Общая гистология
Методы исследования в современной гистологии, цитологии и эмбриологии. Структура и химический состав клеточного ядра. Железистый эпителий: механизмы секреции, секреторный цикл. Факторы регуляции метаболизма тканей, прямой и непрямой остеогистогенез.
Рубрика | Биология и естествознание |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 26.02.2016 |
Размер файла | 3,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Переходный эпителий
Этот вид многослойного эпителия типичен для мочеотводящих органов -- лоханок почек, мочеточников, мочевого пузыря, стенки которых подвержены значительному растяжению при заполнении мочой. В нем различают несколько слоев клеток -- базальный, промежуточный, поверхностный.
Базальный слой образован мелкими почти округлыми (темными) камбиальными клетками. В промежуточном слое располагаются клетки полигональной формы. Поверхностный слой состоит из очень крупных, нередко дву- и трехъядерных клеток, имеющих куполообразную или уплощенную форму в зависимости от состояния стенки органа. При растяжении стенки вследствие заполнения органа мочой эпителий становится более тонким и его поверхностные клетки уплощаются. Во время сокращения стенки органа толщина эпителиального пласта резко возрастает. При этом некоторые клетки в промежуточном слое какбы «выдавливаются» кверху и принимают грушевидную форму, а расположенные над ними поверхностные клетки -- куполообразную форму. Между поверхностными клетками обнаружены плотные контакты, имеющие значение для предотвращения проникновения жидкости через стенку органа (например, мочевого пузыря).
Регенерация покровных эпителиев
Покровный эпителий, занимая пограничное положение, постоянно испытывает влияние внешней среды, поэтому эпителиальные клетки сравнительно быстро изнашиваются и погибают. Источником их восстановления являются стволовые клетки эпителия. Они сохраняют способность к делению в течение всей жизни организма. Размножаясь, часть вновь образованных клеток вступает в дифференцировку и превращается в эпителиоциты, подобные утраченным. Стволовые клетки в многослойных эпителиях находятся в базальном слое, в многорядных эпителиях к ним относятся базальные клетки, в однослойных эпителиях они располагаются в определенных участках: например, в тонкой кишке -- в эпителии крипт, в желудке -- в эпителии ямок, и шеек собственных желез. Высокая способность эпителия к физиологической регенерации служит основой для быстрого восстановления его в патологических условиях.
С возрастом в покровном эпителии наблюдается ослабление процессов обновления.
Эпителий хорошо иннервирован. В нем имеются многочисленные чувствительные нервные окончания -- рецепторы.
Характеристика железистого эпителия, механизмы секреции и секреторный цикл, характеристика желёз
Для железистых эпителиев характерна выраженная секреторная функция. Железистый эпителий состоит из железистых, или секреторных, клеток -- гландулоцитов. Они осуществляют синтез и выделение специфических продуктов -- секретов на поверхность: кожи, слизистых оболочек и в полости ряда внутренних органов [это внешняя (экзокринная) секреция] или же в кровь и лимфу [это внутренняя (эндокринная) секреция]. Путем секреции в организме выполняются многие важные функции: образование молока, слюны, желудочного и кишечного сока, жёлчи.
Большинство гландулоцитов отличаются наличием секреторных включений в цитоплазме, развитыми эндоплазматической сетью и аппаратом Гольджи, а также полярным расположением органелл и секреторных гранул.
Гландулоциты лежат на базальной мембране. Форма их весьма разнообразна и меняется в зависимости от фазы секреции. В цитоплазме гландулоцитов, которые вырабатывают секреты белкового характера (например, пищеварительные ферменты), хорошо развита гранулярная эндоплазматическая сеть. В клетках, синтезирующих небелковые секреты (липиды, стероиды), выражена агранулярная эндоплазматическая сеть. Многочисленные митохондрии накапливаются в местах наибольшей активности клеток, т.е. там, где образуется секрет. Число секреторных гранул в цитоплазме клеток колеблется в связи с фазами секреторного процесса.
Цитолемма имеет различное строение на боковых, базальных и апикальных поверхностях клеток. На боковых поверхностях она образует десмосомы и плотные запирающие контакты. Последние окружают верхушечные (апикальные) части клеток, отделяя, таким образом, межклеточные щели от просвета железы. На базальных поверхностях клеток цитолемма образует небольшое число узких складок, проникающих в цитоплазму. Такие складки особенно хорошо развиты в клетках желез, выделяющих секрет, богатый солями, например в протоковых клетках слюнных желез. Апикальная поверхность клеток покрыта микроворсинками.
Периодические изменения железистой клетки, связанные с образованием, накоплением, выделением секрета и восстановлением ее для дальнейшей секреции, получили название секреторного цикла: поступление веществ -- синтез и накопление секрета -- выведение секрета.
Для образования секрета из крови и лимфы в железистые клетки со стороны базальной поверхности поступают различные неорганические соединения, вода и низкомолекулярные органические вещества: аминокислоты, моносахариды, жирные кислоты. Иногда путем пиноцитоза в клетку проникают более крупные молекулы органических веществ, например белки. Из этих продуктов в эндоплазматической сети синтезируются секреты. Они по эндоплазматической сети перемещаются в зону аппарата Гольджи, где постепенно накапливаются, подвергаются химической перестройке и оформляются в виде гранул, которые выделяются из гландулоцитов. Важная роль в перемещении секреторных продуктов в гландулоцитах и их выделении принадлежит элементам цитоскелета -- микротрубочкам и микрофиламентам.
Однако разделение секреторного цикла на фазы по существу условно, так как они накладываются друг на друга. Так, синтез секрета и его выделение протекают практически непрерывно, но интенсивность выделения секрета может то усиливаться, то ослабевать. При этом выделение секрета (экструзия) может быть различным: в виде гранул или путем диффузии без оформления в гранулы, либо путем превращения всей цитоплазмы в массу секрета. Например, после принятия пищи в поджелудочной железе происходит быстрое выбрасывание из железистых клеток всех секреторных гранул, и затем в течение 2 ч и более секрет синтезируется в клетках без оформления в гранулы и выделяется диффузным путем.
Механизм выделения секрета в различных железах неодинаковый, в связи с чем различают три типа секреции:
· мерокриновый (или эккриновый),
· апокриновый и
· голокриновый.
При мерокриновом типе секреции железистые клетки полностью сохраняют свою структуру (например, клетки слюнных желез). При апокриновом типе секреции происходит частичное разрушение железистых клеток (например, клеток молочных желез), т.е. вместе с секреторными продуктами отделяются либо апикальная часть цитоплазмы железистых клеток, либо верхушки микроворсинок. Третий, голокриновый тип секреции сопровождается накоплением секрета в цитоплазме и полным разрушением железистых клеток (например, клеток сальных желез кожи).
Восстановление структуры железистых клеток происходит либо путем внутриклеточной регенерации (при меро- и апокриновой секреции), либо с помощью клеточной регенерации, т.е. деления и дифференцировки камбиальных клеток (при голокриновой секреции).
Регуляция секреции идет через нервные и гуморальные механизмы: первые действуют через высвобождение клеточного кальция, а вторые -- преимущественно путем накопления цАМФ (циклического аденозин-монофосфата). При этом в железистых клетках активизируются ферментные системы и метаболизм, сборка микротрубочек и сокращение микрофиламентов, участвующих во внутриклеточном транспорте и выведении секрета.
Железы
Железистая эпителиальная ткань формирует железы -- органы, состоящие из секреторных клеток, вырабатывающих и выделяющих специфические вещества различной химической природы. Вырабатываемые железами секреты имеют важное значение для процессов пищеварения, роста, развития, взаимодействия с внешней средой и других. Многие железы -- самостоятельные, анатомически оформленные органы (например, поджелудочная железа, крупные слюнные железы, щитовидная железа), некоторые являются лишь частью органов (например, железы желудка).
Железы подразделяются на две группы:
· железы внутренней секреции, или эндокринные, и
· железы внешней секреции, или экзокринные.
И те и другие железы могут быть одноклеточными и многоклеточными.
Эндокринные железы вырабатывают высокоактивные вещества -- гормоны, поступающие непосредственно в кровь или лимфу. Поэтому они состоят только из железистых клеток и не имеют выводных протоков. Все они входят в состав эндокринной системы организма, которая вместе с нервной системой выполняет регулирующую функцию.
Экзокринные железы вырабатывают секреты, выделяющиеся во внешнюю среду, т.е. на поверхность кожи или в полости органов, выстланные эпителием. Многоклеточные экзокринные железы состоят из двух частей: секреторных, или концевых, отделов и выводных протоков. Концевые отделы образованы гландулоцитами, лежащими на базальной мембране. Выводные протоки выстланы различными видами эпителиев в зависимости от происхождения желёз.
По строению концевых отделов различают железы: разветвленные и неразветвленные, а также трубчатые, альвеолярные или смешанные.
По строению выводных протоков различают железы: простые и сложные. Простые железы имеют неветвящийся выводной проток, сложные железы -- ветвящийся.
В выводной проток железы открываются - в неразветвленных железах по одному, а в разветвленных железах по нескольку концевых отделов.
В некоторых железах, производных эктодермального (многослойного) эпителия, например в слюнных, помимо секреторных клеток, встречаются эпителиальные клетки, обладающие способностью сокращаться, -- это миоэпителиальные клетки. Эти клетки охватывают своими отростками концевые отделы железы. В их цитоплазме присутствуют сократительные белки. Миоэпителиальные клетки при сокращении сдавливают концевые отделы и, следовательно, облегчают выделение из них секрета.
Химический состав секрета может быть различным, в связи с этим экзокринные железы подразделяются на несколько типов:
· белковые (или серозные),
· слизистые,
· белково-слизистые (или смешанные),
· сальные,
· солевые (например: потовые и слезные).
Регенерация желёз
В железах в связи с их секреторной деятельностью постоянно происходят процессы физиологической регенерации. В мерокриновых и апокриновых железах, в которых находятся долгоживущие клетки, восстановление исходного состояния гландулоцитов после выделения из них секрета происходит путем внутриклеточной регенерации, а иногда путем размножения. В голокриновых железах восстановление осуществляется за счет размножения камбиальных, или стволовых, клеток. Вновь образовавшиеся из них клетки затем путем дифференцировки превращаются в железистые клетки (это клеточная регенерация).
В пожилом возрасте изменения в железах могут проявляться снижением секреторной активности железистых клеток и изменением состава вырабатываемых секретов, а также ослаблением процессов регенерации и разрастанием соединительной ткани.
Общая характеристика крови, плазма крови, строение эритроцита
К обобщенной системе крови относят:
· собственно кровь и лимфу;
· органы кроветворения -- красный костный мозг, тимус, селезенку, лимфатические узлы;
· лимфоидную ткань некроветворных органов.
Элементы системы крови имеют общие структурно-функциональные особенности, все происходят из мезенхимы, подчиняются общим законам нейрогуморальной регуляции, объединены тесным взаимодействием всех звеньев. Постоянный состав периферической крови поддерживается сбалансированными процессами новообразования и разрушения клеток крови. Поэтому понимание вопросов развития, строения и функции отдельных элементов системы возможно лишь с позиций изучения закономерностей, характеризующих всю систему в целом.
Кровь и лимфа вместе с соединительной тканью образуют т.н. внутреннюю среду организма. Они состоят из плазмы (жидкого межклеточного вещества) и взвешенных в ней форменных элементов. Эти ткани тесно взаимосвязаны, в них происходит постоянный обмен форменными элементами, а также веществами, находящимися в плазме. Лимфоциты рециркулируют из крови в лимфу и из лимфы в кровь. Все клетки крови развиваются из общей полипотентной стволовой клетки крови (СКК) в эмбриогенезе и после рождения.
Кровь
Кровь является циркулирующей по кровеносным сосудам жидкой тканью, состоящей из двух основных компонентов, -- плазмы и форменных элементов. Кровь в организме человека составляет, в среднем, около 5 л. Различают кровь, циркулирующую в сосудах, и кровь, депонированную в печени, селезенке, коже.
Плазма составляет 55--60% объема крови, форменные элементы - 40--45%. Отношение объема форменных элементов ко всему объему крови называется гематокритным числом, или гематокритным показателем, - и составляет в норме 0,40 - 0,45. Термин гематокрит используют для названия прибора (капилляра) для измерения гематокритного показателя.
Основные функции крови
· дыхательная функция (перенос кислорода из легких во все органы и углекислоты из органов в легкие);
· трофическая функция (доставка органам питательных веществ);
· защитная функция (обеспечение гуморального и клеточного иммунитета, свертывание крови при травмах);
· выделительная функция (удаление и транспортировка в почки продуктов обмена веществ);
· гомеостатическая функция (поддержание постоянства внутренней среды организма, в том числе иммунного гомеостаза).
Через кровь (и лимфу) транспортируются также гормоны и другие биологически активные вещества. Все это определяет важнейшую роль крови в организме. Анализ крови в клинической практике является одним из основных в постановке диагноза.
Плазма крови
Плазма крови представляет собой жидкое (точнее, коллоидное) межклеточное вещество. Она содержит 90% воды, около 6,6 -- 8,5% белков и другие органические и минеральные соединения - промежуточные или конечные продукты обмена веществ, переносимые из одних органов в другие.
К основным белкам плазмы крови относятся альбумины, глобулины и фибриноген.
Альбумины составляют более половины всех белков плазмы, синтезируются в печени. Они обусловливают коллоидно-осмотическое давление крови, выполняют роль транспортных белков для многих веществ, включая гормоны, жирные кислоты, а также токсины и лекарства.
Глобулины - неоднородная группа белков, в которой выделяют альфа- бета- и гамма- фракции. К последней относятся иммунноглобулины, или антитела, - важные элементы иммунной (т.е. защитной) системы организма.
Фибриноген - растворимая форма фибрина, - фибриллярного белка плазмы крови, образующего волокна при повышении свертываемости крови (например, при образовании тромба). Синтезируется фибриноген в печени. Плазма крови, из которой удален фибриноген, называется сывороткой.
Форменные элементы крови
К форменным элементам крови относятся: эритроциты (или красные кровяные тельца), лейкоциты (или белые кровяные тельца), и тромбоциты (или кровяные пластинки). Эритроцитов у человека около 5 x 1012 в 1 литре крови, лейкоцитов - около 6 x 109 (т.е. в 1000 раз меньше), а тромбоцитов - 2,5 x 1011 в 1 литре крови (т.е. в 20 раз меньше, чем эритроцитов).
Популяция клеток крови обновляющаяся, с коротким циклом развития, где большинство зрелых форм являются конечными (погибающими) клетками.
Эритроциты
Эритроциты у человека и млекопитающих представляют собой безъядерные клетки, утратившие в процессе фило- и онтогенеза ядро и большинство органелл. Эритроциты являются высокодифференцированными постклеточными структурами, неспособными к делению. Основная функция эритроцитов -- дыхательная -- транспортировка кислорода и углекислоты. Эта функция обеспечивается дыхательным пигментом -- гемоглобином. Кроме того, эритроциты участвуют в транспорте аминокислот, антител, токсинов и ряда лекарственных веществ, адсорбируя их на поверхности плазмолеммы.
Форма и строение эритроцитов
Популяция эритроцитов неоднородна по форме и размерам. В нормальной крови человека основную массу составляют эритроциты двояковогнутой формы -- дискоциты (80--90%). Кроме того, имеются планоциты (с плоской поверхностью) и стареющие формы эритроцитов -- шиповидные эритроциты, или эхиноциты, куполообразные, или стоматоциты, и шаровидные, или сфероциты. Процесс старения эритроцитов идет двумя путями -- кренированием (т.е. образованием зубцов на плазмолемме) или путем инвагинации участков плазмолеммы.
При кренировании образуются эхиноциты с различной степенью формирования выростов плазмолеммы, которые впоследствии отпадают. При этом формируется эритроцит в виде микросфероцита. При инвагинации плазмолеммы эритроцита образуются стоматоциты, конечной стадией которых также является микросфероцит.
Одним из проявлений процессов старения эритроцитов является их гемолиз, сопровождающийся выхождением гемоглобина; при этом в крови обнаруживаются т.н. «тени» эритроцитов - их оболочки.
Обязательной составной частью популяции эритроцитов являются их молодые формы, называемые ретикулоцитами или полихроматофильными эритроцитами. В норме их от 1 до 5% от количества всех эритроцитов. В них сохраняются рибосомы и эндоплазматическая сеть, формирующие зернистые и сетчатые структуры, которые выявляются при специальной суправитальной окраске. При обычной гематологической окраске (азур II - эозином) они проявляют полихроматофилию и окрашиваются в серо-голубой цвет.
При заболеваниях могут появляться аномальные формы эритроцитов, что чаще всего обусловлено изменением структуры гемоглобина (Нb). Замена даже одной аминокислоты в молекуле Нb может быть причиной изменения формы эритроцитов. В качестве примера можно привести появление эритроцитов серповидной формы при серповидно-клеточной анемии, когда у больного имеет место генетическое повреждение в ?-цепи гемоглобина. Процесс нарушения формы эритроцитов при заболеваниях получил название пойкилоцитоз.
Как было сказано выше, в норме количество эритроцитов измененной формы может быть около 15% - это т.н. физиологический пойкилоцитоз.
Размеры эритроцитов в нормальной крови также варьируют. Большинство эритроцитов имеют диаметр около 7,5 мкм и называются нормоцитами. Остальная часть эритроцитов представлена микроцитами и макроцитами. Микроциты имеют диаметр <7, а макроциты >8 мкм. Изменение размеров эритроцитов называется анизоцитозом.
Плазмолемма эритроцита состоит из бислоя липидов и белков, представленных приблизительно в равных количествах, а также небольшого количества углеводов, формирующих гликокаликс. Наружная поверхность мембраны эритроцита несет отрицательный заряд.
В плазмолемме эритроцита идентифицировано 15 главных белков. Более 60% всех белков составляют: примембранный белок спектрин и мембранные белки -- гликофорин и т.н. полоса 3.
Спектрин является белком цитоскелета, связанным с внутренней стороной плазмолеммы, участвует в поддержании двояковогнутой формы эритроцита. Молекулы спектрина имеют вид палочек, концы которых связаны с короткими актиновыми филаментами цитоплазмы, образуя т.н. «узловой комплекс». Цитоскелетный белок, связывающий спектрин и актин, одновременно соединяется с белком гликофорином.
На внутренней цитоплазматической поверхности плазмолеммы образуется гибкая сетевидная структура, которая поддерживает форму эритроцита и противостоит давлению при прохождении его через тонкий капилляр.
При наследственной аномалии спектрина эритроциты имеют сферическую форму. При недостаточности спектрина в условиях анемии эритроциты также принимают сферическую форму.
Соединение спектринового цитоскелета с плазмолеммой обеспечивает внутриклеточный белок анкерин. Анкирин связывает спектрин с трансмембранным белком плазмолеммы (полоса 3).
Гликофорин -- трансмембранный белок, который пронизывает плазмолемму в виде одиночной спирали, и его большая часть выступает на наружной поверхности эритроцита, где к нему присоединены 15 отдельных цепей олигосахаридов, которые несут отрицательные заряды. Гликофорины относятся к классу мембранных гликопротеинов, которые выполняют рецепторные функции. Гликофорины обнаружены только в эритроцитах.
Полоса 3 представляет собой трансмембранный гликопротеид, полипептидная цепь которого много раз пересекает бислой липидов. Этот гликопротеид участвует в обмене кислорода и углекислоты, которые связывает гемоглобин -- основной белок цитоплазмы эритроцита.
Олигосахариды гликолипидов и гликопротеидов образуют гликокаликс. Они определяют антигенный состав эритроцитов. При связывании этих антигенов соответствующими антителами происходит склеивание эритроцитов - агглютинация. Антигены эритроцитов получили название агглютиногены, а соответствующие им антитела плазмы крови - агглютинины. В норме в плазме крови нет агглютининов к собственным эритроцитам, в противном случае возникает аутоиммунное разрушение эритроцитов.
В настоящее время выделяют более 20 систем групп крови по антигенным свойствам эритроцитов, т.е. по наличию или отсутствию на их поверхности агглютиногенов. По системе AB0 выявляют агглютиногены A и B. Этим антигенам эритроцитов соответствуют б- и в-агглютинины плазмы крови.
Агглютинация эритроцитов свойственна также нормальной свежей крови, при этом образуются так называемые «монетные столбики», или сладжи. Это явление связано с потерей заряда плазмолеммы эритроцитов. Скорость оседания (агглютинации) эритроцитов (СОЭ) в 1 ч у здорового человека составляет 4--8 мм у мужчин и 7--10 мм у женщин. СОЭ может значительно изменяться при заболеваниях, например при воспалительных процессах, и поэтому служит важным диагностическим признаком. В движущейся крови эритроциты отталкиваются из-за наличия на их плазмолемме одноименных отрицательных зарядов.
Цитоплазма эритроцита состоит из воды (60%) и сухого остатка (40%), содержащего, в основном, гемоглобин.
Количество гемоглобина в одном эритроците называют цветовым показателем. При электронной микроскопии гемоглобин выявляется в гиалоплазме эритроцита в виде многочисленных плотных гранул диаметром 4--5 нм.
Гемоглобин - это сложный пигмент, состоящий из 4 полипептидных цепей глобина и гема (железосодержащего порфирина), обладающий высокой способностью связывать кислород (O2), углекислоту (CO2), угарный газ (CO).
Гемоглобин способен связывать кислород в легких, - при этом в эритроцитах образуется оксигемоглобин. В тканях выделяемая углекислота (конечный продукт тканевого дыхания) поступает в эритроциты и соединяясь с гемоглобином образует карбоксигемоглобин.
Разрушение эритроцитов с выходом гемоглобина из клеток называется гемолизом. Утилизация старых или поврежденных эритроцитов производится макрофагами главным образом в селезенке, а также в печени и костном мозге, при этом гемоглобин распадается, а высвобождающееся из гема железо используется для образования новых эритроцитов.
В цитоплазме эритроцитов содержатся ферменты анаэробного гликолиза, с помощью которых синтезируются АТФ и НАДН, обеспечивающие энергией главные процессы, связанные с переносом О2 и СО2, а также поддержание осмотического давления и перенос ионов через плазмолемму эритроцита. Энергия гликолиза обеспечивает активный транспорт катионов через плазмолемму, поддержание оптимального соотношения концентрации К+ и Na+ в эритроцитах и плазме крови, сохранении формы и целостности мембраны эритроцита. НАДН участвует в метаболизме Нb, предотвращая окисление его в метгемоглобин.
Эритроциты участвуют в транспорте аминокислот и полипептидов, регулируют их концентрацию в плазме крови, т.е. выполняют роль буферной системы. Постоянство концентрации аминокислот и полипептидов в плазме крови поддерживается с помощью эритроцитов, которые адсорбируют их избыток из плазмы, а затем отдают различным тканям и органам. Таким образом, эритроциты являются подвижным депо аминокислот и полипептидов.
Средняя продолжительность жизни эритроцитов составляет около 120 дней. В организме ежедневно разрушается (и образуется) около 200 млн эритроцитов. При их старении происходят изменения в плазмолемме эритроцита: в частности, в гликокаликсе снижается содержание сиаловых кислот, определяющих отрицательный заряд оболочки. Отмечаются изменения цитоскелетного белка спектрина, что приводит к преобразованию дисковидной формы эритроцита в сферическую. В плазмолемме появляются специфические рецепторы к аутологичным антителам (IgG), которые при взаимодействии с этими антителами образуют комплексы, обеспечивающие «узнавание» их макрофагами и последующий фагоцитоз таких эритроцитов. При старении эритроцитов отмечается нарушение их газообменной функции.
Характеристика лейкоцитов: нейтрофилы, эозинофилы, базофилы, лимфоциты, моноциты
Лейкоциты
Лейкоциты, или белые кровяные клетки, в свежей крови бесцветны, что отличает их от окрашенных эритроцитов. Число их составляет в среднем 4 -- 9 x 109 в 1 литре крови (т.е. в 1000 раз меньше, чем эритроцитов). Лейкоциты способны к активным движениям, могут переходить через стенку сосудов в соединительную ткань органов, где они выполняют основные защитные функции. По морфологическим признакам и биологической роли лейкоциты подразделяют на две группы: зернистые лейкоциты, или гранулоциты, и незернистые лейкоциты, или агранулоциты.
По другой классификации, учитывающей форму ядра лейкоцита, различают лейкоциты с круглым или овальным несегментированным ядром - т.н. мононуклеарные лейкоциты, или мононуклеары, а также лейкоциты с сегментированным ядром, состоящим из нескольких частей - сегментов, - сегментоядерные лейкоциты.
В стандартной гематологической окраске по Романовскому -- Гимзе используются два красителя: кислый эозин и основной азур-II. Структуры, окрашиваемые эозином (в розовый цвет) называют эозинофильными, или оксифильными, или же ацидофильными. Структуры, окрашиваемые красителем азур-II (в фиолетово-красный цвет) называют базофильными, или азурофильными.
У зернистых лейкоцитов при окраске азур-II - эозином, в цитоплазме выявляются специфическая зернистость (эозинофильная, базофильная или нейтрофильная) и сегментированные ядра (т.е. все гранулоциты относятся к сегментоядерным лейкоцитам). В соответствии с окраской специфической зернистости различают нейтрофилъные, эозинофильные и базофильные гранулоциты.
Группа незернистых лейкоцитов (лимфоциты и моноциты) характеризуется отсутствием специфической зернистости и несегментированными ядрами. Т.е. все агранулоциты относятся к мононуклеарным лейкоцитам.
Процентное соотношение основных видов лейкоцитов называется лейкоцитарной формулой, или лейкограммой. Общее число лейкоцитов и их процентное соотношение у человека могут изменяться в норме в зависимости от употребляемой пищи, физического и умственного напряжения и при различных заболеваниях. Исследование показателей крови является необходимым для установления диагноза и назначения лечения.
Все лейкоциты способны к активному перемещению путем образования псевдоподий, при этом у них изменяются форма тела и ядра. Они способны проходить между клетками эндотелия сосудов и клетками эпителия, через базальные мембраны и перемещаться по основному веществу соединительной ткани. Направление движения лейкоцитов определяется хемотаксисом под влиянием химических раздражителей -- например продуктов распада тканей, бактерий и других факторов.
Лейкоциты выполняют защитные функции, обеспечивая фагоцитоз микробов, инородных веществ, продуктов распада клеток, участвуя в иммунных реакциях.
Гранулоциты (зернистые лейкоциты)
К гранулоцитам относятся нейтрофильные, эозинофильные и базофильные лейкоциты. Они образуются в красном костном мозге, содержат специфическую зернистость в цитоплазме и имеют сегментированные ядра.
Нейтрофильные гранулоциты (или нейтрофилы) -- самая многочисленная группа лейкоцитов, составляющая (48--78% от общего числа лейкоцитов). В зрелом сегментоядерном нейтрофиле ядро содержит 3--5 сегментов, соединенных тонкими перемычками. В популяции нейтрофилов крови могут находиться клетки различной степени зрелости -- юные, палочкоядерные и сегментоядерные. Первые два вида -- молодые клетки. Юные клетки в норме не превышают 0,5% или отсутствуют, они характеризуются бобовидным ядром. Палочкоядерные составляют 1--6%, имеют несегментированное ядро в форме английской буквы S, изогнутой палочки или подковы. Увеличение в крови количества юных и палочкоядерных форм нейтрофилов (т.н. сдвиг лейкоцитарной формулы влево) свидетельствует о наличии кровопотери или острого воспалительного процесса в организме, сопровождаемых усилением гемопоэза в костном мозге и выходом молодых форм.
Цитоплазма нейтрофилов окрашивается слабооксифильно, в ней видна очень мелкая зернистость розово-фиолетового цвета (окрашивается как кислыми, так и основными красками), поэтому называется нейтрофильной или гетерофильной. В поверхностном слое цитоплазмы зернистость и органеллы отсутствуют. Здесь расположены гранулы гликогена, актиновые филаменты и микротрубочки, обеспечивающие образование псевдоподий для движения клетки. Во внутренней части цитоплазмы расположены органеллы общего назначения, видна зернистость.
В нейтрофилах можно различить два типа гранул: специфические и азурофильные, окруженные одинарной мембраной.
Специфические гранулы, более мелкие и многочисленные содержат бактериостатические и бактерицидные вещества -- лизоцим и щелочную фосфатазу, а также белок лактоферрин. Лизоцим является ферментом, разрушающим бактериальную стенку. Лактоферрин связывает ионы железа, что способствует склеиванию бактерий. Он также инициирует отрицательную обратную связь, обеспечивая торможение продукции нейтрофилов в костном мозге.
Азурофильные гранулы более крупные, окрашиваются в фиолетово-красный цвет. Они являются первичными лизосомами, содержат лизосомальные ферменты и миелопероксидазу. Миелопероксидаза из перекиси водорода продуцирует молекулярный кислород, обладающий бактерицидным действием. Азурофильные гранулы в процессе дифференцировки нейтрофилов появляются раньше, поэтому называются первичными в отличие от вторичных -- специфических.
Основная функция нейтрофилов -- фагоцитоз микроорганизмов, поэтому их называют микрофагами. В процессе фагоцитоза бактерий сначала с образующейся фагосомой сливаются специфические гранулы, ферменты которой убивают бактерию, при этом образуется комплекс, состоящий из фагосомы и специфической гранулы. Позднее с этим комплексом сливается лизосома, гидролитические ферменты которой переваривают микроорганизмы. В очаге воспаления убитые бактерии и погибшие нейтрофилы образуют гной.
Фагоцитоз усиливается при опсонизации с помощью иммуноглобулинов или системы комплемента плазмы. Это так называемый рецепторопосредованный фагоцитоз. Если у человека имеются антитела для конкретного вида бактерий, то бактерия обволакивается этими специфическими антителами. Этот процесс и называется опсонизацией. Затем антитела распознаются рецептором на плазмолемме нейтрофила и присоединяется к нему. Образующееся соединение на поверхности нейтрофила запускает фагоцитоз.
В популяции нейтрофилов здоровых людей фагоцитирующие клетки составляют 69--99%. Этот показатель называют фагоцитарной активностью. Фагоцитарный индекс -- другой показатель, которым оценивается число частиц, поглощенных одной клеткой. Для нейтрофилов он равен 12--23.
Продолжительность жизни нейтрофилов составляет 5--9 сут.
Эозинофильные гранулоциты (или эозинофилы). Количество эозинофилов в крови составляет от 0,5 до 5 % от общего числа лейкоцитов. Ядро эозинофилов имеет, как правило, 2 сегмента, соединенных перемычкой. В цитоплазме расположены органеллы общего назначения и гранулы. Среди гранул различают азурофильные (первичные) и эозинофильные (вторичные), являющиеся модифицированными лизосомами.
Специфические эозинофильные гранулы заполняют почти всю цитоплазму. Характерно наличие в центре гранулы кристаллоида, который содержит т.н. главный основной белок, богатый аргинином, лизосомные гидролитические ферменты, пероксидазу, эозинофильный катионный белок, а также гистаминазу.
Главный основной белок эозинофильных гранул участвует в антипаразитарной функции эозинофилов. Гистаминаза - фермент разрушающий гистамин, - один из основных медиаторов воспаления.
Эозинофилы являются подвижными клетками и способны к фагоцитозу, однако их фагоцитарная активность ниже, чем у нейтрофилов.
Эозинофилы обладают положительным хемотаксисом к гистамину, выделяемому тучными клетками соединительной ткани при воспалении и аллергических реакциях, к лимфокинам, выделяемым Т-лимфоцитами, и иммунным комплексам, состоящим из антигенов и антител.
Установлена роль эозинофилов в реакциях на чужеродный белок, в аллергических и анафилактических реакциях, где они участвуют в метаболизме гистамина, вырабатываемого тучными клетками соединительной ткани. Гистамин повышает проницаемость сосудов, вызывает развитие отека тканей; в больших дозах может вызвать шок со смертельным исходом.
Эозинофилы способствуют снижению содержания гистамина в тканях различными путями. Они разрушают гистамин с помощью фермента гистаминазы, фагоцитируют гистаминсодержащие гранулы тучных клеток, адсорбируют гистамин на плазмолемме, связывая его с помощью рецепторов, и, наконец, вырабатывают фактор, тормозящий дегрануляцию и освобождение гистамина из тучных клеток.
Специфической функцией эозинофилов является антипаразитарная. При паразитарных заболеваниях (гельминтозы, шистосомоз и др.) наблюдается резкое увеличение числа эозинофилов. Эозинофилы убивают личинки паразитов, поступившие в кровь или органы (например, в слизистую оболочку кишки). Они привлекаются в очаги воспаления хемотаксическими факторами и прилипают к паразитам благодаря наличию на них обволакивающих компонентов комплемента. При этом происходят дегрануляция эозинофилов и выделение главного основного белка, оказывающего антипаразитарное действие.
Эозинофилы находятся в периферической крови менее 12 ч и потом переходят в ткани. Их мишенями являются такие органы, как кожа, легкие и желудочнокишечный тракт. Изменение содержания эозинофилов может наблюдаться под действием медиаторов и гормонов: например, при стресс-реакции отмечается падение числа эозинофилов в крови, обусловленное увеличением содержания гормонов надпочечников.
Базофильные гранулоциты (или базофилы). Количество базофилов в крови составляет до 1% от общего числа лейкоцитов. Ядра базофилов сегментированы, содержат 2--3 дольки. Характерно наличие специфических крупных метахроматических гранул, часто закрывающих ядро.
Базофилы опосредуют воспаление и секретируют эозинофильный хемотаксический фактор. Гранулы содержат протеогликаны, гликозаминогликаны (в том числе гепарин), вазоактивный гистамин, нейтральные протеазы. Часть гранул представляет собой модифицированные лизосомы. Дегрануляция базофилов происходит в реакциях гиперчувствительности немедленного типа (например, при астме, анафилаксии, сыпи, которая может ассоциироваться с покраснением кожи). Пусковым механизмом анафилактической дегрануляции является рецептор для иммуноглобулина класса E. Метахромазия обусловлена наличием гепарина -- кислого гликозаминогликана.
Базофилы образуются в костном мозге. Они так же, как и нейтрофилы, находятся в периферической крови около 1--2 сут.
Помимо специфических гранул, в базофилах содержатся и азурофильные гранулы (лизосомы). Базофилы так же, как и тучные клетки соединительной ткани, выделяя гепарин и гистамин, участвуют в регуляции процессов свертывания крови и проницаемости сосудов. Базофилы участвуют в иммунологических реакциях организма, в частности в реакциях аллергического характера.
Агранулоциты (незернистые лейкоциты)
К этой группе лейкоцитов относятся лимфоциты и моноциты. В отличие от гранулоцитов они не содержат в цитоплазме специфической зернистости, а их ядра не сегментированы.
Лимфоциты в крови взрослых людей составляют 20--35% от общего числа лейкоцитов. Среди лимфоцитов различают малые лимфоциты, средние и большие. Большие лимфоциты встречаются в крови новорожденных и детей, у взрослых они отсутствуют. Большую часть всех лимфоцитов крови человека составляют малые лимфоциты.
Для всех видов лимфоцитов характерно наличие интенсивно окрашенного ядра округлой или бобовидной формы. В цитоплазме лимфоцитов содержится небольшое количество азурофильных гранул (лизосом).
Основной функцией лимфоцитов является участие в иммунных реакциях. Однако популяция лимфоцитов гетерогенна по характеристике поверхностных рецепторов и роли в реакциях иммунитета. Среди лимфоцитов различают три основных функциональных класса: B-лимфоциты, T-лимфоциты и т.н. нулевые лимфоциты.
B-лимфоциты впервые были обнаружены в специальном органе у птиц -фабрициевой сумке, (бурсе, bursa Fabricius), поэтому и получили соответствующее название. Они образуются в костном мозге. В-лимфоциты составляют около 30 % циркулирующих лимфоцитов. Их главная функция -- участие в выработке антител, т.е. обеспечение гуморального иммунитета. Плазмолемма В-лимфоцитов содержит множество иммуноглобулиновых рецепторов. При действии антигенов В-лимфоциты способны к пролиферации и дифференцировке в плазмоциты -- клетки, способные синтезировать и секретировать защитные белки - антитела, или иммуноглобулины, которые поступают в кровь, обеспечивая гуморальный иммунитет.
Т-лимфоциты, или тимусзависимые лимфоциты, образуются из стволовых клеток костного мозга, а созревают в тимусе (вилочковой железе), что и обусловило их название. Они преобладают в популяции лимфоцитов, составляя около 70 % циркулирующих лимфоцитов. Для Т-клеток, в отличие от В-лимфоцитов, характерен низкий уровень поверхностных иммуноглобулиновых рецепторов в плазмолемме. Но Т-клетки имеют специфические рецепторы, способные распознавать и связывать антигены, участвовать в иммунных реакциях. Основными функциями Т-лимфоцитов являются обеспечение реакций клеточного иммунитета и регуляция гуморального иммунитета (т.е. стимуляция или подавление дифференцировки В-лимфоцитов). Т-лимфоциты способны к выработке сигнальных веществ - лимфокинов, которые регулируют деятельность В-лимфоцитов и других клеток в иммунных реакциях. Среди Т-лимфоцитов выявлено несколько функциональных групп: Т-хелперы, Т-супрессоры, Т-киллеры.
Нулевые лимфоциты не имеют поверхностных маркеров на плазмолемме, характерных для В- и Т-лимфоцитов. Их расценивают как резервную популяцию недифференцированных лимфоцитов.
Продолжительность жизни лимфоцитов варьирует от нескольких недель до нескольких лет. Т-лимфоциты являются «долгоживущими» (месяцы и годы) клетками, а В-лимфоциты относятся к «короткоживущим» (недели и месяцы).
Для Т-лимфоцитов характерно явление рециркуляции, т.е. выход из крови в ткани и возвращение по лимфатическим путям снова в кровь. Таким образом они осуществляют иммунологический надзор за состоянием всех органов, быстро реагируя на внедрение чужеродных агентов.
Среди клеток, имеющих морфологию малых лимфоцитов, следует назвать циркулирующие стволовые клетки крови, которые поступают в кровь из костного мозга. Из клеток, поступающих в кроветворные органы, дифференцируются различные клетки крови, а из поступающих в соединительную ткань, -- тучные клетки, фибробласты и другие клетки соединительной ткани.
Моноциты. Эти клетки крупнее других лейкоцитов. В крови человека количество моноцитов от 6 до 8 % от общего числа лейкоцитов.
Ядра моноцитов встречаются бобовидные, подковообразные, редко -- дольчатые.
Цитоплазма моноцитов менее базофильна, чем цитоплазма лимфоцитов. Она имеет бледно-голубой цвет, но по периферии окрашивается несколько темнее, чем около ядра. В цитоплазме содержится различное количество очень мелких азурофильных зерен (лизосом), расположенных чаще около ядра.
Характерно наличие пальцеобразных выростов цитоплазмы и образование фагоцитарных вакуолей. В цитоплазме расположено множество пиноцитозных везикул.
Моноциты относятся к макрофагической системе организма, или к так называемой мононуклеарной фагоцитарной системе. Клетки этой системы характеризуются происхождением из промоноцитов костного мозга, способностью прикрепляться к поверхности стекла, активностью пиноцитоза и иммунного фагоцитоза, наличием на мембране рецепторов для иммуноглобулинов и комплемента. Моноциты циркулирующей крови представляют собой подвижный пул относительно незрелых клеток, находящихся на пути из костного мозга в ткани. Время пребывания моноцитов в периферической крови - от 1,5 суток до 4 дней.
Моноциты, выселяющиеся в ткани, превращаются в макрофаги, при этом у них появляются большое количество лизосом, фагосом, фаголизосом.
Характеристика тромбоцитов, процессы свертывания крови
Кровяные пластинки, или тромбоциты, в свежей крови человека имеют вид мелких бесцветных телец округлой или веретеновидной формы. Они могут объединяться (агглютинировать) в маленькие или большие группы. Количество их колеблется от 200 до 400 x 109 в 1 литре крови. Кровяные пластинки представляют собой безъядерные фрагменты цитоплазмы, отделившиеся от мегакариоцитов -- гигантских клеток костного мозга.
Тромбоциты в кровотоке имеют форму двояковыпуклого диска. В них выявляются более светлая периферическая часть -- гиаломер и более темная, зернистая часть -- грануломер. В популяции тромбоцитов находятся как более молодые, так и более дифференцированные и стареющие формы. Гиаломер в молодых пластинках окрашивается в голубой цвет (базофилен), а в зрелых -- в розовый (оксифилен). Молодые формы тромбоцитов крупнее старых.
Плазмолемма тромбоцитов имеет толстый слой гликокаликса, образует инвагинации с отходящими канальцами, также покрытыми гликокаликсом. В плазмолемме содержатся гликопротеины, которые выполняют функцию поверхностных рецепторов, участвующих в процессах адгезии и агрегации кровяных пластинок (т.е. процессах свертывания, или коагуляции, крови).
Цитоскелет в тромбоцитах хорошо развит и представлен актиновыми микрофиламентами и пучками микротрубочек, расположенными циркулярно в гиаломере и примыкающими к внутренней части плазмолеммы. Элементы цитоскелета обеспечивают поддержание формы кровяных пластинок, участвуют в образовании их отростков. Актиновые филаменты участвуют в сокращении объема (ретракции) образующихся кровяных тромбов.
В кровяных пластинках имеется две системы канальцев и трубочек. Первая -- это открытая система каналов, связанная, как уже отмечалось, с инвагинациями плазмолеммы. Через эту систему выделяется в плазму содержимое гранул кровяных пластинок и происходит поглощение веществ. Вторая -- это так называемая плотная тубулярная система, которая представлена группами трубочек, имеющих сходство с гладкой эндоплазматической сетью. Плотная тубулярная система является местом синтеза циклоксигеназы и простагландинов. Кроме того, эти трубочки селективно связывают двухвалентные катионы и являются резервуаром ионов Са2+. Вышеназванные вещества являются необходимыми компонентами процесса свертывания крови.
Выход ионов Са2+ из трубочек в цитозоль необходим для обеспечения функционирования кровяных пластинок. Фермент циклооксигеназа метаболизирует арахидоновую кислоту с образованием из нее простагландинов и тромбоксана A2, которые секретируются из пластинок и стимулируют их агрегацию в процессе коагуляции крови.
При блокаде циклооксигеназы (например, ацетилсалициловой кислотой) агрегация тромбоцитов тормозится, что используют для профилактики образования тромбов.
В грануломере выявлены органеллы, включения и специальные гранулы. Органеллы представлены рибосомами, элементами эндоплазматической сети аппарата Гольджи, митохондриями, лизосомами, пероксисомами. Имеются включения гликогена и ферритина в виде мелких гранул.
Специальные гранулы составляют основную часть грануломера и представлены тремя типами.
Первый тип - крупные альфа-гранулы. Они содержат различные белки и гликопротеины, принимающие участие в процессах свертывания крови, факторы роста, литические ферменты.
Второй тип гранул -- дельта-гранулы, содержащие серотонин, накапливаемый из плазмы, и другие биогенные амины (гистамин, адреналин), ионы Са2+, АДФ, АТФ в высоких концентрациях.
Третий тип мелких гранул, представленный лизосомами, содержащими лизосомные ферменты, а также микропероксисомами, содержащими фермент пероксидазу.
Содержимое гранул при активации пластинок выделяется по открытой системе каналов, связанных с плазмолеммой.
Основная функция кровяных пластинок -- участие в процессе свертывания, или коагуляции, крови -- защитной реакции организма на повреждение и предотвращение потери крови. В тромбоцитах содержится около 12 факторов, участвующих в свертывании крови. При повреждении стенки сосуда пластинки быстро агрегируют, прилипают к образующимся нитям фибрина, в результате чего формируется тромб, закрывающий дефект. В процессе тромбообразования наблюдается несколько этапов с участием многих компонентов крови.
На первом этапе происходят скопление тромбоцитов и выход физиологически активных веществ. На втором этапе -- собственно коагуляция и остановка кровотечения (гемостаз). Вначале происходит образование активного тромбопластина из тромбоцитов (т.н. внутренний фактор) и из тканей сосуда (т.н. внешний фактор). Затем, под влиянием тромбопластина из неактивного протромбина образуется активнй тромбин. Далее, под влиянием тромбина из фибриногена образуется фибрин. Для всех этих фаз коагуляции крови необходим Са2+.
Наконец, на последнем третьем этапе наблюдается ретракция кровяного сгустка, связанная с сокращением нитей актина в отростках тромбоцитов и нитей фибрина.
Таким образом, морфологически на первом этапе происходит адгезия тромбоцитов на базальной мембране и на коллагеновых волокнах поврежденной сосудистой стенки, в результате которой образуются отростки тромбоцитов и на их поверхность из пластинок через систему трубочек выходят гранулы, содержащие тромбопластин. Он активирует реакцию превращения протромбина в тромбин, а последний влияет на образование из фибриногена фибрина.
Важной функцией тромбоцитов является их участие в метаболизме серотонина. Тромбоциты -- это практически единственные элементы крови, в которых из плазмы накапливаются резервы серотонина. Связывание тромбоцитами серотонина происходит с помощью высокомолекулярных факторов плазмы крови и двухвалентных катионов с участием АТФ.
В процессе свертывания крови из разрушающихся тромбоцитов высвобождается серотонин, который действует на сосудистую проницаемость и сокращение глад-комышечных клеток сосудов.
Продолжительность жизни тромбоцитов -- в среднем 9--10 дней. Стареющие тромбоциты фагоцитируются макрофагами селезенки. Усиление разрушающей функции селезенки может быть причиной значительного снижения числа тромбоцитов в крови (тромбоцитопения). Для устранения этого может потребоваться удаление селезенки (спленэктомия).
При снижении числа кровяных пластинок, например при кровопотере, в крови накапливается тромбопоэтин -- фактор, стимулирующий образование пластинок из мегакариоцитов костного мозга.
Часть четвертая - Формула крови, лейкоцитарная формула, возрастные изменения крови, характеристика лимфы.
Гемограмма и лейкограмма
В медицинской практике анализ крови играет огромную роль. При клинических анализах исследуют химический состав крови (в т.ч. электролитный состав), определяют количество форменных элементов, гемоглобина, резистентность эритроцитов, скорость оседания эритроцитов и многие другие показатели. У здорового человека форменные элементы крови находятся в определенных количественных соотношениях, которые принято называть гемограммой, или формулой крови.
Важное значение для характеристики состояния организма имеет так называемый дифференциальный подсчет лейкоцитов. Определенные процентные соотношения лейкоцитов называют лейкограммой, или лейкоцитарной формулой.
Возрастные изменения крови
Число эритроцитов в момент рождения и в первые часы жизни выше, чем у взрослого человека, и достигает 6.0--7.0 x 1012 в 1 литре крови. К 10--14 сут оно равно тем же цифрам, что и во взрослом организме. В последующие сроки происходит снижение числа эритроцитов с минимальными показателями на 3--6-м месяце жизни (т.н. физиологическая анемия). Число эритроцитов возвращается к нормальным значениям в период полового созревания. Для новорожденных характерно наличие анизоцитоза с преобладанием макроцитов, увеличенное содержание ретикулоцитов, а также присутствие незначительного числа ядросодержащих предшественников эритроцитов.
Число лейкоцитов у новорожденных увеличено и достигает 30 x 109 в 1 литре крови. В течение 2 нед после рождения число их падает до 9--15 x 109 в 1 литре (т.н. физиологическая лейкопения). Количество лейкоцитов достигает к 14--15 годам уровня, который сохраняется у взрослого.
Соотношение числа нейтрофилов и лимфоцитов у новорожденных такое же, как и у взрослых 4.5--9.0 x 109. В последующие сроки содержание лимфоцитов возрастает, а нейтрофилов падает, и к четвертым-пятым суткам количество этих видов лейкоцитов уравнивается - это т.н. первый физиологический перекрест лейкоцитов. Дальнейший рост числа лимфоцитов и падение нейтрофилов приводят к тому, что на 1--2-м году жизни ребенка лимфоциты составляют 65%, а нейтрофилы -- 25%. Новое снижение числа лимфоцитов и повышение нейтрофилов приводят к выравниванию обоих показателей у 4-летних детей (это второй физиологический перекрест). Постепенное снижение содержания лимфоцитов и повышение нейтрофилов продолжаются до полового созревания, когда количество этих видов лейкоцитов достигает нормы взрослого.
Лимфа
Лимфа представляет собой слегка желтоватую жидкую ткань, протекающую в лимфатических капиллярах и сосудах. Она состоит из лимфоплазмы (plasma lymphae) и форменных элементов. По химическому составу лимфоплазма близка к плазме крови, но содержит меньше белков. Лимфоплазма содержит также нейтральные жиры, простые сахара, соли (NaCl, Na2CO3 и др.), а также различные соединения, в состав которых входят кальций, магний, железо.
Форменные элементы лимфы представлены главным образом лимфоцитами (98%), а также моноцитами и другими видами лейкоцитов. Лимфа фильтруется из тканевой жидкости в слепые лимфатические капилляры, куда под влиянием различных факторов из тканей постоянно поступают различные компоненты лимфоплазмы. Из капилляров лимфа перемещается в периферические лимфатические сосуды, по ним -- в лимфатические узлы, затем в крупные лимфатические сосуды и вливается в кровь.
Подобные документы
Гистология — наука о строении, развитии и жизнедеятельности тканей животных организмов и общих закономерностях тканевой организации; понятие цитологии и эмбриологии. Основные методы гистологического исследования; приготовление гистологического препарата.
презентация [1,5 M], добавлен 23.03.2013История гистологии - раздела биологии, изучающего строение тканей живых организмов. Методы исследования в гистологии, приготовление гистологического препарата. Гистология ткани - филогенетически сложившейся системы клеток и неклеточных структур.
реферат [24,3 K], добавлен 07.01.2012Гистология - учение о развитии, строении, жизнедеятельности и регенерации тканей животных организмов и организма человека. Методы ее исследования, этапы развития, задачи. Основы сравнительной эмбриологии, науки о развитии и строении зародыша человека.
реферат [9,9 K], добавлен 01.12.2011История систематического изучения закономерностей эволюции тканей. Теория параллелизма гистологических структур. Теория дивергентной эволюции тканей. Теория филэмбриогенеза в гистологии. Эпителиальная, производные мезенхимы, мышечная и нервная ткань.
презентация [890,0 K], добавлен 12.11.2015История зарождения гистологии как науки. Гистологические препараты и методы их исследования. Характеристика этапов приготовления гистологических препаратов: фиксация, проводка, заливка, резка, окрашивание и заключение срезов. Типология тканей человека.
презентация [1,6 M], добавлен 20.11.2014Образование тканей из зародышевых листков (гистогенез). Понятие как стволовых клеток как полипотентных клеток с большими возможностями. Механизмы и классификация физиологической регенерации: внутриклеточная и репаративная. Виды эпителиальных тканей.
реферат [19,6 K], добавлен 18.01.2010Основной предмет изучения гистологии. Главные этапы гистологического анализа, объекты его исследования. Процесс изготовления гистологического препарата для световой и электронной микроскопии. Флюоресцентная (люминесцентная) микроскопия, сущность метода.
курсовая работа [32,3 K], добавлен 12.01.2015Основные положения гистологии, которая изучает систему клеток, неклеточных структур, обладающих общностью строения и направленных на выполнение определенных функций. Анализ строения, функций эпителия, крови, лимфы, соединительной, мышечной, нервной ткани.
реферат [31,3 K], добавлен 23.03.2010Сущность клеточного цикла - периода жизни клетки от одного деления до другого или от деления до смерти. Биологическое значение митоза, его основные регуляторные механизмы. Два периода митотического деления. Схема активации циклинзависимой киназы.
презентация [823,0 K], добавлен 28.10.2014Определение и общая характеристика эпителиальной ткани. Онтофилогенетическая и морфологическая классификация эпителия. Количество клеток, направление секреции и состав секрета железистого эпителия. Особенности регенерации покровных и железистых тканей.
презентация [365,4 K], добавлен 18.09.2013