Концепции современного естествознания
Методология научного исследования. Инерциональные системы отсчета. Эмпирический и теоретический виды научного познания. Этапы происхождения Вселенной. Принцип возрастания энтропии. Формирование квантов энергии. Принципы относительности и инвариантности.
Рубрика | Биология и естествознание |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 05.01.2017 |
Размер файла | 65,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Итак, в результате Большого взрыва 13-20 млрд. лет назад начал действовать уникальный ускоритель частиц, в ходе работы которого непрерывно и стремительно сменяли друг друга процессы рождения и гибели (аннигиляции) разнообразных частиц.
Большой Взрыв.
Предыдущая вселенная перед взрывом состояла из небольшого количества почти полностью выгоревших галактик. Основным элементом в этих галактиках было железо. Вселенную освещали только жёлтые и красные звёзды, но горели они значительно ярче, чем сейчас. Если во вселенной и существовала жизнь, то она была сосредоточена вокруг этих звёзд и была обречена на гибель. В центре вселенной находилась "ЧЁРНАЯ ДЫРА", в которую и падали все эти галактики. А в центре "ЧЁРНОЙ ДЫРЫ" находилась гигантская звезда, размерами превосходящая самую большую галактику. Эта звезда под действием гравитации сжималась, и сначала кванты энергии начали входить друг в друга, образуя единый квант энергии, имеющий положительный заряд. При дальнейшем сжатии начался мгновенный переход вакуума в энергию. Как только давление достигло критического уровня, весь вакуум внутри первичного тела мгновенно превратился в энергию. Все поля являются энергиями, а энергии возникают в результате взаимодействия двух объектов, имеющих разный энергетический уровень. Если одного из составляющих нет, то и создание энергии, а значит и полей, невозможно. Вакуум, игравший роль объекта, имеющего низкий энергетический уровень, превратился в энергию, и кванту стало не с чем взаимодействовать, для создания полей. Гравитационное поле мгновенно уменьшилось, и звезда вышла из коллапса. Сжатие ядра гигантской звезды уменьшилось, и она сбросила наружную оболочку. Произошел эффект сжатой пружины, которая, при уменьшении сжатия, распрямляется. Кванты подобной энергетической плотности в природе существовать не могут. Для уменьшения своей энергетической плотности он должен был увеличить длину волны, а, значит, увеличиваться в объёме. При взаимодействии протокванта и внешнего вакуума, образовалось гигантское электрическое поле. Именно из этого электрического поля и вакуума и стали образовываться протоны. Энергию электрического поля поддерживал протоквант, теряя энергию на его поддержание. Этот суперфотон увеличивался в объёме со скоростью света, и протоны оказывались внутри этого кванта, так как двигаться со "скоростью света" протоны не могли. Это запрещено теорией относительности. Любая элементарная частица состоит из кванта энергии и вакуума. Плотность вакуума внутри элементарной частицы значительно выше, чем в окружающем пространстве. Количество вакуума в природе ограничено, а так как на создания вещества тратилось большое количество вакуума, это привело к резкому уменьшению вселенной. Вселенная стала сжиматься.
Сжатие вселенной происходило так быстро, что вещество внешней оболочки звезды, оказалось перемешанным с вновь созданным веществом. Каждая новая вселенная наследует часть вещества от старой вселенной. Когда энергия протокванта была израсходована на создание протонов, нечем стало поддерживать энергию электрического поля, и электрическое поле должно было начать уменьшаться. Электрическое поле стремится любой ценой сохранить свой потенциал, даже ценой изменения своего заряда на противоположный. На спаде потенциала, из энергии поля, стали создаваться электроны. Когда энергетическая плотность поля, стала не достаточна для создания электронов, оно разбилось на фотоны, и по периметру взрыва образовалась гигантская вспышка, состоящая из фотонов. Фотоны, продолжая двигаться в том же направлении, прошли через второй центр, (наша вселенная относится к двухцентровым объектам) и толкнули внешние электроны в центр вселенной. Из центра вселенной двигались протоны и некоторое количество вещества от предыдущей вселенной, а навстречу им электроны, получившие момент импульса от фотонов, и образовалось два встречных потока. Образовались гигантские вихри аналогичные земным циклонам.
Циклоны не просто внешне напоминают спиральные галактики, у них и природа одинаковая. В центре такого вихря высокая плотность вещества, а вот момент импульса равен нулю. На периферии наоборот плотность вещества низкая, а момент импульса большой. В результате взаимодействия электронного и протонного потока образовалось большое количество спиральных галактик. Поскольку в центре галактики вещество не имело момента импульса, то протоны сразу же собрались в гигантские звёзды, и сразу начались термоядерные реакции. Большой Взрыв был не таким эффектным, как считают физики, но очень эффективным. Большая часть энергии превратилась в вещество. Фактически взрыва, как такового, и не было. Было превращение энергии в вещество по всему объёму вселенной. Доказательством этого является то, что наша вселенная однородна и изотропна. Это означает, что в любой сфере, с диаметром ~ равным 300 световых лет, количество галактик приблизительно равно. Однородность и изотропность вселенной, принято называть Космологическим Принципом. При взрыве, который предложен физиками, такого эффекта быть не может. Это возможно только в случае, когда вещество равномерно возникло во всём объёме вселенной.
При термоядерной реакции выделяется не только энергия, но и вакуум. Чем активнее происходили термоядерные процессы в галактике, тем больше выбрасывалось вакуума, и тем быстрее она удалялась от остальных галактик. Вселенная начала расширяться. Вселенная расширялась не за счёт энергии первичного взрыва, а благодаря термоядерным реакциям звёзд. Вакуум, освободившийся после термоядерных реакций, постепенно покидает пределы метагалактики, но пока термоядерная активность звёзд велика, и количество вакуума, излучаемое звёздами больше, чем покидающее метагалактику, она будет расширяться.
Как только термоядерная активность галактик уменьшится, вселенная продолжит увеличиваться, а вот метагалактика начнёт уменьшаться. Галактики начнут движение к общему центру, цикл замкнётся, и всё повторится сначала.
Вселенная постоянно расширяется; тот момент, с которого Вселенная начала расширятся, принято считать ее началом. Его называют “Большим Взрывом” или английским термином Big Bang.
Под расширением Вселенной подразумевается такой процесс, когда то же самое количество элементарных частиц и фотонов занимают постоянно возрастающий объём.
Средняя плотность Вселенной в результате расширения постепенно понижается. Из этого следует, что в прошлом плотность Вселенной была больше, чем в настоящее время. Можно предположить, что в глубокой древности (примерно десять миллиардов лет назад) плотность Вселенной была очень большой.
Кроме того высокой должна была быть и температура, настолько высокой, что плотность излучения превышала плотность вещества. Иначе говоря, энергия всех фотонов содержащихся в 1 куб. см была больше суммы общей энергии частиц, содержащихся в 1 куб. см. На самом раннем этапе, в первые мгновения “Большого Взрыва” вся материя была сильно раскаленной и густой смесью частиц, античастиц и высокоэнергичных гамма-фотонов. Частицы при столкновении с соответствующими античастицами аннигилировали, но возникающие гамма-фотоны моментально материализовались в частицы и античастицы.
Эволюция вещества
Температура раскаленной плотной материи на начальном этапе Вселенной со временем понижалась, что и отражается в соотношении. Это значит, что понижалась средняя кинетическая энергия частиц, соответственно понижалась и энергия фотонов.
На начальном этапе расширения Вселенной из фотонов рождались частицы и античастицы. Этот процесс постоянно ослабевал, что привело к вымиранию частиц и античастиц.
Эволюцию Вселенной принято разделять на четыре эры: адронную, лептонную, фотонную и звездную.
Адронная эра.
Длилась примерно от t=10-6с до t=10-4с. Плотность порядка 1017 кг/м3 при T=1012…1013К.
При очень высоких температурах и плотности в самом начале существования Вселенной материя состояла из элементарных частиц. Вещество на самом раннем этапе состояло, прежде всего, из адронов, и поэтому ранняя эра эволюции Вселенной называется адронной, несмотря на то, что в то время существовали и лептоны.
Через миллионную долю секунды с момента рождения Вселенной, средняя температура упала на 10 биллионов Кельвинов.
В первую миллионную долю секунды эволюции Вселенной происходила материализация всех барионов неограниченно, так же, как и аннигиляция. Но, по прошествии этого времени, материализация барионов прекратилась, так как фотоны не обладали уже достаточной энергией для ее осуществления. Процесс аннигиляции барионов и антибарионов продолжался до тех пор, пока давление излучения не отделило вещество от антивещества. Нестабильные гипероны (самые тяжелые из барионов) в процессе самопроизвольного распада превратились в самые легкие из барионов (протоны и нейтроны). Так во вселенной исчезла самая большая группа барионов - гипероны. Нейтроны могли дальше распадаться в протоны, которые далее не распадались, иначе бы нарушился закон сохранения барионного заряда.
К моменту, когда возраст Вселенной достиг одной десятитысячной секунды, а энергия частиц 10 фотонов представляла лишь 100 Мэв, температура ее понизилась до 10К. Ее не хватало уже для возникновения самых легких адронов - пионов. Пионы, существовавшие ранее, распадались, а новые не могли возникнуть. Это означает, что к тому моменту, когда в ней исчезли все мезонывозраст Вселенной достиг 10-4 с.
На этом и кончается адронная эра, потому что пионы являются не только самыми легкими мезонами, но и легчайшими адронами. Никогда после этого сильное взаимодействие (ядерная сила) не проявлялась во Вселенной в такой мере, как в адронную эру, длившуюся всего лишь одну десятитысячную долю секунды.
Лептонная эра.
Длилась примерно от t=10-4с до t=101с. К концу эры плотность порядка 107 кг/м3 при T=109К.
Когда энергия частиц и фотонов понизилась в пределах от 100 Мэв до 1 Мэв, в веществе было много лептонов. Температура была достаточно высокой, чтобы обеспечить интенсивное возникновение электронов, позитронов и нейтрино. Барионы (протоны и нейтроны), пережившие адронную эру, стали по сравнению с лептонами и фотонами встречаться гораздо реже.
Лептонная эра начинается с распада последних адронов - пионов - в мюоны и мюонное нейтрино, а кончается через несколько секунд при температуре 10K, когда энергия фотонов уменьшилась до 1 Мэв и материализация электронов и позитронов прекратилась. Во время этого этапа начинается независимое существование электронного и мюонного нейтрино, которые мы называем “реликтовыми”.
Всё пространство Вселенной наполнилось огромным количеством реликтовых электронных и мюонных нейтрино. Возникает нейтринное море.
Фотонная эра или эра излучения.
Длилась примерно от t=10-6с до t=10-4с. Плотность порядка 1017 кг/м3 при T=1012…1013К.
На смену лептонной эры пришла эра излучения, как только температура Вселенной понизилась до 10 K , а энергия гамма фотонов достигла 1 Мэв, произошла только аннигиляция электронов и позитронов. Новые электронно-позитронные пары не могли возникать вследствие материализации, потому, что фотоны не обладали достаточной энергией. Но аннигиляция электронов и позитронов продолжалась дальше, пока давление излучения полностью не отделило вещество от антивещества.
Со времени адронной и лептонной эры Вселенная была заполнена фотонами. К концу лептонной эры фотонов было в два миллиарда раз больше, чем протонов и электронов. Важнейшей составной Вселенной после лептонной эры становятся фотоны, причем не только по количеству, но и по энергии.
Для того чтобы можно было сравнивать роль частиц и фотонов во Вселенной, была введена величина плотности энергии. Это количество энергии в 1 куб.см, точнее, среднее количество (исходя из предпосылки, что вещество во Вселенной распределено равномерно). Если сложить вместе всех фотонов, присутствующих в 1 куб.см, то мы получимэнергию h плотность энергии излучения Er. Сумма энергии покоя всех частиц в 1 куб.см является средней энергией вещества Em во Вселенной.
Вследствие расширения Вселенной понижалась плотность энергии фотонов и частиц. С увеличением расстояния во Вселенной в два раза, объём увеличился в восемь раз. Иными словами, плотность частиц и фотонов понизилась в восемь раз. Но фотоны в процессе расширения ведут себя иначе, чем частицы. В то время как энергия покоя во время расширения Вселенной не меняется, энергия фотонов при расширении уменьшается. Фотоны понижают свою частоту колебания, словно “устают” со временем. Вследствие этого плотность энергии фотонов (Er) падает быстрее, чем плотность энергии частиц (Em).
Преобладание во вселенной фотонной составной над составной частиц (имеется в виду плотность энергии) на протяжении эры излучения уменьшалось до тех пор, пока не исчезло полностью. К этому моменту обе составные пришли в равновесие (то есть Er = Em). Кончается эра излучения и вместе с этим период “Большого Взрыва”. Так выглядела Вселенная в возрасте примерно 300 000 лет. Расстояния в тот период были в тысячу раз короче, чем в настоящее время.
“Большой взрыв” продолжался сравнительно недолго, всего лишь одну тридцатитысячную нынешнего возраста Вселенной. Несмотря на краткость срока, это всё же была самая славная эра Вселенной. Никогда после этого эволюция Вселенной не была столь стремительна, как в самом её начале, во время “большого взрыва”. Все события во Вселенной в тот период касались свободных элементарных частиц, их превращений, рождения, распада, аннигиляции.
Не следует забывать, что в столь короткое время (всего лишь несколько секунд) из богатого разнообразия видов элементарных частиц исчезли почти все: одни путем аннигиляции (превращение в гамма-фотоны), иные путем распада на самые легкие барионы (протоны) и на самые легкие заряженные лептоны (электроны).
Звездная эра.
После “Большого Взрыва” наступила продолжительная эра вещества, эпоха преобладания частиц. Мы называем её звездной эрой. Она продолжается со времени завершения “Большого Взрыва” (приблизительно 300 000 лет) до наших дней. По сравнению с периодом “Большого Взрыва” её развитие представляется как будто слишком замедленным. Это происходит по причине низкой плотности и температуры.
Таким образом, эволюцию Вселенной можно сравнить с фейерверком, который окончился. Остались горящие искры, пепел и дым. Мы стоим на остывшем пепле, вглядываемся в стареющие звезды и вспоминаем красоту и блеск Вселенной. Взрыв суперновой или гигантский взрыв галактики - ничтожные явления в сравнении с большим взрывом.
По современным представлениям, наблюдаемая нами сейчас Вселенная возникла около 15 миллиардов лет назад из некоторого начального "сингулярного" состояния с бесконечно большими температурой и плотностью и с тех пор непрерывно расширяется и охлаждается.
Список используемой литературы
1. Горелов А.А. Концепции современного естествознания. Москва, Центр,
1998.
2. Самыгин С.И. Концепции современного естествознания. Ростов-на-
Дону, Феникс, 2003.
3. Новиков А.М., Новиков Д.А. Методология. Москва, СИНТЕГ, 2007.
4. Электронный ресурс bibliofond.ru
5. Электронный ресурс biofile.ru
6. Электронный ресурс ru.wikipedia.org
Размещено на Allbest.ru
Подобные документы
Эмпирический и теоретический уровни и структура научного познания. Анализ роли эксперимента и рационализма в истории науки. Современное понимание единства практической и теоретической деятельности в постижении концепции современного естествознания.
контрольная работа [18,7 K], добавлен 16.12.2010Сущность процесса естественнонаучного познания. Особые формы (стороны) научного познания: эмпирическая, теоретическая и производственно–техническая. Роль научного эксперимента и математического аппарата исследования в системе современного естествознания.
доклад [21,7 K], добавлен 11.02.2011Специфика и уровни научного познания. Творческая деятельность и развитие человека, взаимосвязь и взаимовлияние. Подходы к научному познанию: эмпирический и теоретический. Формы данного процесса и их значение, исследование: теория, проблема и гипотеза.
реферат [38,3 K], добавлен 09.11.2014Естествознание как отрасль науки. Структура, эмпирический и теоретический уровни и цель естественнонаучного познания. Философия науки и динамика научного познания в концепциях К. Поппера, Т. Куна и И. Лакатоса. Этапы развития научной рациональности.
реферат [32,7 K], добавлен 07.01.2010- Естественно-научное познание: структура и динамика. Основы методологии естественно-научного познания
Методология естествознания как система познавательной деятельности человека. Основные методы научного изучения. Общенаучные подходы как методологические принципы познания целостных объектов. Современные тенденции развития естественно-научного изучения.
реферат [46,8 K], добавлен 05.06.2008 Естествознание как особая форма знания, предмет методы ее изучения, история становления и развития в человеческой культуре. Принцип относительности, соотношение пространства и времени. Принципы возрастания энергии. Место химии в современной цивилизации.
методичка [35,6 K], добавлен 16.01.2010Наука как часть культуры, ее критерии и структура. Методы и подходы научного познания. Сущность современных концепций физики, химии и космологии. Земля как предмет естествознания. Теории происхождения жизни, эволюции органического мира. Феномен человека.
учебное пособие [3,2 M], добавлен 21.09.2010Исторические этапы познания природы, логика и закономерности развития науки. Понятие научной картины мира и теория относительности. Антропный принцип космологии и Учение Вернадского о ноосфере. Современные концепции экологии, задачи и принципы биоэтики.
шпаргалка [64,8 K], добавлен 29.01.2010Классификация методов научного познания. Картина мира мыслителей древности, гелиоцентрическая, механистическая, электромагнитная. Понятие о симметрии, взаимодействии и энтропии. Основные теории возникновения жизни и ее эволюции. Происхождение Вселенной.
шпаргалка [83,2 K], добавлен 19.01.2011Сущность донаучного, вненаучного (обыденного) и научного познания. Представления о материи, суть эффекта замедления времени в теории относительности. Формулировки второго начала термодинамики, понятие "химическая связь", этапы и проблемы антропогенеза.
контрольная работа [54,5 K], добавлен 05.02.2010