Participation of autophagy in the response of plants to the action of abiotic stressors
Mechanisms of autophagy regulation associated with modifications of proteins required for its activation and progression. Іmportance of autophagy activation for the removal of damaged organelles and the recycling of nutrients necessary for plant survival.
Рубрика | Биология и естествознание |
Вид | статья |
Язык | английский |
Дата добавления | 11.10.2024 |
Размер файла | 45,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
47. Zhou, J., Wang, J., Cheng, Y., Chi, Y.J., Fan, B., Yu, J.Q. & Chen, Z. (2013). NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses. PLoS Genet., 9, e1003196.
48. Zhou, J., Wang, J., Yu, J.Q. & Chen, Z. (2014). Role and regulation of autophagy in heat stress responses of tomato plants. Front. Plant Sci., 5, 174.
49. Zhang, Y. & Chen, Z. (2020). Broad and complex roles of NBR1-mediated selective autophagy in plant stress responses. Cells, 9, No. 12, 2562.
50. Wada, S., Hayashida, Y., Izumi, M., Kurusu, T., Hanamata, S., Kanno, K., Kojima, S., Yamaya, T., Kuchitsu, K., Makino, A. & Ishida, H. (2015). Autophagy supports biomass production and nitrogen use efficiency at the vegetative stage in rice. Plant Physiol., 168, 1, pp. 60-73
51. Guiboileau, A., Avila-Ospina, L., Yoshimoto, K., Soulay, F., Azzopardi, M., Marmagne, A., Lothier, J. & Masclaux-Daubresse, C. (2013). Physiological and metabolic consequences of autophagy deficiency for the management of nitrogen and protein resources in Arabidopsis leaves depending on nitrate availability. New Phytol., 199, pp. 683-694.
52. Cao, J., Zheng, X., Xie, D., Zhou, H., Shao, S. & Zhou, J. (2022). Autophagic pathway contributes to low-nitrogen tolerance by optimizing nitrogen uptake and utilization in tomato. Hort. Res., 9, uhac068.
53. Liu, Y., Schiff, M., Czymmek, K., Talloczy, Z., Levine, B. & Dinesh-Kumar, S.P. (2005). Autophagy regulates programmed cell death during the plant innate immune response. Cell, 121, pp. 567-577.
54. Kwon, S.I., Cho, H.J., Kim, S.R. & Park, O.K. (2013). The Rab GTPase RabG3b positively regulates autophagy and immunity-associated hypersensitive cell death in Arabidopsis. Plant Physiol., 161, pp. 1722-1736.
55. Leary, A.Y., Sanguankiattichai, N., Duggan, C., Tumtas, Y., Pandey, P., Segretin, M.E., Salguero Linares, J., Savage, Z.D., Yow, R.J. & Bozkurt, T.O. (2018). Modulation of plant autophagy during pathogen attack. J. Exp. Bot., 69, pp. 1325-1333.
56. Jeon, H.S., Jang, E., Kim, J., Kim, S.H., Lee, M.H., Nam, M.H., Tobimatsu, Y. & Park, O.K. (2023). Pathogen-induced autophagy regulates monolignol transport and lignin formation in plant immunity. Autophagy, 19, pp. 597-615.
57. Farre, J.C. & Subramani, S. (2016). Mechanistic insights into selective autophagy pathways: lessons from yeast. Nat. Rev. Mol. Cell Biol., 17, pp. 537-552.
58. Maqbool, A., Hughes, R.K., Dagdas, Y.F., Tregidgo, N., Zess, E., Belhaj, K., Round, A., Bozkurt, T.O., Kamoun, S. & Banfield, M.J. (2016). Structural basis of host autophagyrelated protein 8 (ATG8) binding by the irish potato famine pathogen effector protein PexRD54. J. Biol. Chem., 291, 20270-20282.
59. Wang, P., Mugume, Y. & Bassham, D.C. (2018). New advances in autophagy in plants: regulation, selectivity and function. Seminars in Cell & Develop. Biol., 80, pp. 113-122.
60. Yang, X., Srivastava, R., Howell, S.H. & Bassham, D.C. (2016). Activation of autophagy by unfolded proteins during endoplasmic reticulum stress. Plant J., 85, pp. 83-95.
61. Zhai, Y., Guo, M., Wang, H., Lu, J., Liu, J., Zhang, C., Gong, Z. & Lu, M. (2016). Autophagy, a conserved mechanism for protein degradation, responds to heat, and other abiotic stresses in Capsicum annuum L. Front. Plant Sci., 7, 131.
62. Sedaghatmehr, M., Thirumalaikumar, V.P., Kamranfar, I., Marmagne, A., MasclauxDaubresse, C. & Balazadeh, S. (2019). A regulatory role of autophagy for resetting the memory of heat stress in plants. Plant Cell Environ., 42, pp. 1054-1064.
63. Zhou, J., Ma, J., Yang, C., Zhu, X., Li, J., Zheng, X., Li, X., Chen, S., Feng, L., Wang, P., Ho, M.I., Ma, W., Liao, J., Li, F., Wang, C., Zhuang, X., Jiang, L., Kang, B.H. & Gao C. (2023). A non-canonical role of ATG8 in golgi recovery from heat stress in plants. Nat. Plants, 9, pp. 749-765.
64. Zhao, W., Song, J., Wang, M., Chen, X., Du, B., An, Y., Zhang, L., Wang, D. & Guo, C. (2023). Alfalfa MsATG13 confers cold stress tolerance to plants by promoting autophagy. Int. J. Mol. Sci., 24, 12033.
65. Rana, R.M., Dong, S., Ali, Z., Huang, J. & Zhang, H.S. (2012). Regulation of ATG6/Beclin-1 homologs by abiotic stresses and hormones in rice (Oryza sativa L.). Genet. Mol. Res., 11, 3676-3687.
66. Tang, J. & Bassham, D.C. (2021). Autophagy during drought: function, regulation, and potential application. Plant J., 109 (2), pp. 390-401.
67. Liu, Y., Xiong, Y. & Bassham, D.C. (2009). Autophagy is required for tolerance of drought and salt stress in plants. Autophagy, 5, pp. 954-963.
68. Zhu, T., Zou, L., Li, Y., Yao, X., Xu, F., Deng, X., Zhang, D. & Lin, H. (2018). Mitochondrial alternative oxidase-dependent autophagy involved in ethylene-mediated drought tolerance in Solanum lycopersicum. Plant Biotechnol. J., 16, pp. 2063-2076
69. Li, Y.B., Cui, D.Z., Sui, X.X., Huang, C., Huang, C.Y. & Fan, Q.Q. (2019). Autophagic survival precedes programmed cell death in wheat seedlings exposed to drought stress. Int. J. Mol. Sci., 20, 5777.
70. Sun, X., Wang, P., Jia, X., Huo, L., Che, R. & Ma, F. (2017). Improvement of drought tolerance by overexpressing MdATG18a is mediated by modified antioxidant system and activated autophagy in transgenic apple. Plant Biotechnol. J., 16 (2), pp. 545-557.
71. Jia, X., Gong, X., Jia, X., Li, X., Wang, Y., Wang, P., Huo, L., Sun, X., Che, R., Li, T., Zou, Y. & Ma, F. (2021). Overexpression of MdATG8i enhances drought tolerance by alleviating oxidative damage and promoting water uptake in transgenic apple. Int. J. Mol. Sci., 22, 5517.
72. Jia, X., Mao, K., Wang, P., Wang, Y., Jia, X., Huo, L., Sun, X., Che, R., Gong, X. & Ma, F. (2021). Overexpression of MdATG8i improves water use efficiency in transgenic apple by modulating photosynthesis, osmotic balance, and autophagic activity under moderate water deficit. Hort. Res., 8, 81.
73. Wang, Y., Cai, S., Yin, L., Shi, K., Xia, X., Zhou, Y., Yu, J. & Zhou, J. (2015). Tomato HsfA1a plays a critical role in plant drought tolerance by activating ATG genes and inducing autophagy. Autophagy, 11, 2033-2047.
74. Wang, X., Gao, Y., Wang, Q., Chen, M., Ye, X., Li, D., Chen X., Li, L. & Gao, D. 24-Epibrassinolide-alleviated drought stress damage influences antioxidant enzymes and autophagy changes in peach (Prunus persicae L.) leaves. Plant Physiol. Bio., 135, pp. 30-40.
75. Yang, M., Wang, L., Chen, C., Guo, X., Lin, C., Huang, W. & Chen, L. (2021). Genome-wide analysis of autophagy-related genes in Medicago truncatula highlights their roles in seed development and response to drought stress. Sci. Rep., 11, 22933.
76. Hachez, C., Veljanovski, V., Reinhardt, H., Guillaumot, D., Vanhee, C., Chaumont, F. & Batoko, H. (2014). The Arabidopsis abiotic stress-induced TSPO-related protein reduces cell-surface expression of the aquaporin PIP2;7 through protein-protein interactions and autophagic degradation. Plant Cell, 26, pp. 4974-4990
77. Li, X., Liu, Q., Feng, H., Deng, J., Zhang, R., Wen, J., Dong, J. & Wang, T. (2020). Dehydrin MtCAS31 promotes autophagic degradation under drought stress. Autophagy, 16, pp. 862-877.
78. Bao, Y. (2020). Links between drought stress and autophagy in plants. Plant Signaling & Behavior, 15, 1779487.
79. Bao, Y., Song, W.-M., Wang, P., Yu, X., Li, B., Jiang, C., Shiu, S.H., Zhang, H. & Bassham, D.C. (2020). COST1 regulates autophagy to control plant drought tolerance. Proc. Natl Acad. Sci., 117, pp. 7482-7493.
80. Huo, L., Guo, Z., Jia, X., Sun, X., Wang, P., Gong, X. & Ma, F. (2020). Increased autophagic activity in roots caused by overexpression of the autophagy-related gene MdATG10 in apple enhances salt tolerance. Plant Sci., 294, 110444.
81. Huo, L., Guo, Z., Wang, P., Zhang, Z., Jia, X., Sun, Y., Sun, X., Gong, X. & Ma, F. MdATG8i functions positively in apple salt tolerance by maintaining photosynthetic ability and increasing the accumulation of arginine and polyamines. Env. Exp. Bot., 172, 103989.
82. Luo, L., Zhang, P., Zhu, R., Fu, J., Su, J., Zheng, J., Wang, Z., Wang, D. & Gong, Q. (2017). Autophagy is rapidly induced by salt stress and is required for salt tolerance in Arabidopsis. Front. Plant Sci., 8, 1459.
83. Moriyasu, Y. & Ohsumi, Y. (1996). Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Physiol., 111, pp. 1233-1241.
84. Tasaki, M., Asatsuma, S. & Matsuoka, K. (2014). Monitoring protein turnover during phosphate starvation-dependent autophagic degradation using a photoconvertible fluorescent protein aggregate in tobacco BY-2 cells. Front. Plant Sci., 5.
85. Toyooka, K., Takeuchi, M., Moriyasu, Y., Fukuda, H. & Matsuoka, K. (2006). Protein aggregates are transported to vacuoles by macroautophagic mechanism in nutrient-starved plant cells. Autophagy, 2, pp. 91-106.
86. Takatsuka, Ch., Inoue, Yu., Higuchi, T., Hillmer, S., Robinson, D.G. & Moriyasu, Yu. (2011). Autophagy in tobacco BY-2 cells cultured under sucrose starvation conditions: isolation of the autolysosome and its characterization. Plant Cell Physiol., 52 (12), pp. 20742087.
87. Guiboileau, A., Yoshimoto, K., Soulay, F., Bataille, M.P., Avice, J.C. & MasclauxDaubresse, C. (2012). Autophagy machinery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in Arabidopsis. New Phytol., 194, pp. 732-740.
88. Wang, P., Nolan, T.M., Yin, Y. & Bassham, D.C. (2020). Identification of transcription factors that regulate ATG8 expression and autophagy in Arabidopsis. Autophagy, 16, pp. 123-139.
89. Lornac, A., Havee, M., Chardon, F., Soulay, F., Clement, G., Avice, J.-Ch. & Masclaux-Daubresse, C. (2020). Autophagy controls sulphur metabolism in the rosetta leaves of arabidopsis and facilitates S remobilization that the seeds. Cells, 9, 332.
90. Pottier, M., Dumont, J., Masclaux-Daubresse, C. & Thomine, S. (2019). Autophagy is essential for optimal translocation of iron to seeds in Arabidopsis. J. Exp. Bot., 70, pp. 859869.
91. Li, F., Chung, T., Pennington, J.G., Federico, M.L., Kaeppler, H.F., Kaeppler, S.M., Otegui, M.S. & Vierstra, R.D. (2015). Autophagic recycling plays a central role in maize nitrogen remobilization. Plant Cell, 27, pp. 1389-1408.
92. Naumann, C., Muller, J., Sakhonwasee, S., Wieghaus, A., Hause, G., Heisters, M., Burstenbinder, K. & Abel, S. (2019). The local phosphate deficiency response activates endoplasmic reticulum stress-dependent autophagy. Plant Physiol., 179, pp. 460-476.
93. Yoshitake, Y., Nakamura, S., Shinozaki, D., Izumi, M., Yoshimoto, K., Ohta, H. & Shimojima, M. (2021). RCB-mediated chlorophagy caused by oversupply of nitrogen suppresses phosphate-starvation stress in plants. Plant Physiol., 185, pp. 318-330.
94. Yoshitake, Y., Shinozaki, D. & Yoshimoto, K. (2022). Autophagy triggered by ironmediated ER stress is an important stress response to the early phase of Pi starvation in plants. Plant J., 110, pp. 1370-1381.
95. Yoshitake, Y. & Yoshimoto, K. (2023). Intracellular phosphate recycling systems for survival during phosphate starvation in plants. Front. Plant Sci., 13, 1088211.
96. Lin, L.Y., Chow, H.X., Chen, C.H., Mitsuda, N., Chou, W.C. & Liu, T.Y. (2023). Role of autophagy-related proteins ATG8f and ATG8h in the maintenance of autophagic activity in Arabidopsis roots under phosphate starvation. Front. Plant Sci., 14, 1018984.
97. Eguchi, M., Kimura, K., Makino, A. & Ishida, H. (2017). Autophagy is induced under Zn limitation and contributions to Zn-limited stress tolerance in Arabidopsis (Arabidopsis thaliana). Soil Sci. Plant Nutr., 63, pp. 342-350.
98. Shinozaki, D., Merkulova, E.A., Naya, L., Horie, T., Kanno, Y., Seo, M., Ohsumi, Y., Masclaux-Daubresse, C. & Yoshimoto, K. (2020). Autophagy increases zinc bioavailability to avoid light-mediated reactive oxygen species production under zinc deficiency. Plant Physiol., 182, pp. 1284-1296.
99. Wang, J., Miao, S., Liu, Y. & Wang, Y. (2022). Linking autophagy to potential agronomic trait improvement in crops. Int. J. Mol. Sci., 23, 4793.
100. Xiong, Y., Contento, A.L., Nguyen, P.Q. & Bassham, D.C. (2007). Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol., 143, pp. 291-299.
101. Perez-Perez, M.E., Couso, I., Crespo, J.L. (2012). Carotenoid deficiency triggers autophagy in the model green alga Chlamydomonas reinhardtii. Autophagy, 8, pp. 376388.
102. Perez-Perez, M.E., Lemaire, S.D. & Crespo, J.L. (2012). Reactive oxygen species and autophagy in plants and algae. Plant Physiol., 160, pp. 156-164.
103. Perez-Perez, M.E., Florencio, F.J. & Crespo, J.L. (2010). Inhibition of target of rapamycin signaling and stress activate autophagy in Chlamydomonas reinhardtii. Plant Physiol., 152, pp. 1874-1888.
104. Shin, J.-H., Yoshimoto, K., Ohsumi, Y., Jeon, J.-S. & An, G. (2009). OsATG10b, an autophagosome component, is required for cell survival against oxidative stress in rice. Mol. Cells, 27, pp. 67-74.
105. Minina, E.A., Moschou, P.N., Vetukuri, R.R., Sanchez-Vera, V., Cardoso, C., Liu, Q., Elander, P.H., Dalman, K., Beganovic, M., Lindberg Yilmaz, J., Marmon, S., Shabala, L., Suarez, M.F., Ljung, K., Novak, O., Shabala, S., Stymne, S., Hofius, D. & Bozhkov, P.V. (2018). Transcriptional stimulation of rate-limiting components of the autophagic pathway improves plant fitness. J. Exp. Bot., 69, 1415-1432.
106. Wang, Y., Zheng, X., Yu, B., Han, S., Guo, J., Tang, H., Yu, A.Y., Deng, H., Hong, Y. & Liu, Y. (2015). Disruption of microtubules in plants suppresses macroautophagy and triggers starch excess-associated chloroplast autophagy. Autophagy, 11, pp. 2259-2274.
107. Serrano, I., Romero-Puertas, M.C., Sandalio, L.M. & Olmedilla, A. (2015). The role of reactive oxygen species and nitric oxide in programmed cell death associated with selfincompatibility. J. Exp. Bot., 66, pp. 2869-2876.
108. Sychuk, A., Radchenko, M. & Morderer, Y. (2013). The increase of phytotoxic action of graminicide fenoxaprop-P-ethyl by NO donor sodium nitroprusside. Sci. Educat. New Dimen.: Nat. Tech. Sci., 2, 21.
109. Ponomaryova, I.G., Khandezhina, M.V. & Radchenko, M.P. (2022). Increase in the phytotoxic action of the protoporphyrinogen oxidase inhibitor herbicide carfentrazone and the herbicide of the class of synthetic auxins 2,4-D when used together with the NO donor sodium nitroprusside. Fiziol. rast. genet., 54, No. 5, pp. 419-428 [in Ukrainian].
110. Lockshin, R.A. & Zakeri, Z. (2004). Apoptosis, autophagy, and more. Int. J. Biochem. Cell Biol., 36, pp. 2405-2419.
111. Morderer, Y.Y., Radchenko, M.P. & Sychuk, A.M. (2013). Programmed cell death in the pathogenesis, induced by herbicides in plants. Fiziol. rast. genet., 45, No. 6, pp. 517526 [in Ukrainian].
112. Radchenko, M.P., Gurianov, D.S. & Morderer, Ye.Yu. (2022). DNA fragmentation and endonuclease activity under the effect of herbicides acetyl-CoA-carboxylase and acetolactate synthase inhibitors. Fiziol. rast. genet., 54, No. 5, pp. 404-418 [in Ukrainian].
113. Morderer, Ye.Yu., Palanytsia, M.P. & Rodzevych, O.P. (2008). Research on the participation of free radical oxidation reactions in the development of the phytotoxic action of graminicides. Physiol. biochim. cult. rast., 40, No. 1, pp. 56-61 [in Ukrainian].
114. Palanytsia, M.P., Trach, V.V. & Morderer, Ye.Yu. (2009). Generation of active forms of oxygen under the action of graminicides and modifiers of their activity. Physiol. biochim. cult. rast., 41, pp. 328-334 [in Ukrainian].
115. Zhao, L., Jing, X., Chen, L., Liu, Y., Su, Y., Liu, T., Gao, C., Yi, B., Wen, J., Ma, C., Tu, J., Zou, J., Fu, T. & Shen, J. (2015). Tribenuron-methyl induces male sterility through anther-specific inhibition of acetolactate synthase leading to autophagic cell death. Mol. Plant, 8, pp. 1710-1724.
116. Lokdarshi, A. & von Arnim, A.G. (2022). Review: emerging roles of the signaling network of the protein kinase GCN2 in the plant stress response. Plant Sci., 320, 111280.
117. Zhao, L., Deng, L., Zhang, Q., Jing, X., Ma, M., Yi, B., Wen, J., Ma, Ch., Tu, J., Fu, T. & Shen, J. (2018). Autophagy contributes to sulfonylurea herbicide tolerance via GCN2-independent regulation of amino acid homeostasis. Autophagy, 14 (4), pp. 702714.
118. Qi, H., Xia, F.N. & Xiao, S. (2021). Autophagy in plants: physiological roles and posttranslational regulation. J. Int. Plant Biol., 63, pp. 161-179.
119. Champion, A., Kreis, M., Mockaitis, K., Picaud, A. & Henry, Y. (2004). Arabidopsis kinome: after the casting. Functional & Integrative Genomics, 4, pp. 163-187.
120. Durek, P., Schmidt, R., Heazlewood, J.L., Jones, A., MacLean, D., Nagel, A., Kersten, B. & Schulze, W.X. (2010). PhosPhAt: the arabidopsis thaliana phosphorylation site database. An update. Nucleic Acids Res., 38, D828-D834.
121. van Wijk, K.J., Friso, G., Walther, D. & Schulze, W.X. (2014). Meta-analysis of Arabidopsis thaliana phospho-proteomics data reveals compartmentalization of phosphorylation motifs. The Plant Cell, 26, pp. 2367-2389.
122. Liao, C.-Y. & Bassham, D.C. (2019). Combating stress: the interplay between hormone signaling and autophagy in plants. J. Exp. Bot., 71, pp. 1723-1733.
123. Hunter, T. (1995). When is a lipid kinase not a lipid kinase? When it is a protein kinase. Cell, 83, pp. 1-4.
124. Wu, Y., Shi, L., Li, L., Fu, L., Liu, Y., Xiong, Y. & Sheen, J. (2019). Integration of nutrient, energy, light, and hormone signaling via TOR in plants. J. Exp. Bot., 70, pp. 2227-2238.
125. Margalha, L., Confraria, A. & Baena-Gonzalez, E. (2019). SnRK1 and TOR: modulating growth-defense trade-offs in plant stress responses. J. Exp. Bot., 70, pp. 22612274.
126. Retzer, K. & Weckwerth, W. (2023). Recent insights into metabolic and signaling events of directional root growth regulation and its implications for sustainable crop production systems. Front. Plant Sci., 14, 1154088. 10.3389
127. Baena-Gonzalez, E., Rolland, F., Thevelein, J.M. & Sheen, J. (2007). A central integrator of transcription networks in plant stress and energy signaling. Nature, 448, pp. 938942.
128. Chen, L., Su, Z.Z., Huang, L., Xia, F.N., Qi, H., Xie, L.J., Xiao, S. & Chen, Q.F. (2017). The AMP-activated protein kinase KIN10 is involved in the regulation of autophagy in Arabidopsis. Front. Plant Sci, 8, 1201.
129. Soto-Burgos, J. & Bassham, D.C. (2017). SnRK1 activates autophagy via the TOR signaling pathway in Arabidopsis thaliana. PloS One, 12, e0182591.
130. Pu, Y., Luo, X. & Bassham, D.C. (2017). TOR-dependent and -independent pathways regulate autophagy in arabidopsis thaliana. Front. Plant Sci., 8, 1204.
131. Pu, Y.T., Soto-Burgos, J. & Bassham, D.C. (2017) Regulation of autophagy through SnRK1 and TOR signaling pathways. Plant Signal. Behav., 12, e1395128.
132. Nolan, T.M., Brennan, B., Yang, M., Chen, J., Zhang, M., Li, Z., Wang, X., Bassham, D.C., Walley, J., & Yin, Y. (2017). Selective autophagy of BES1 mediated by DSK2 balances plant growth and survival. Develop. Cell, 41, No. 33-46, e7.
133. Montes, C., Wang, P., Liao. C.-Y., Nolan, T.M., Song, G., Clark, N.M., Elmore, J.M., Guo, H., Bassham, D.C., Yin, Y. & Walley, J.W. (2022). Integration of multi-omics data reveals interplay between brassinosteroid and target of rapamycin complex signaling in Arabidopsis. New Phytol., 236, pp. 893-910.
134. Liao, C.-Y., Pu, Y., Nolan, T.M., Montes, C., Guo, H., Walley, J.W. & Yin, Y. (2023). Brassinosteroids modulate autophagy through phosphorylation of RAPTOR1B by the GSK3-like kinase BIN2 in Arabidopsis. Autophagy, 19, pp. 1293-1310.
135. Zhang, B., Shao, L., Wang, J., Zhang, Y., Guo, X., Peng, Y., Cao, Y. & Lai, Z. Phosphorylation of ATG18a by BAK1 suppresses autophagy and attenuates plant resistance against necrotrophic pathogens. Autophagy, 17, pp. 2093-2110.
136. Wang, P., Zhao, Y., Li, Z., Hsu, C.C., Liu, X., Fu, L., Hou, Y.J., Du, Y., Xie, S., Zhang, C., Gao, J., Cao, M., Huang, X., Zhu, Y., Tang, K., Wang, X., Tao, W.A., Xiong, Y. & Zhu, J.K. (2018). Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Mol. Cell, 69, pp. 100-112, e6.
137. Rodriguez, M., Parola, R., Andreola, S., Pereyra, C. & Martinez-Noel, G. (2019). TOR and SnRK1 signaling pathways in plant response to abiotic stresses: do they always act according to the «yin-yang» model? Plant Sci., 288, 110220.
138. Ahn, C.S., Ahn, H.-K. & Pai, H.-S. (2015). Overexpression of the PP2A regulatory subunit Tap46 leads to enhanced plant growth through stimulation of the TOR signaling pathway. J. Exp. Bot., 66, pp. 827-840.
139. Aroca, A., Serna, A., Gotor, C. & Romero, L.C. (2015). S-sulfhydration: a cysteine posttranslational modification in plant systems. Plant Physiol., 168, pp. 334-342.
140. Aroca, A., Benito, J.M., Gotor, C. & Romero, L.C. (2017). Persulfidation proteome reveals the regulation of protein function by hydrogen sulfide in various biological processes in Arabidopsis. J. Exp. Bot., 68, pp. 4915-4927.
141. Jurado-Flores, A., Romero, L.C. & Gotor, C. (2021). Label-free quantitative proteomic analysis of nitrogen starvation in arabidopsis root reveals new aspects of H2S signaling by protein persulfidation. Antioxidants (Basel), 10, 508.
142. Gotor, C., Garcia, I., Crespo, J.L. & Romero, L.C. (2013). Sulfide as a signaling molecule in autophagy. Autophagy, 9, pp. 609-611.
143. Gotor, C., Aroca, A. & Romero, L.C. (2022). Persulfidation is the mechanism underlying sulfide-signaling of autophagy. Autophagy, 18, pp. 695-697.
144. Aroca, A., Yruela, I., Gotor, C. & Bassham D.C. (2021). Persulfidation of ATG18a regulates autophagy under ER stress in Arabidopsis. Proc. Natl Acad. Sci. USA, 118, e2023604118.
145. Alvarez, C., Garcia, I., Moreno, I., Perez-Perez, M.E., Crespo, J.L., Romero, L.C. & Gotor, C. (2012). Cysteine-generated sulfide in the cytosol negatively regulates autophagy and modulates the transcriptional profile in Arabidopsis. Plant Cell, 24, pp. 46214634.
146. Laureano-Marin, A.M., Moreno, I., Romero, L.C. & Gotor, C. (2016). Negative regulation of autophagy by sulfide is independent of reactive oxygen species. Plant Physiol., 171, pp. 1378-1391.
147. Jurado-Flores, A., Aroca, A., Romero, L.C. & Gotor, C. (2023). Sulfide promotes tolerance to drought through protein persulfidation in Arabidopsis. J. Exp. Bot., 74, pp. 46544669.
148. Xuan, L., Wu, H., Li, J., Yuan, G., Huang, Y., Lian, C., Wang, X., Yang, T. & Wang, C. Hydrogen sulfide reduces cell death through regulating autophagy during submergence in Arabidopsis. Plant Cell Rep., 41, 1531-1548.
149. Shangguan, L., Fang, X., Chen, L., Cui, L. & Fang, J. (2018). Genome-wide analysis of autophagy-related genes (ARGs) in grapevine and plant tolerance to copper stress. Planta, 247, pp. 1449-1463.
150. Chen, X., Li, C., Wang, H. & Guo, Z. (2019). WRKY transcription factors: evolution, binding, and action. Phytopathol. Res., 1, 13.
151. Song, I., Hong, S. & Huh, S.U. (2022). Identification and expression analysis of the Solanum tuberosum StATG8 family associated with the WRKY transcription factor. Plants (Basel), 11, 2858.
152. Wang, Y., Cao, J.-J., Wang, K.-X., Xia, X.-J., Shi, K., Zhou, Y.-H., Yu, J.-Q. & Zhou, J. (2019). BZR1 mediates brassinosteroid-induced autophagy and nitrogen starvation in tomatoes. Plant Physiol., 179, pp. 671-685.
153. Chi, C., Li, X., Fang, P., Xia, X., Shi, K., Zhou, Y., Zhou, J. & Yu, J. (2020). Brassinosteroids act as a positive regulator of NBR1-dependent selective autophagy in response to chilling stress in tomato. J. Exp. Bot., 71, pp. 1092-1106.
Размещено на Allbest.Ru
Подобные документы
Induction of stress adaptive response: practical considerations. Detecting and quantifying stress response. Perspectives and areas for future work. Mechanisms of microorganism adaptation to stress factors: heat, cold, acid, osmotic pressure and so on.
курсовая работа [313,2 K], добавлен 18.11.2014Types of microorganisms. Viruses consist of genetic materials. Bacteria are organisms made up of just one cell. Algae are a type of living thing. Fungi are like plants that are not "green", they do not have the photosynthetic pigment chlorophyll.
презентация [188,3 K], добавлен 16.03.2014Uses of organic molecules. Large molecules are polymers, proteins, lipids, starch, nucleic acids are examples. Macromolecules in organisms. Carbohydrates include in soft drinks, pasta and potatoes. Function of lipids. Synthetic anabolic steroids.
презентация [8,4 M], добавлен 27.11.2011The role of deuterium in molecular evolution is most interesting question of nowdays science comprises two points mainly: the evolution of deuterium itself as well as the chemical processes going with participation of deuterium.
статья [426,3 K], добавлен 23.10.2006Hormones as organic substances, produced in small amounts by specific tissues (endocrine glands), secreted into the blood stream to control the metabolic and biological activities. Classification of hormones. The pro-opiomelanocortin peptide family.
презентация [1,2 M], добавлен 21.11.2012The cardiovascular system comprises of the heart, blood and lymphatic system. The function of the heart is to pump blood around the body. Three main functions of the blood: transport, regulation, and protection. The protective role of lymphatic system.
презентация [430,1 K], добавлен 02.04.2012The complement system - part of the immune system as a set of complex proteins. History of the concept. Its biological functions, regulation, role in diseases. Stages of activation: the alternative and lectin pathway. Mannose-binding Lectin deficiency.
презентация [932,7 K], добавлен 17.03.2017What is the lesson. Types of lessons according to the activities (by R. Milrood). How to write a lesson plan 5 stages. The purpose of assessment is for the teacher. The students' mastery. List modifications that are required for special student.
презентация [1,1 M], добавлен 29.11.2014Concept and evaluation of the significance of garbage collection for the urban economy, maintaining its beneficial environmental climate and clean air. Investigation of the major environmental problems in Almaty. Need for waste sorting and recycling.
презентация [2,4 M], добавлен 29.04.2014Example of "simple linear progression". Additive. adversative. temporal textual connector. Anaphoric relations and their use in fairy tales. Major types of deictic markers: person deixis, place deixis, time deixis, textual deixis, social deixis.
творческая работа [300,8 K], добавлен 05.07.2011