции в растворе, пер. с англ., М., 2002.
10. Проблемы теории и практики исследований в области катализа, под ред. В.А. Ройтера, К., 2003.
11. Уэйт Н., Химическая кинетика, пер. с англ., М., 2004.
12. Темкин О.Н. Промышленный катализ и экологические безопасные технологии // Cоросовский Образовательный Журнал. 2001. №3. С. 42-50.
13. Швец В.Ф. Совершенствование химических производств // Cоросовский Образовательный Журнал. 2003. №6. С. 49-55.
Подобные документы
Общая характеристика процесса (сущность, область применения, основные виды продуктов). Основные реагенты и их подготовка, механизм процесса. Современные методы совершенствования технологии. Основные подходы химико-технологической реализации процесса.
курсовая работа [357,5 K], добавлен 12.03.2010Электролитическая диссоциация как обратимый процесс распада электролита на ионы под действием молекул воды или в расплаве. Основные особенности модельной схемы диссоциации соли. Анализ механизм электролитической диссоциации веществ с ионной связью.
презентация [3,1 M], добавлен 05.03.2013Предпосылки к созданию теории электролитической диссоциации, этапы данного процесса. Понятие и основные факторы, влияющие на степень электролитической диссоциации, способы определения. Закон разбавления Оствальда. Определение ионного произведения воды.
презентация [280,8 K], добавлен 22.04.2013Характеристика и сущность основных положений теории электролитической диссоциации. Ориентация, гидратация, диссоциация - веществ с ионной связью. История открытия теории электролитической диссоциации. Разложение хлорида меди электрическим током.
презентация [218,7 K], добавлен 26.12.2011Свойство водных растворов солей, кислот и оснований в свете теории электролитической диссоциации. Слабые и сильные электролиты. Константа и степень диссоциации, активность ионов. Диссоциация воды, водородный показатель. Смещение ионных равновесий.
курсовая работа [157,0 K], добавлен 23.11.2009Приготовление растворов полимеров: процесс растворения полимеров; фильтрование и обезвоздушивание растворов. Стадии производства пленок раствора полимера. Общие требования к пластификаторам. Подготовка раствора к формованию. Образование жидкой пленки.
курсовая работа [383,2 K], добавлен 04.01.2010Отличительные черты взаимодействия концентрированной и разбавленной серной кислоты с металлами. Свойства сухой извести и ее раствора. Понятие электролитической диссоциации и методика измерения ее степени для различных веществ. Обмен между электролитами.
лабораторная работа [14,9 K], добавлен 02.11.2009Сырье, общая технологическая схема производства алюминия. Процесс получения глинозема, описание электролитической технологии получения алюминия. Его очистка и рафинирование. Определение технической топологии ТХС, специфика определения ее параметров.
лекция [308,5 K], добавлен 14.10.2009Ионная проводимость электролитов. Свойства кислот, оснований и солей с точки зрения теории электролитической диссоциации. Ионно-молекулярные уравнения. Диссоциация воды, водородный показатель. Смещение ионных равновесий. Константа и степень диссоциации.
курсовая работа [139,5 K], добавлен 18.11.2010Основные виды кристаллов. Естественный и искусственный рост кристаллов. Выращивание кристаллов как физико-химический процесс, требуемое оборудование. Способы образования кристаллов. Выращивание монокристаллов из расплава, растворов и паровой фазы.
реферат [57,3 K], добавлен 07.06.2013