Влияние гипертермии и экзогенной салициловой кислоты на экспрессию генов PR-белков (в-1,3-глюканазы, хитиназы) и активность ферментов защитного ответа в растениях ячменя при гельминтоспориозе

Исследование защитных механизмов сельскохозяйственных культур при патогенезе - мембранной НАДФН-оксидазы и Z-фенилаланинаммонийлиазы. Обнаружение молекулярных паттернов экзогенной салициловой кислоты на мембране и запуск иммунных ответов растений ячменя.

Рубрика Биология и естествознание
Вид статья
Язык украинский
Дата добавления 29.09.2022
Размер файла 299,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

https://doi.org/10.1134/S0003683808050141

Rebrikov D.V. Samatov G.A., Trofimov D.Yu., Semenov P.A. 2015. PTSR v real'nom vremeni (Real time PCR). Moscow. 233р.

Antoniw J.F., Ritter C.E., Pierpoint W.S., Van Loon L.C. 1980. Comparison of three pathogenesis-related proteins from plants of two cultivars of tobacco infected with TMV. J. Gen. Virol. 47 : 79-87.

Atkinson N.J., Urwin P.E. 2012.The interaction of plant biotic and abiotic stresses: from genes to the field. J. Exp. Bot. 63 (10) : 3523-3543.

Awasthi R., Bhandari K., Nayyar H. 2015. Temperature stress and redox homeostasis in agricultural crops. Front. Environ. Sci. 3 : 110.

Balasubramanian V., Vashisht D., Cletus J., Sak- thivel N. 2012. Plant Я-1,3-glucanases: their biological functions and transgenic expression against phy- topathogenic fungi. Biotechnol Lett. 34 (11) : 19831990.

Bienert G.P., M0ller A.L.B., Kristiansen K.A., Schulz A., M0ller I.M., Schjoerring J.K., Jahn T.P. 2007. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem. 282 : 1183-1192.

Boccardo N.A., Segretin M.E., Hernandez I., Mirkin F.G., Chacon O., Lopez Y., BorrasHidalgo O., Bravo-Almonacid F.F. 2019. Expression of pathogenesis-related proteins in transplastomic tobacco plants confers resistance to filamentous pathogens under field trials. Sci. Rep. 9 : 2791.

Calil I.P., Fontes E. 2017. Plant immunity against viruses: antiviral immune receptors in focus. Ann. Bot. 119 (5) : 711-723.

Campos-Vargas R., Nonogaki H., Suslow T., Saltve- it M. 2005. Heat shock treatments delay the increase in wound-induced phenylalanine ammonialyase activity by altering its expression, not its induction in Romaine lettuce (Lactuca sativa) tissue. Physiol. Plant. 123 (1) : 82-91.

Carmo L.S., Murad A.M., Resende R.O., Boiteux L.S., Ribeiro S.G., Jomn-Novo J.V., Mehta A. 2017. Plant responses to tomato chlorotic mottle virus: Proteomic view of the resistance mechanisms to a bipartite begomovirus in tomato. J. Proteomics. 151 : 284-292.

Chao Y. Y., Hong C. Y., Kao C. H. 2010. The decline in ascorbic acid content is associated with cadmium toxicity of rice seedlings. Plant Physiol. Biochem. 48 : 374-381.

Choudhury F.K., Rivero R.M.,Blumwald E., Mittler R. 2017. Reactive oxygen species, abiotic stress and stress combination. Plant. J. 90 : 856-867.

Cingoz G.S., Gurel E. 2016. Effects of salicylic acid on thermotolerance and cardenolide accumulation under high temperature stress in Digitalis trojana Iva- nina. Plant Physiol. Biochem. 105 : 145-149.

Clarke S.M., Cristescu S.M., Miersch O., Harren F.J.M., Wasternack C., Mur L.A.J. 2009. Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytol. 182 : 175-187.

Clarke S.M., Mur L.A., Wood J.E., Scott I.M. 2004. Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J. 38 (3) : 432-447.

Coll N.S., Epple P., Dangl, J.L. 2011. Programmed cell death in the plant immune system. Cell Death and Differentiation. 18 : 1247-1256.

Dat J.F., Lopez-Delgado H., Foyer C.H., Scott I.M. 2000. Effects of salicylic acid on oxidative stress and thermotolerance in tobacco. J. Plant Physiol. 156 : 659-665.

Dempsey D. M. A., Klessig, D. F. 2017. How does the multifaceted plant hormone salicylic acid combat disease in plants and are similar mechanisms utilized in humans? BMC Biol. 15 : 23.

Devadas S. K., Raina R. 2002. Preexisting systemic acquired resistance suppresses hypersensitive response-associated cell death in Arabidopsis hrl1 mutant. Plant Physiol. 128 : 1234-1244.

Dong X. 2004. NPR1, all things considered. Curr. Opin. Plant. Biol. 7 : 547-552.

Foyer C.H., Rasool B., Davey J.W., Hancock R.D. 2016. Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation. J. Exp. Bot. 67 (7) : 2025-2037.

Gao Q.M., Zhu S., Kachroo P., Kachroo A. 2015. Signal regulators of systemic acquired resistance. Front. Plant Sci. 6 : 228.

Gilroy S., Bialasek M., Suzuki N., Gorecka M., Devireddy A.R., Karpinski S., Mittler R. 2016. ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol. 171 (3) : 1606-1615.

Glazebrook J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Ann. Rev. Phytopathol. 43 : 205-227.

Golldack D., Li .C, Mohan H., Probst N. 2014. Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Front. Plant Sci. 5 : 151.

Gonzalez-Teuber M., Pozo M. J., Muck A., Svatos A., Adame-Alvarez R. M., Heil M. 2010. Glucanases and chitinases as causal agents in the protection of Acacia extrafloral nectar from infestation by phytopathogens. Plant Physiol. 152 (3) : 1705-1715.

Guo X. L., Yuan S. N., Zhang H. N., Zhang Y. Y., Zhang Y. J., Wang G. Y., Li Y. Q., Li G. L. 2020. Heat-response patterns of the heat shock transcription factor family in advanced development stages of wheat (Triticum aestivum L.) and thermotolerance- regulation by TaHsfA2-10. BMC Plant Biol. 20 (1) : 364.

Gupta P., Ravi I., Sharma V. 2013. Induction of Я-1,3- glucanase and chitinase activity in the defense response of Eruca sativa plants against the fungal pathogen Alternaria brassicicola. J. Plant Interact. 8(2) : 155-161.

Hossain M.A., Li Z.G., Hoque T.S., Burritt D.J., Fu- jita M., Munne-Bosch S. 2018. Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms. Protoplasma. 255 (1) : 399-412.

Jain D., Khurana J.P. 2018. Role of Pathogenesis- Related (PR) Proteins in Plant Defense Mechanism. In: Molecular Aspects of Plant-Pathogen Interaction. Springer, Singapore, pp. 265-281.

Jin J.B., Cai B., Zhou J.M. 2017. Salicylic acid. In: Hormone Metabolism and Signaling in Plants: Hormone Metabolism and Signaling in Plants. London, Academic Press, pp. 273-289.

Jones J. D., Dangl J. L. 2006. The plant immune system. Nature. 444 : 323-329.

Kasprzewska A. 2003. Plant chitinases - regulation and function. Cellul. Mol. Biol. Lett. 8: 809-824.

Khan M.I., Iqbal N., Masood A., Per T.S., Khan N.A. 2013. Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signal. Behav. 8 : e26374.

Kim N.H., Hwang B.K. 2015. Pepper heat shock protein 70a interacts with the type III effector AvrBsT and triggers plant cell death and immunity. Plant Physiol.167 (2) : 307-322.

Kirubakaran S.I., Sakthivel N. 2007. Cloning and over expression of antifungal barley chitinase gene in Escherichia coli. Protein Exp. Purif. 52 : 1159-1166.

Klein P., Seidel T., Stцcker B., Dietz K.J. 2012. The membrane tethered transcription factor ANAC089 serves as redox dependent suppressor of stromal ascorbate peroxidase gene expression. Front Plant Sci. 3 : 247.

Klessig D.F., Choi H.W., Dempsey D.M.A. 2018. Systemic acquired resistance and salicylic acid: past, present, and future. Mol. Plant-Microbe Interact. 31 : 871-888.

Kotak S., Larkindale J., Lee U., von Koskull-Doring P., Vierling E., Scharf K.D. 2007. Complexity of the heat stress response in plants. Curr.Opin. Plant. Biol. 10 : 310-316

Kubienovд L., Sedlдrovд M., Vheckovд-Wьnschovд A., Piterkovд J., Luhovд L., Mieslerovд B., Lebeda A., Navrдtil M., Petrivalsky M. 2013. Effect of extreme temperatures on powdery mildew development and Hsp70 induction in tomato and wild Solanum spp. Plant Protection Science, 49 (Spec. Iss.) : 41-54.

Kumar D. 2014. Salicylic acid signaling in disease resistance. Plant Sci. 228 : 127-34.

Kuwabara C, Takezawa D, Shimada T, Hamada T, Fujikawa S, Arakawa K. 2002. Abscisic acid- and cold- induced thaumatin-like protein in winter wheat has an antifungal activity against snow mould, Microdo- chium nivale. Physiol Plant. 115(1) : 101-110.

Larkindale J., Hall J. D., Knight M. R., Vierling E. 2005. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol. 138 : 882897.

Larkindale J., Huang B.R. 2005. Effects of abscisic acid, salicylic acid, ethylene and hydrogen peroxide in thermotolerance and recovery for creeping bent- grass. Plant Growth Regulation. 47: 17-28.

Lebeda A., Mieslerovд B., Petrivalsky M., Luhovд L., Spundovд M., Sedlдrovд M., Nozkovд- Hlavдckovд V., PinkD.A.C. 2014. Resistance mechanisms of wild tomato germplasm to infection of Oidium neolycopersici. Eur. J. Plant Pathol. 138 : 569-596.

Li B., Gao K., Ren H., Tang W. 2018. Molecular mechanisms governing plant responses to high temperatures. J. Integr. Plant Biol. 60: 757-779.

Li C., Li X., Bai C., Zhang Y., Wang Z. 2019. A chi- tinase with antifungal activity from naked oat (Av- ena chinensis) seeds. J. Food Biochem. 43(2) : e12713.

Li Y.Z., Muhammad T., Wang Y., Zhang D.L., Crabbe M.J.C., Liang Y. 2018а. Salicylic acid collaborates with gene silencing to tomato defense against tomato yellow leaf curl virus (TYLCV). Pak. J. Bot. 50 : 2041-2054.

Liao C., Zheng Y., Guo Y. 2017. MYB30 transcription factor regulates oxidative and heat stress responses through ANNEXIN\mediated cytosolic calcium signaling in Arabidopsis. New. Phytol. 216 : 163-177.

Lin J.S., Lin H.H., Li Y.C., King Y.C., Sung R.J., Kuo Y.W., Lin C.C., Shen Y.H., Jeng S.T. 2014.Carbon monoxide regulates the expression of the wound-inducible gene ipomoelin through antioxidation and MAPK phosphorylation in sweet potato. J. Exp. Bot. 65 (18) : 5279-5290.

Liu L., Sonbol F.M., Huot B., Gu Y., Withers J., Mwimba M., Yao J., He S.Y., Dong X. 2016. Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity. Nat. Commun. 7 : 13099.

Lopez-Delgado H., Mora-Herrera M.E., Zavaleta- Mancera H.A., Cadena-Hinojosa M., Scott I.M. 2004. Salicylic acid enhances heat tolerance and potato virus X (PVX) elimination during thermotherapy of potato microplants. Amer. J. Potato Res. 81 : 171-176.

Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193 (1) : 265-275.

Ma B.C., Tang W.L., Ma L.Y., Li L.L., Zhang L.B., Zhu S.J., Zhuang C., Irving D. 2009.The role of chi- tinase gene expression in the defense of harvested banana against anthracnose disease. J. Amer. Soc. Hort. Sci. 134 (3) : 379-386.

Nozkovд V., Mieslerovд B., Luhovд L., Piterkovд J., Novдk O., Spundovд M., Lebeda A. 2019. Effect of heat-shock pre-treatment on tomato plants infected by powdery mildew fungus. Plant Protect. Sci. 55 : 31-42.

Pinton R., Cakmak I., Marschner H. 1994. Zinc deficiency enhanced NAD(P)H-dependent superoxide radical production in plasma membrane vesicles isolated from roots of bean plants. J. Exp. Bot. 45 (1) : 45-50.

Reddy R.A., Kumar B., Reddy P.S., Mishra R.N., Ma- hanty S., Kaul T., Nair S., Sopory S.K., Reddy M.K. 2009. Molecular cloning and characterization of genes encoding Pennisetum glaucum ascorbate peroxidase and heat-shock factor: Interlinking oxidative and heat-stress responses. J. Plant Physiol. 166 : 1646-1659.

Savvides A., Ali S., Tester M., Fotopoulos V. 2016 Chemical Priming of Plants Against Multiple Abiotic Stresses: Mission Possible? Trends Plant Sci. 21 (4) : 329-340.

Schweizer P., Vallelian-Bindschedler L., Mosinger E. 1995. Heat-induced resistance in barley to the powdery mildew fungus Erysiphe graminis f. sp. hordei. Physiol. Mol. Plant Pathol. 47 : 51-66.

Seidel T., Scholl S., Krebs M., Rienmьller F., Marten I., Hedrich R.,Hanitzsch M., Janetzki .P, Dietz K.J., Schumacher K. 2012. Regulation of the V-type ATPase by redox modulation. Biochem J. 448 : 243 - 251.

Sels J., Mathys J., De Coninck B., Cammue B., De Bolle M.F.C. 2008. Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol. Biochem. 46 : 941-950.

Shaikhali J., Noren L., de Dios Barajas-Lopez J., Sri- vastava V., Kцnig J., Sauer U.H., Wingsle G., Dietz K.J., Stand A. 2012. Redox-mediated mechanisms regulate DNA binding activity of the F-group of basic region leucine zipper (bZIP) transcription factors in Arabidopsis. J. Biol. Chem. 287 : 2751027525.

Sharma A., Shahzad B., Rehman A., Bhardwaj R., Lan- di M., Zheng B. 2019. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules. 24(13) : 2452.

Shigenaga A.M., Berens M.L., Tsuda K., Argueso C.T. 2017. Towards engineering of hormonal crosstalk in plant immunity. Curr.Opin. Plant Biol. 38 : 164-172.

Snyman M., Cronje M.J. 2008. Modulation of heat shock factors accompanies salicylic acid-mediated potentiation of Hsp70 in tomato seedlings. J. Exp. Bot. 59 (8) : 2125-2132.

Suzuki N., Katano K. 2018. Coordination between ROS regulatory systems and other pathways under heat stress and pathogen attack. Front. Plant Sci. 9 : 490.

Suzuki N., Miller G., Salazar C.,Mondal H.A., Shu- laev E., Cortes D.F.,Shuman J.L., Luo X., Shah J., Schlauch K., Shulaev V., Mittler R. 2013.Temporal- spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants. Plant Cell. 25 : 3553-3569.

Tian S.P., Yao H.J., Deng X., Xu X.B., Qin G.Z., Chan Z.L. 2007. Characterization and expression of beta-1,3-glucanase genes in jujube fruit induced by the microbial biocontrol agent Cryptococcus lau- rentii. Phytopathol. 97(3) : 260-8.

Tsai W.A., Weng S.H., Chen M.C., Lin J.S., Tsai W.S. 2019. Priming of Plant Resistance to Heat Stress and Tomato Yellow Leaf Curl Thailand Virus With Plant-Derived Materials. Front. Plant Sci. 10 : 906.

Tьrken H., Schweer J., Link G. 2012. Phylogenetic and functional features of the plastid transcription kinase cpCK2 from Arabidopsis signify a role of cysteinyl SH-groups in regulatory phosphorylation of plastid sigma factors. FEBS J. 279 : 395-409.

Van Loon L.C., Rep M., Pieterse C.M.J. 2006. Significance of Inducible Defense-related Proteins in Infected Plants. Ann. Rev. Phytopathol. 44 : 135-162.

Van Loon L.C., van Kammen A. 1970. Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. ``Samsun'' and ``Samsun NN''. II. Changes in protein constitution after infection with tobacco mosaic virus. Virology. 40 : 199211.

Van Loon L.C. 1999. Occurrence and properties of plant pathogenesis-related proteins. In: Pathogenesis-related proteins in plants, pp. 1-19.

Wang C., Fan Y. 2014. Eugenol enhances the resistance of tomato against tomato yellow leaf curl virus. J. Sci. Food Agric. 94 (4) : 677-682.

Wang J., Hu H., Wang W., Wei Q., Hu T., Bao C. 2020. Genome-wide identification and functional characterization of the heat shock factor family in eggplant (Solanum melongena L.) under abiotic stress conditions. Plants. 9 (7) : 915.

Wang J., Yuan B., Huang B. 2019. Differential heat- induced changes in phenolic acids associated with genotypic variations in heat tolerance for hard fescue. Crop Sci. 59 : 667-674.

Wang L.J., Fan L., Loescher W., Duan W., Liu G.J., Cheng J.S., Luo H.B., Li S.H. 2010. Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant. Biol. 10 : 34.

Wiese J., Kranz T., Schubert S. 2004. Induction of pathogen resistance in barley by abiotic stress. Plant Biol. 6 : 529-536.

Win J., Chaparro-Garcia A., Belhaj K., Saunders D.G., Yoshida K., Dong S., Schornack S., Zipfel C., Robatzek S., Hogenhout S.A., Kamoun S. 2012. Effector biology of plant-associated organisms: concepts and perspectives. Cold Spring Harb. Symp. Quant. Biol. 77 : 235-247.

Wu X., Wang J., Wu X., Hong Y., Li Q.Q. 2020. Heat shock responsive gene expression modulated by mRNA Poly(A) Tail Length. Front. Plant Sci. 11 : 1255.

Yi S.Y., Min S.R., Kwon S.Y. 2015. NPR1 is instrumental in priming for the enhanced flg22-induced MPK3 and MPK6 activation. Plant Pathol. J. 31 (2) : 192-194.

Zhao L.N., Liu Z.H., Duan S.N., Zhang Y.Y., Li G.L., Guo X.L. 2018. Cloning and characterization of heat shock transcription factor gene TaHsfB2d and its regulating role in thermotolerance. Acta. Agron. Sin. 44 : 53-62.

Размещено на Allbest.ru


Подобные документы

  • Изменения в содержании нуклеиновых кислот при гипотермии. Гены дегидринов и гены, индуцируемые экзогенной абсцизовой кислотой, семейства генов Wcs 120, Y-бокс белков. Данные об отдельных индуцируемых низкой температурой генах у различных видов растений.

    курсовая работа [44,8 K], добавлен 11.08.2009

  • Основные требования к влаге и особенности глубины посева ярового ячменя. Характеристика температуры, безопасной для посадки ячменя, сроки посева. Узкорядный способ как наиболее подходящий для посева ярового ячменя. Оптимальная глубина посева ячменя.

    презентация [5,3 M], добавлен 16.05.2012

  • Ячмень как древнейшая культура, наиболее распространенная на Земле, его применение в народном хозяйстве. Строение побега ячменя гривастого – эволюционно и генетически близкого дикорастущего родича ячменя культурного. Характеристика диких видов злаков.

    реферат [1,0 M], добавлен 07.02.2015

  • Регуляция экспрессии у генетически модифицированных растений. Исследование функционирования промоторов бактериального и вирусного происхождения в трансгенных растениях. Регуляторные последовательности, используемые в генетической инженерии растений.

    курсовая работа [39,4 K], добавлен 03.11.2016

  • Понятие о мембране клетки, ее строение и функция. Строение хлоропластов и митохондрий. Типы листьев по форме листовой пластинки, края и основания. Ветвление и кущение побегов. Строение сложных и простых соцветий, цветков ячменя, ржи, пшеницы, кукурузы.

    контрольная работа [24,2 K], добавлен 27.11.2011

  • Особенности транскрипции генов оперонов на примере пластома ячменя. Структурно-термодинамические исследования генов. Поиск, картирование элементов геномных последовательностей. Анализ гена растительных изопероксидаз. Характеристика модифицированных генов.

    реферат [23,2 K], добавлен 12.04.2010

  • Нуклеиновые кислоты, их структура, функциональные группы. Осмотическое давление различных клеток и тканей растения. Роль пигментов в жизни растений. Биосинтез углеводов, ферменты углеводного обмена. Роль аденозинтрифосфорной кислоты в обмене веществ.

    контрольная работа [843,8 K], добавлен 12.07.2010

  • Физиологическая роль основных клеточных органоидов. Макроэргические соединения, их роль в метаболизме клетки. Условия, необходимые растению для нормального водообмена. Источники углерода для растений. Лист как орган фотосинтеза. Роль ферментов оксидазы.

    контрольная работа [179,1 K], добавлен 12.07.2010

  • Природа и функции белков, синтез которых стимулируется гипотермией. Влияние генов, локализованных в определенных хромосомах ядра, на активность митохондрий при гипотермии. Белки, препятствующие льдообразованию, их использование в сельском хозяйстве.

    реферат [18,7 K], добавлен 11.08.2009

  • Химический состав, природа и структура белков. Механизм действия ферментов, виды их активирования и ингибирования. Современная классификация и номенклатура ферментов и витаминов. Механизм биологического окисления, главная цепь дыхательных ферментов.

    шпаргалка [893,3 K], добавлен 20.06.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.